Реферат по предмету "Медицина"


Лекции по биохимии углеводов

--PAGE_BREAK--Тема: Катаболизм глюкозы. Гликолиз


Основные пути катаболизма глюкозы

Катаболизм глюкозы в клетке может проходить как в аэробных, так и в анаэробных условиях, его основная функция — это синтез АТФ.

Аэробное окисление глюкозы

В аэробных условиях глюкоза окисляется до СО2 и Н2О. Суммарное уравнение:

С6Н12О6 + 6О2 → 6СО2+ 6Н2О + 2880 кДж/моль.

Этот процесс включает несколько стадий:

1.      Аэробный гликолиз. В нем происходит окисления 1 глюкозы до 2 ПВК, с образованием 2 АТФ (сначала 2 АТФ затрачиваются, затем 4 образуются) и 2 НАДН2;

2.      Превращение 2 ПВК в 2 ацетил-КоА с выделением 2 СО2 и образованием 2 НАДН2;

3.      ЦТК. В нем происходит окисление 2 ацетил-КоА с выделением 4 СО2, образованием 2 ГТФ (дают 2 АТФ), 6 НАДН2 и 2 ФАДН2;

4.      Цепь окислительного фосфорилирования. В ней происходит окисления 10 (8) НАДН2, 2 (4) ФАДН2 с участием 6 О2, при этом выделяется 6 Н2О и синтезируется 34 (32) АТФ.
В результате аэробного окисления глюкозы образуется 38 (36) АТФ, из них: 4 АТФ в реакциях субстратного фосфорилирования, 34 (32) АТФ в реакциях окислительного фосфорилирования. КПД аэробного окисления составит 65%.
Анаэробное окисление глюкозы

Катаболизм глюкозы без О2 идет в анаэробном гликолизе и ПФШ (ПФП).

·        В ходе анаэробного гликолиза происходит окисления 1 глюкозы до 2 молекул молочной кислоты с образованием 2 АТФ (сначала 2 АТФ затрачиваются, затем 4 образуются). В анаэробных условиях гликолиз является единственным источником энергии. Суммарное уравнение: С6Н12О6 + 2Н3РО4 + 2АДФ → 2С3Н6О3 + 2АТФ + 2Н2О.

·        В ходе ПФП из глюкозы образуются пентозы и НАДФН2. В ходе ПФШ из глюкозы образуются только НАДФН2.
ГЛИКОЛИЗ

Гликолиз – главный путь катаболизма глюкозы (а также фруктозы и галактозы). Все его реакции протекают в цитозоле.

Аэробный гликолиз — это процесс окисления глюкозы до ПВК, протекающий в присутствии О2.

Анаэробный гликолиз – это процесс окисления глюкозы до лактата, протекающий в отсутствии О2.

Анаэробный гликолиз отличается от аэробного только наличием последней 11 реакции, первые 10 реакций у них общие.

Этапы гликолиза

В любом гликолизе можно выделить 2 этапа:
1 этап подготовительный, в нем  затрачивается 2 АТФ. Глюкоза фосфорилируется и расщепляется на 2 фосфотриозы; 2 этап, сопряжён с синтезом АТФ. На этом этапе фосфотриозы превращаются в ПВК. Энергия этого этапа используется для синтеза 4 АТФ и восстановления 2НАДН2, которые в аэробных условиях идут на синтез 6 АТФ, а в анаэробных условиях восстанавливают ПВК до лактата.
Энергетический баланс гликолиза

Таким образом, энергетический баланс аэробного гликолиза:

8АТФ = -2АТФ + 4АТФ +  6АТФ (из 2НАДН2)

Энергетический баланс анаэробного гликолиза:

2АТФ = -2АТФ + 4АТФ
Общие реакции аэробного и анаэробного гликолиза

1. Гексокиназа (гексокиназа II, АТФ: гексозо-6-фосфотрансфераза) в мышцах фосфорилирует в основном глюкозу, меньше – фруктозу и галактозу.Кm

Глюкокиназа (гексокиназа IV, АТФ: глюкозо-6-фосфотрансфераза) фосфорилирует глюкозу. Кm — 10 ммоль/л, активна в печени, почках. Не ингибируется глюкозо-6-ф. Индуктор инсулин. Гексокиназы осуществляют фосфорилирование гексоз.



2. Фосфогексозоизомераза (глюкозо-6ф-фруктозо-6ф-изомераза) осуществляет альдо-кетоизомеризацию открытых форм гексоз.



3. Фосфофруктокиназа 1 (АТФ: фруктозо-6ф-1-фосфотрансфераза) осуществляет фосфорилирование фруктозы-6ф. Реакция необратима и самая медленная из всех реакций гликолиза, определяет скорость всего гли­колиза. Активируется: АМФ, фруктозо-2,6-дф (мощный активатор, образуется с участием фосфофруктокиназы 2 из фруктозы-6ф), фруктозо-6-ф, Фн. Ингибируется: глюкагоном, АТФ, НАДН2, цитратом, жирными кислотами, кетоновыми телами. Индуктор реакции инсулин.



4. Альдолаза А (фруктозо-1,6-ф: ДАФ-лиаза). Альдолазы действуют на открытые формы гексоз, имеют 4 субъединицы, образуют несколько изоформ. В большинстве тканей содержится Альдолаза А. В печени и почках – Альдолаза В.



5. Фосфотриозоизомераза (ДАФ-ФГА-изомераза).



6. 3-ФГА дегидрогеназа (3-ФГА: НАД+ оксидоредуктаза (фосфорилирующая)) состоит из 4 субъединиц. Катализирует образование макроэргической связи в 1,3-ФГК и восстановление НАДН2, которые используются в аэробных условиях для синтеза 8 (6) молекул АТФ.



7. Фосфоглицераткиназа (АТФ: 3ФГК-1-фосфотрансфераза). Осуществляет субстратное фосфорилирование АДФ с образованием АТФ.



В следующих реакциях низкоэнергетический фосфоэфир переходит в высокоэнергетический фосфат.

8. Фосфоглицератмутаза (3-ФГК-2-ФГК-изомераза) осуществляет перенос фосфатного остатка в ФГК из по­ложения 3 положение 2.



9. Енолаза (2-ФГК: гидро-лиаза) от­щепляет от 2-ФГК молекулу воды и образует высокоэнергетическую связь у фосфора. Ингибируется ионами F-.



10. Пируваткиназа (АТФ: ПВК-2-фосфотрансфераза) осуществляет субстратное фосфорилирование АДФ с образованием АТФ. Активируется фруктозо-1,6-дф, глюкозой. Ингибируется АТФ, НАДН2, глюкагоном, адреналином, аланином, жирными кислотами, Ацетил-КоА. Индуктор: инсулин, фруктоза.



Образующаяся енольная форма ПВК затем неферментативно переходит в бо­лее термодинамически стабильную кетоформу. Данная реакция является последней для аэробного гликолиза.

Дальнейший катаболизм 2 ПВК и использование 2 НАДН2 зависит от наличия О2.

Реакция анаэробного гликолиза

В анаэробных условиях ПВК, подобно О2 в дыхатель­ной цепи, обеспечивает регенерацию НАД+ из НАДН2, что необходимо для продолжения реакций гликолиза. ПВК при этом превращается в молочную кислоту. Реакция протекает в цитоплазме с участием лактатдегидрогеназы (ЛДГ).

11. Лактатдегидрогеназа(лактат: НАД+ оксидоредуктаза). Стоит из 4 субъединиц, имеет 5 изоформ.



Лактат не является конечным продуктом метаболизма, удаляемым из организма. Из анаэробной ткани лактат переноситься кровью в печень, где превращаясь в глюко­зу (Цикл Кори), или в аэробные ткани (миокард), где превращает­ся в ПВК и окисляется до СО2 и Н2О.
Катаболизм ПВК в митохондриях

В аэробных условиях ПВК и водороды с НАДН2 транспортируются  в матрикс митохондрий. ПВК самостоятельно не проходит внутреннюю мембрану митохондрий, перенос ее через мембрану осуществляется вторично-активным транспортом симпортом с Н+. ПВК в митохондриях используется в 2 реакциях:

1.      Пируватдегидрогеназный комплекс (ПВК: НАД+ оксидорудуктаза (декарбоксилирующая)) содержит 3 фермента и 5 коферментов: а) Пируватдекарбоксилаза содержит (Е1) 120 мономеров и кофермент ТПФ; б) Дигидролипоилтрансацилаза  (Е2) содержит 180 мономеров и коферменты липоамид и HSКоА; в) Дигидролипоилдегидрогеназа (Е3) содержит 12 мономеров и коферменты ФАД и НАД. Пируват ДГ комплекс осуществляет окислительное декарбоксилирование ПВК с образованием Ацетил-КоА. Активатор: HSКоА, НАД+, АДФ. Ингибитор: НАДН2, АТФ, Ацетил-КоА, жирные кислоты, кетоновые тела. Индуктор инсулин.



Механизм работы Пируват ДГ комплекса. Процесс проходит 5 стадий:



Далее Ацетил-КоА поступает в ЦТК, где он окисляется до 2 СО2 с образованием 1 ГТФ, восстановлением 3 НАДН2 и 1 ФАДН2.

2.      Пируваткарбоксилаза (ПВК: СО2-синтетаза (АТФ → АДФ + Фн)) сложный олигомерный фермент, содержит биотин. Карбоксилирует ПВК до ЩУК. Пополняющая реакция, по мере необходимости добавляет ЩУК в ЦТК. Активатор: Ацетил-КоА.


Челночные системы

В аэробных условиях О2 обеспечивает регенерацию НАД+ из НАДН2, что необходимо для продолжения реакции гликолиза (НАД+ субстрат 3-ФГА ДГ).

Так как внутренняя мембрана митохондрий непроницаема для НАДН2, восстановленный в гликолизе НАДН2, передает свои водороды на дыхательную цепь митохондрий с помощью специальных систем, назы­ваемых «челночными». Известны 2 челночные системы: малат-аспартатная и глицерофосфатная.

1. Малат-аспартатный челнок является универсальным, работает в печени, почках, сердце.

 2.

Глицерофосфатный челночный механизм. Работает в белых скелетных мышцах, мозге, в жировой ткани, гепатоцитах.



Малат-аспартатный челнок энергетически более эффективе­н, так как передаёт водород в дыхательную цепь через митохондриальный НАД, соотношение Р/О равно 3, синтезируется 3 АТФ.

В глицерофосфатный челнок передаёт водород в дыхательную цепь через ФАД на KoQ, соотношение Р/О равно 2, синтезируется 2 АТФ.
Пластическое значение катаболизма глюкозы

При ка­таболизме глюкоза может выполнять пластические функции. Метаболиты гликолиза ис­пользуются для синтеза новых соединений. Так, фруктозо-6ф и 3-ФГА участвуют в образовании рибозо-5-ф (компонент нуклеотидов); 3-фосфоглицерат может включаться в синтез ами­нокислот, таких как серии, глицин, цистеин. В печени и жировой ткани Ацетил-КоА исполь­зуется при биосинтезе жирных кис­лот, холестерина, а ДАФ для синтеза глицерол-3ф.

Регуляция гликолиза

Эффект Пастера – снижение скорости потребления глюкозы и накопления лактата в присутствии кислорода.

Эффекта Пастера объясняется наличием конкуренции между ферментами аэробного (ПВК ДГ, ПВК карбоксилаза, ферменты цепи окислительного фосфорилирования) и анаэробного (ЛДГ) пути окисления за общий метаболит ПВК и кофермент НАДН2.

·        Без О2 митохондрии не потребляют ПВК и НАДН2, в результате их концентрация в цитоплазме повышается и они идут на образование лактата. Так как анаэробный гликолиз дает из 1 глюкозы только 2 АТФ, для образования достаточного количества АТФ необходимо много глюкозы (в 19 раз больше чем в аэробных условиях).

·        В присутствии О2, митохондрии выкачивают ПВК и НАДН2 из цитоплазмы, прерывая реакцию образования лактата. При аэробном окислении из 1 глюкозы образуется 38 АТФ,  соответственно для образования достаточного количества АТФ необходимо мало глюкозы (в 19 раз меньше чем в анаэробных условиях).



МЕТАБОЛИЗМ ФРУКТОЗЫ И ГАЛАКТОЗЫ

Фрук­тоза и галактоза наряду с глюкозой используются для получения энергии или синтеза веществ: гликогена, ТГ, ГАГ, лактозы и др.

Метаболизм фруктозы

Значительное количество фруктозы, образу­ющееся при расщеплении сахарозы, превраща­ется в глюкозу уже в клетках кишечника. Часть фруктозы поступает в печень.

Метаболизм фруктозы в клетке начинает­ся с реакции фосфорилирования:

1. Фруктокиназа (АТФ: фруктоза-1-фосфотрансфераза) фосфорилирует только фруктозу, имеет к ней высокое сродство. Содержится в печени, почках, кишечнике. Инсулин не влияет на ее активность.



2. Альдолаза В (фруктозо: ГА-лиаза) есть в печени, расщепляет фруктозо-1ф (фруктозо-1,6ф) до глицеринового альдегида (ГА) и диоксиацетонфосфата (ДАФ).



3. Триозокиназа (АТФ: ГА-3-фосфотрансфераза). Много в печени.



ДАФ и ГА, полученные из фруктозы, вклю­чаются в печени главным образом в глюконеогенез. Часть ДАФ может восстанав­ливаться до глицерол-3-ф и участвовать в синтезе ТГ.
Нарушения метаболизма фруктозы

Причиной нарушения метаболизма фруктозы является дефект 3 ферментов: фруктокиназы, альдолазы В, триозокиназы.

Доброкачественная эссенциальная фруктозурия связана с недостаточностьюфруктокиназы, клинически не проявляется. Фруктоза накапливается в крови и выделяется с мочой, где её можно обнару­жить лабораторными методами. Частота 1:130 000.

Наследственная непереносимость фруктозы частая патология, воз­никает при генетически дефек­те альдолазы В (аутосомно-рецессивная форма). Она проявляется, когда в рацион добавляют фрукты, соки, сахарозу. После приёма пищи, содержащей фрук­тозу возникает рвота, боли в животе, диарея, гипогли­кемия и даже кома и судороги. У маленьких детей и подростков развиваются хрони­ческие нарушения функций печени и почек. Болезнь сопро­вождается накоплением фруктозо-1-ф, который ингибирует активность фосфоглюкомутазы, поэтому происходит торможение распада гликогена и развивается гипогликемия. Как следствие, ускоряется мо­билизация липидов, окисление жирных кис­лот и синтез кетоновых тел. Повышение кетоновых тел может привести к метаболическому ацидозу.

Результатом торможения гликогенолиза и гликолиза является снижение синтеза АТФ. Кроме того, накопление фосфорилированной фруктозы ведёт к нарушению обмена неорга­нического фосфата и гипофосфатемии. Для пополнения внутриклеточного фосфата ускоряется распад адениловых нуклеотидов. Продукты распада этих нуклеотидов включаются в катаболизм, проходя стадии образования гипоксантина, ксантина и, наконец, мочевой кис­лоты. Повышение количества мочевой кислоты и снижение экскреции уратов в условиях мета­болического ацидоза проявляются в виде гиперурикемии. Следствием гиперурикемии может быть подагра даже в молодом возрасте.

Метаболизм галактозы

Галактоза образуется в кишечнике в результа­те гидролиза лактозы. Превращение галакто­зы в глюкозу происходит в печени в реакции эпимеризации в виде УДФ-производного.

Галактокиназа (АТФ: галактозо-1-фосфотрансфераза) фосфорилирует галактозу.



Галактозо-1ф-уридилтрансфераза замещает галактозой остаток глюкозы в УДФ-глюкозе с образованием УДФ-галактозы.



Эпимераза (УДФ-галактозо-УДФ-глюкозо-изомераза) — НАД-зависимый фермент, катализирует эпимеризацию ОН группы по С4 углеродному атому, обеспечивая взаимопревращения галактозы и глюкозы в составе УДФ.

Образованная глюкозо-1-ф может включаться в: 1) синтез гликогена; 2) превращение в свободную глюкозу; 3) катаболизм, сопряжённый с синтезом АТФ, и т.д.

Нарушения метаболизма галактозы

Галактоземия обусловленна наследствен­ным дефектом любого из трёх ферментов, включающих галактозу в метаболизм глюкозы.

Галактоземия, вызванная недостаточностью галактозо-1-фосфатуридилтрансферазы (ГАЛТ) имеет несколько форм, про­является рано, и особенно опасна для детей, так как материнское молоко, содержит лактозу. Ранние симптомы дефекта ГАЛТ: рвота, диарея, дегидратация, уменьше­ние массы тела, желтуха. В крови, моче и тканях повышается концентрация галактозы и галак­тозо-1-ф. В тканях глаза (в хрусталике) галактоза восстанавливается альдоредуктазой (НАДФ) с образованием галактитола (дульцита). Галактитол накапливается в стекловид­ном теле и связывает большое количество воды, чрезмерная гидратация хрусталика приводит к развитию катаракты, которая на­блюдается уже через несколько дней после рож­дения. Галактозо-1-ф ингибирует активность ферментов углеводного обмена (фосфоглюкомутазы, глюкозо-6-фосфатдегидрогеназы).

Га­лактозо-1ф оказывает токсическое действи­е на гепатоциты: возникают гепатомегалия, жи­ровая дистрофия. Галактитол и га­лактозо-1-ф вызывают почечную недостаточность. Отмечают нарушения в клетках полушарий го­ловного мозга и мозжечка, в тяжёлых случаях — отёк мозга, задержку умственного развития, воз­можен летальный исход.

Некоторые дефекты в строении ГАЛТ при­водят лишь к частичной потере активности фер­мента. Поскольку в норме ГАЛТ присутствует в организме в избытке, то снижение его актив­ности до 50%, а иногда и ниже может клини­чески не проявляться.

Лечение заключается в удалении галактозы из рациона.

Педфак. Особенности катаболизма моносахаридов у новорожденных и детей

У детей активен УДФ-глюкоза ↔ УДФ-галактоза путь. У взрослых этот путь неактивен. У новорожденных низкая активность ПФШ. При рождении у ребенка происходит переключение катаболизма глюкозы с анаэробного на аэробный путь. Вначале преобладает использование липидов.




ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2005 г
ЛЕКЦИЯ № 9
    продолжение
--PAGE_BREAK--Тема: Пентозофосфатный шунт и глюконеогенез, регуляция углеводного обмена.
Факультеты: лечебно-профилактический, медико-профилактический, педиатрический. 2 курс.
Глюконеогенез (ГНГ)

Глюконеогенез – синтез глюкозы из веществ неуглеводной природы. Его основной функцией является поддержание уровня глюкозы в крови в период длительного голодания и интенсивных физических нагрузок. Основными субстратами глюконеогенеза являются лактат, глицерол,  аминокислоты. Глюконеогенез является обратным процессом гликолиза, который протекает в цитоплазме и матриксе митохондрий. Необратимые реакции гликолиза (1, 3 и 10), катализируемые гексокиназами, фруктокиназами и пируваткиназами обходятся с участием 4 специфических ферментов глюконеогенеза: пируваткарбоксилазы, фосфоенолпируват-карбоксикиназы, фруктозо-1,6-фосфотазы и глюкозо-6-фосфотазы. Кроме того, в глюконеогенезе участвуют ферменты ЦТК, например, малат ДГ.

Реакции глюконеогенеза представлены на схеме. Ключевые (необратимые) реакции глюконеогенеза:

1.     
Пируваткарбоксилаза (ПВК: СО2-синтетаза (АТФ→АДФ+Фн)) содержит биотин, находиться в митохондриях, превращает ПВК в ЩУК. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин. Ингибитор: АМФ, активатор АцетилКоА. Образующийся ЩУК проходит внутреннюю мембрану митохондрий в своей восстановленной (в виде малата) или аминоформе (в виде аспартата).

2.     
Фосфоенолпируваткарбоксикиназа (ГТФ: ЩУК-2-фосфотрансфераза (декарбоксили-рующая)) находиться в цитоплазме, превращает ЩУК в ФЕП. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин.

3.     
Фруктозо-1,6-фосфотаза (Фруктозо-1,6дф: фосфо-гидролаза) дефосфорилирует фруктозо-1,6дф. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин. Ингибирует АМФ, фруктозо-2,6дф. Активатор: цитрат, жирные кислоты.

4.     
Глюкозо-6-фосфотаза (Глюкозо-6ф: фосфо-гидролаза) дефосфорилирует глюкозо-6ф. Индуктор: глюкагон, адреналин, кортизол. Репрессор: инсулин.

Энергетический баланс глюконеогенеза. На образование 1 глюкозы из 2 лактатов требуется 6 АТФ: 2 АТФ для пируваткарбоксилазы, 2 ГТФ для ФЕПкарбоксикиназы, 2 АТФ для фосфоглицераткиназы. Обще уравнение глюконеогенеза:

2 лактат + 4 АТФ + 2 ГТФ + 4 Н2О → 1 глюкоза + 4 АДФ + 2 ГДФ + 6 Фн

Регуляция глюконеогенеза. Регуляция глюконеогенеза осуществляется реципрокно с реакциями гликолиза: активация глюконеогенеза, сопровождается ингибированием гликолиза и наоборот. Регуляция обмена глюкозы происходит с участием гормонов и метаболитов, которые изменяют активность и количество регуляторных ферментов гликолиза и глюконеогенеза. Инсулин индуцирует синтез ключевых ферментов гликолиза и репрессирует синтез ключевых ферментов глюконеогенеза. Глюкагон, кортизол и адреналин индуцирует синтез ключевых ферментов глюконеогенеза. Ключевые ферменты гликолиза активируют – АМФ, фруктозо-2,6дф, фруктозо-1,6дф, ингибируют – АТФ, НАДН2, цитрат, жирные кислоты, аланин, АцетилКоА, глюкагон, адреналин. Ключевые ферменты глюконеогенеза активируют – АцетилКоА, глюкагон, ингибируют – АМФ, фруктозо-2,6дф.
Тканевые особенности глюконеогенеза. В большинстве тканей глюконеогенеза нет.

Наибольшая активность глюконеогенеза отмечается в печени, меньше в почках и слизистой оболочке кишечника, в них может синтезироваться до 80-100г глюкозы в сутки. В этих органах  глюконеогенез идет до конца с образованием свободной глюкозы, которая может выходить из клеток, поддерживая гомеостаз глюкозы в крови. В норме гомеостаз глюкозы в крови обеспечивается  глюконеогенезом печени до 80%, почек до 20%.

Небольшая активность глюконеогенеза наблюдается в мышечных тканях, однако из-за отсутствия у них последних ферментов глюконеогенеза, вместо свободной глюкозы образуются только ее производные, которые не способны покинуть клетку. Таким образом, углеводы синтезируются в мышечных тканях только для собственных нужд. Например, в скелетных мышцах и жировой ткани нет глюкозо-6-фосфотазы, продукт глюконеогенеза – глюкозо-6ф. В миокарде и гладких мышцах нет фруктозо-1,6-дифосфотазы, продукт глюконеогенеза – фруктозо-1,6-дф.

Биологическое значение глюконеогенеза. Необходимость поддержание постоянного уровня глюкозы в крови связана с тем что, для многих тканей глюкоза является основным (нервная ткань), а для некоторых единственным (эритроциты) источником энергии. Потребность в синтезе глюкозы объясняется тем что, гликогенолиз печени может самостоятельно обеспечивать гомеостаз глюкозы в крови только в течение 8-12 часов, далее запас гликогена в течение суток почти полностью истощается. В условиях длительного голодания (больше суток) глюконеогенез является единственным источником глюкозы в организме.

Пентозофосфатный шунт (ПФШ)

Пентозофосфатный шунт (путь, цикл) является альтернативным путем окисления глюкозы.  Наиболее активен этот процесс в жировой ткани, печени, коре надпочечников, эритроцитах, фагоцитирующих лейкоцитах, лактирующей молочной железе, семенниках. Протекает он в цитозоле без участия кислорода и состоит из 2 стадий окислительной и неокислительной. В окислительной стадии происходит восстановление НАДФН2, который используется: 1) для регенерации глутатиона в антиоксидантной системе; 2) для синтеза жирных кислот; 3) в оксигеназных реакциях с участием цитохрома Р450 при обезвреживании ксенобиотиков, метаболитов, синтезе холестерина, стероидных гормонов и т.д. В неокислительной стадии образуются различные пентозы. Рибозо-5ф может использоваться для синтеза пуриновых и пиримидиновых нуклеотидов.

Тканевые особенности функционирования ПФШ (пути, цикла).

В зависимости от потребности ткани, пентозофосфатный процесс может протекать в виде метаболического цикла, пути или шунта начальных реакций гликолиза:

1.      При ПФЦ или ПФШ в качестве продукта образуется только НАДФН2. Пентозы в этом случае не являются конечным продуктом, они превращаются в фосфогексозы, которые замыкают цикл, или уходят в гликолиз, завершая шунт. В жировой ткани, эритроцитах.

2.      Продуктом ПФП являются НАДФН2 и пентозы. В печени, костном мозге.

3.      В тканях, которые не испытывают потребность в НАДФН2, функционирует только неокислительная стадия ПФП, причем ее реакции идут в обратную сторону начиная с фруктозы-6ф до фосфопентоз. В мышцах.

Реакции окислительной стадии

Окислительная стадия ПФШ (пути, цикла) состоит из 3 необратимых реакций:

1). Глюкозо-6ф дегидрогеназа (глюкозо-6ф: НАДФ+ оксидоредуктаза). Ингибитор НАДФН2. Индуктор инсулин.



2). Глюконолактонгидратаза (6-фосфоглюконат: гидро-лиаза).



3). 6-фосфоглюконат дегидрогеназа (6-фосфоглюконат: НАДФ+ оксидоредуктаза (декарбоксилирующая)). Индуктор инсулин.




Схема ПФШ (пути, цикла)

На схеме неокислительная стадия начинается с эпимераз и изомераз, которые изомеризуют рибулозо-5ф. Все реакции неокислительной стадии обратимы.




Общее уравнение ПФЦ:

6 глюкозо-6ф + 12 НАДФ+ → 6 СО2 + 12 НАДФН2 + 5 глюкозо-6ф

Общее уравнение ПФШ:

3 глюкозо-6ф + 6 НАДФ+ → 3 СО2 + 6 НАДФН2 + 2 фруктозо-6ф + ФГА

Общие уравнения ПФП:

1)      глюкозо-6ф + 2 НАДФ+ → СО2 + 2 НАДФН2 + рибозо-5ф

2)      2 фруктозо-6ф + ФГА → 3 рибозо-5ф

Патология ПФШ

НАДФН2 является важным компонентом антиоксидантной защиты, он необходим для регенерации глутатиона, который с участием глутатионпероксидазы разрушает активные формы кислорода. Так как в эритроцитах НАДФН2 образуется только в реакциях ПФШ, дефект глюкозо-6ф ДГ вызывает дефицит НАДФН2 и снижение антиоксидантной защиты. В этом случае под действием прооксидантов, например, антималярийных препаратов происходит существенное повышение СРО. Активация СРО вызывает окисление цистеина в белковой части гемоглобина, в результате чего протомеры гемоглобина, соединяясь дисульфидными мостиками, образуют тельца Хайнца. Т.к. тельца Хайнца снижают пластичность клеточной мембраны эритроцитов, она при деформации в капиллярах разрушается. Массированный гемолиз эритроцитов ведет к развитию гемолитической анемии.

Витамин B1 (тиамин).

Структура витамина включает пиримидиновое и тиазоловое кольца, соединённые метановым мостиком.



Источники. Витамин В1 — первый витамин, выделенный в кристаллическом виде К. Фун-ком в 1912 г. Он широко распространён в продуктах растительного происхождения (оболочка семян хлебных злаков и риса, горох, фасоль, соя и др.). В организмах животных витамин В1, содержится преимущественно в виде дифосфорного эфира тиамина (ТДФ); он образуется в печени, почках, мозге, сердечной мышце путём фосфорилирования тиамина при участии тиаминкиназы и АТФ.

Суточная потребность взрослого человека в среднем составляет 2-3 мг витамина В1. Но потребность в нём в очень большой степени зависит от состава и общей калорийности пищи, интенсивности обмена веществ и интенсивности работы. Преобладание углеводов в пище повышает потребность организма в витамине; жиры, наоборот, резко уменьшают эту потребность.

Биологическая роль витамина В1, определяется тем, что в виде ТДФ он входит в состав как минимум трёх ферментов и ферментных комплексов: в составе пируват- и α-кетоглутаратдегидрогеназных комплексов он участвует в окислительном декарбокси-лировании пирувата и α-кетоглутарата; в составе транскетолазы ТДФ участвует в пентозофосфатном пути превращения углеводов.

Основной, наиболее характерный и специфический признак недостаточности витамина В1 — полиневрит, в основе которого лежат дегенеративные изменения нервов. Вначале развивается болезненность вдоль нервных стволов, затем — потеря кожной чувствительности и наступает паралич (бери-бери). Второй важнейший признак заболевания — нарушение сердечной деятельности, что выражается в нарушении сердечного ритма, увеличении размеров сердца и в появлении болей в области сердца. К характерным признакам заболевания, связанного с недостаточностью витамина В1, относят также нарушения секреторной и моторной функций ЖКТ; наблюдают снижение кислотности желудочного сока, потерю аппетита, атонию кишечника.

Регуляция обмена углеводов

Энергетический гомеостаз обеспечивает энергетические потребности тканей с использованием различных субстратов. Т.к. углеводы являются основным источником энергии для многих тканей и единственным для анаэробных, регуляция углеводного обмена является важной составляющей энергетического гомеостаза организма.

Регуляция углеводного обмена осуществляется на 3 уровнях:

1.      центральный.

2.      межорганный.

3.      клеточный (метаболический).

1. Центральный уровень регуляции углеводного обмена

Центральный уровень регуляции осуществляется с участием нейроэндокринной системы и регулирует гомеостаз глюкозы в крови и интенсивность метаболизма углеводов в тканях. К основным гормонам, поддерживающим нормальный уровень глюкозы в крови 3,3-5,5 мМоль/л, относят инсулин и глюкагон. На уровень глюкозы влияют также гормоны адаптации – адреналин, глюкокортикоиды и другие гормоны: тиреоидные, СДГ, АКТГ и т.д.

2. Межорганный уровень регуляции углеводного обмена

   Глюкозо-лактатный цикл (цикл Кори)                       Глюкозо-аланиновый цикл

 

Глюкозо-лактатный цикл не требует наличие кислорода, функционирует всегда, обеспечивает: 1) утилизацию лактата, образующегося в анаэробных условиях (скелетные мышцы, эритроциты), что предотвращает лактоацидоз; 2) синтез глюкозы (печень).

Глюкозо-аланиновый цикл функционирует в мышцах при голодании. При дефиците глюкозы, АТФ синтезируется за счет распад белков и катаболизма аминокислот в аэробных условиях, при этом глюкозо-аланиновый цикл обеспечивает: 1) удаление азота из мышц в нетоксичной форме; 2) синтез глюкозы (печень).

3. Клеточный (метаболический) уровень регуляции углеводного обмена

Метаболический уровень регуляции углеводного обмена осуществляется с участием метаболитов и поддерживает гомеостаз углеводов внутри клетки. Избыток субстратов стимулирует их использование, а продукты ингибируют свое образование. Например, избыток глюкозы стимулирует гликогенез, липогенез и синтез аминокислот, дефицит глюкозы — глюконеогенез. Дефицит АТФ стимулирует катаболизм глюкозы, а избыток – наоборот ингибирует.


IV. Педфак. Возрастные особенности ПФШ и ГНГ, значение.




ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2006 г
ЛЕКЦИЯ № 10
    продолжение
--PAGE_BREAK--Тема: Структура и обмен инсулина, его рецепторов, транспорт глюкозы. Механизм действия и метаболические эффекты инсулина.
Факультеты: лечебно-профилактический, медико-профилактический, педиатрический. 2 курс.
Гормоны поджелудочной железы

Поджелудочная железа выполняет в орга­низме две важнейшие функции: экзокринную и эндокринную. Экзокринную функцию выполняет ацинарная часть поджелудочной железы, она синтезирует и секретирует панкреатический сок. Эндокринную функцию выполняют клетки островкового аппарата поджелудочной железы, которые секретируют пептидные гормоны, уча­ствующие в регуляции многих процессов в организме. 1-2 млн. островков Лангерганса составляют 1-2% массы поджелудочной железы.

В островковой части поджелудочной железы выделяют 4 типа клеток,секретирующих разные гормоны: А- (или α-) клетки (25%) секретируют глюкагон, В- (или β-) клетки (70%) — инсулин, D— (или δ-) клетки (

Строение инсулина

Инсулин — полипептид, состоящий из двух цепей. Цепь А содержит 21 ами­нокислотный остаток, цепь В — 30 аминокислотных остатков. В инсулине 3 дисульфидных мостика, 2 соединяют цепь А и В, 1 соединяет 6 и 11 остатки в А цепи.



Инсулин может существовать в форме: мономера, димера и гексамера. Гексамерная структура инсулина стабилизиру­ется ионами цинка, который связывается остатками  Гис в положении 10 В-цепи всех 6 субъединиц.

Инсулины некоторых животных имеют значительное сходство по первичной структуре с инсулином человека. Бычий инсулин отличается от инсулина че­ловека на 3 аминокислоты, а инсулин свиньи отличается только на 1 ами­нокислоту (ала вместо тре на С конце В-цепи).

Во многих положениях А и В цепи встре­чаются замены, не оказывающие влияния на биологическую активность гормона. В положениях дисульфидных связей, остатков гидрофобных аминокислот в С-концевых участках В-цепи и С- и N-концевых остатков А-цепи замены встречаются очень редко, т.к. эти участки обеспечивают формирование активного центра инсулина.

 Биосинтез инсулина включает образование двух неактивных предшественников, препроинсулина и проинсулина, которые в результате последова­тельного протеолиза превращаются в активный гормон.

1.На рибосомах ЭПР синтезируетсяпрепроинсулин (L-В-С-А, 110 аминокислот),биосинтез его начинается с образования гидрофобного сигнального пептида L(24 аминокислот), которыйнаправляет растущую цепьв просвет ЭПР.

2. В просвет ЭПР препроинсулин превращается в проинсулинпри отщеплении эндопептидазой Iсиг­нального пептида. Цистеины в проинсулине окисляются с образованием 3 дисульфидных мостиков, проинсулин становиться «сложным», имеет 5% активности от инсулина.

3. «Сложный» проинсулин (В-С-А, 86 аминокислот) поступает в аппарат Гольджи, где под действи­ем эндопептидазы IIрасщепляется с образованием инсулина (В-А, 51 аминокислот) и С-пептида (31 аминокислота).

4. Инсулин и С-пептид включаются в секреторные гранулы, гдеинсулин соединяется с цинком, обра­зуя димеры и гексамеры. В секреторной грануле содержание инсулина и С-пептида составляет 94%, проинсулина, интермедиатов и цинка — 6%.

5. Зрелые гранулы сли­ваются с плазматической мембраной, а инсу­лин и С-пептид попадают во внеклеточную жидкость и далее в кровь. Вкрови олигомеры инсулина распадают­ся. За сутки в кровь секретируется 40-50 ед. инсулина, это составляет 20% от его общего запаса в поджелудочной железе. Секреция инсулина энергозависимый процесс, происходит с участием микротубулярно-ворсинчатой системы.



Схема биосинтеза инсулина в β-клетках островков Лангерганса

ЭПР — эндоплазматический ретикулум. 1 — образование сигнального пептида; 2 — синтез препроинсулина; 3 — отщепление сигнального пептида; 4 — транспорт проинсу­лина в аппарат Гольджи; 5 — превращение проинсулина в инсулин и С-пептид и включение инсулина и С-пептида в секреторные гранулы; 6 — секреция инсулина и С-пептида.

Ген инсулина находиться в 11 хромосоме. Выявлены 3 мутации этого гена, у носителей низкая активность инсулина, отмечается гиперинсулинемия, нет инсулинорезистентности.

Регуляция синтеза и секреции инсулина

Синтез инсулина индуцируют глюкоза и секреция инсулина. Репрессирует секрецию жирные кислоты.

Секрецию инсулина стимулируют: 1. глюкоза (главный регулятор), аминокислоты (особенно лей и арг); 2. гормоны ЖКТ (β-адренергические агонисты, через цАМФ): ГИП, секретин, холецистокинин, гастрин, энтероглюкагон;3. длительно высокие концентрации СТГ, кортизола, эстрогенов, прогестинов, плацентарного лактогена, ТТГ, АКТГ; 4. глюкагон; 5. повышение К+ или Са2+ в крови; 6. лекарства, производные сульфонилмочевины (глибенкламид).

Под влиянием соматостатина секреция инсулина понижается. β-клетки также находятся под влиянием автономной нервной системы. Парасимпатическая часть (холинергические окончания блуждающего нерва) стимулирует выделение инсулина. Симпатическая часть (адреналин через α2-адренорецепторы) подавляет выделение инсулина.



Секреция инсулина осуществляется с участием нескольких систем, в которых основная роль принадлежит Са2+ и цАМФ.

Поступление Са2+в цитоплазму контролируется несколькими механизмами:

1). При повышении концентрации глюкозы в крови выше 6-9 ммоль/л, она при участии ГЛЮТ-1 и ГЛЮТ-2 поступает в β-клеткии фосфорилируется глюкокиназой. При этом концентрация глюкозо-6ф в клетке прямо пропорциональна концентрации глюкозы в крови. Глюкозо-6ф окисляется с образованием АТФ. АТФ образуется также при окислении аминокислот и жирных кислот. Чем больше в β-клетке глюкозы, аминокислот, жирных кислот тем больше из них образуется АТФ. АТФ ингибирует на мембране АТФ-зависимые калиевые каналы, калий накапливается в цитоплазме и вызывает деполяризацию клеточной мембраны,  что стимулирует открытие потенциалзависимых Са2+-каналов и поступление Са2+ в цитоплазму.

2). Гормоны, активирующие инозитолтрифосфатную систему (ТТГ), выпускают Са2+ из митохондрий и ЭПР.

цАМФ образуется из АТФ с участием АЦ, которая активируется гормонами ЖКТ, ТТГ, АКТГ, глюкагоном и Са2+-кальмодулиновым комплексом.

цАМФ и Са2+ стимулируют  полимеризацию субъединиц в микротубулы (микроканальцы). Влияние цАМФ на микроканальцевую систему опосредуется через фосфорилирование ПК А микроканальцевых белков. Микроканальцы способны сокращаться и расслабляться, перемещая гранулы по направлению к плазматической мембране обеспечивая экзоцитоз.

Секреция инсулина в ответ на стимуляцию глюкозой представляет собой двухфазную реакцию, состоящую из стадии быстрого, раннего высвобождения инсулина, называемую первой фазой секреции (начинается через 1 мин, продолжается 5-10 мин), и второй фазы (продолжительность ее до 25-30 мин).

Транспорт инсулина. Инсулин водорастворим и не имеет белка-переносчика в плазме. Т1/2 инсулина в плазме крови составляет 3—10 мин, С-пептида — около 30 мин, проинсулина 20-23 мин.

Разрушение инсулина происходит под дей­ствием инсулинзависимой протеиназы и глутатион-инсулин-трансгидрогеназы в тканях мишенях:в основном в пе­чени (за 1 проход через печень разрушается около 50% инсулина), в меньшей степени в почках и плаценте.
БИОЛОГИЧЕСКИЕ ФУНКЦИИ ИНСУЛИНА

Инсулин — главный анаболический гормон, он влияет на все виды обмена веществ во всём организме. Однако в первую очередь действие инсулина касается обмена углеводов.

Влияние инсулина на метаболизм глюкозы

Ин­сулин стимулирует утилизацию глюкозы в клетках разными путями. Около 50% глюкозы использует­ся в процессе гликолиза, 30—40% превращается в жиры и около 10% накапливается в форме глико­гена. Общий результат стимуляции этих процес­сов — снижение концентрации глюкозы в крови.

Влияние инсулина на метаболизм липидов

В пе­чени и жировой ткани инсулин стимулирует син­тез липидов, обеспечивая получение для этого про­цесса необходимых субстратов (ацетил-КоА, глицерофосфат и NADPH2) из глюкозы. В жировой ткани инсулин тормозит мобилизацию липидов, что снижает концентрацию жирных кислот, циркулирующих в крови.

Влияние инсулина на метаболизм белков

Инсулин оказывает в целом анаболическое действие на белковый обмен. Он стимулирует потребление нейтральных аминокислот в мышцах и синтез белков в печени, мышцах и сердце.

Кроме того, инсулин регулируетклеточную дифференцировку, пролифе­рацию и трансформацию боль­шого количества клеток. Инсулин поддерживает рост и репликацию многих клеток эпителиального происхождения, в том числе гепатоцитов, опухолевых клеток. Инсулин усиливает спо­собность фактора роста фибробластов (ФРФ), тромбоцитарного фактора роста (ТФР), фак­тора роста эпидермиса (ФРЭ), простагландина (ПГF2a), вазопрессина и аналогов цАМФ акти­вировать размножение клеток.

Основные направления действия инсулина

1. Инсулин регулирует транспорт веществ

Инсулин стимулирует транспорт в клетку глюкозы, аминокислот, нуклеозидов, органического фосфата, ионов К+ и Са2+.Эффект проявляются очень быстро, в течение несколь­ких секунд и минут.

Транспорт глюкозыв клетки происходит при участии ГЛЮТ. В мышцах и жировой тканиинсули­нзависимый ГЛЮТ-4, вотсутствие инсулина находится в цитозольных везикулах. Под влиянием инсулина происходит транслокация везикул с ГЛЮТ в плазмати­ческую мембрану и начинается транспорт глюкозы. При снижении концентрации инсулина, ГЛЮТ-4 возвращаются в цитозоль, и транспорт глюкозы прекращается.

2. Инсулин регулирует синтез ферментов

Инсулин влияет на скорость транскрипции более чем 100 специфических мРНК в печени, жировой ткани, скелетных мышцах и сердце. Эффект реализуется в течение несколько часов. В клетках печени инсулин индуцирует синтез ключевых ферментов гликолиза (глюкокиназы, фруктокиназы и пируваткиназы), ПФШ (глюкозо-6ф ДГ), липогенеза (цитратлиаза, пальмитатсинтаза, Ацетил-КоА-карбоксилаза), транспортеров глюкозы (?) и репрессирует синтез ключевого фермента глюконеогенеза(ФЕП карбоксикиназу).

3. Инсулин регулирует активность ферментов

Инсулин регулирует активность ферментов путем их фосфорилирования и дефосфорилирования. Эффект проявляются очень быстро, в течение несколь­ких секунд и минут.

·        Инсулин активирует ключевые ферменты гликолиза: в печени, мышцах, жировой ткани – фосфофруктокиназу и пирруваткиназу; в печени – глюкокиназу; в мышцах — гексокиназу II.

·        Инсулин ингибирует в печени глюкозо-6-фосфотазу, что тормозит глюконеогенез и выход глюкозы в кровь.

·        Инсулин активирует фосфопротеинфосфотазу гликогенсинтазы и гликогенфосфорилазы,в результате активируется синте­з гликогена и тормозится его распад.

·        В адипоцитах инсулин активирует ключевой фермент липогенеза (АцетилКоА-карбоксилазу).Инсулин в гепатоцитах и адипоцитах активирует фосфопротеинфосфатазу, которая дефосфорилирует и инактивирует ТАГ-липазу, что тормозит липолиз.

·        Инсулин снижает активность аминотрансфераз и ферментов цикла мочевины. Последний эффект инсулина характеризуется повышением активности РНК-полимеразы и концентрации РНК в печени. При этом увеличивается скорость образования полисом и рибосом.

·        Инсулин активирует ФДЭ, которая снижает концентра­цию цАМФ, прерывает эффекты контринсулярных гормонов: в печени и жировой ткани тормозит липолиз, в печени и мышцах -  глюконеогенез.

МЕХАНИЗМ ДЕЙСТВИЯ ИНСУЛИНА

Инсулин связы­вается с инсулиновым рецептором (IR), находящимся намембране. IRобнаруже­ны почти во всех типах клеток, но больше все­го их в гепатоцитах и клетках жировой тка­ни (концентрация достигает до 20000 на клетку).IRпостоянно син­тезируется (генв 19 хромосоме) и разрушается. После связывания инсулина с IR весь комплекс погружается в цитоплазму, достигает лизосом, где инсулин разрушается, а IRможет разрушаться, а может возвращаться мембрану. Т1/2IR7—12 ч, но в присутствии инсулина уменьшается до 2-3 ч.

При высокой концентрации инсу­лина в плазме крови, число IRможет умень­шаться в результате усиленного разрушения в лизосомах. Также у IRможет снижаться активность при его фосфорилировании по ос­таткам серина и треонина.

Рецептор инсулина(IR) — гликопротеин, состоит из 2 α и 2 β субъединиц связанных дисульфидными связями. α субъединицы (719 АК) расположены вне клетки, они связывают инсулин, а β субъединицы (трансмебранный белок, 620 АК) обладают тирозинкиназной активностью. После присоединения гормона к α субъединицам, β субъединицы сначала фосфорилируют друг друга, а затем внутриклеточные белки — суб­страты инсулинового рецептора (IRS). Извест­но несколько таких субстратов: IRS-1, IRS-2 (фосфопротеины, состоящие из более чем 1200 аминокислот), Shc, а также некоторые белки семейства STAT.

Активация инсулином сигнального пути

Ras

Фосфорилированный инсулиновым рецептором Sheсоединяется с небольшим цитозольным белком Grb. К образо­вавшемуся комплексу присоединяется с Ras-белок (из се­мейства малых ГТФ-связывающих белков, в неактивном состоянии прикреплён к внутренней поверхности плазматической мем­браны и связан с ГДФ), GAP(от англ. GTP-
ase
activating
factor— фактор, активирующий ГТФазу), GEF(от англ. GTP
exchange
factor— фактор обмена ГТФ) и SOS(от англ. son
ofsevenless, названный по му­тации гена у дрозофилы). Два последних белка способствуют отделению ГДФ от Ras-бел­ка и присоединению к нему ГТФ, с образованием активной ГТФ-связанной формы Ras.

Активированный Rasсоединяется с протеинкиназой Raf-1 и активирует еев результате многоэтапного процес­са. Акти­вированная ПК Raf-1 стимулирует каскад реакций фосфорилирования и активации дру­гих протеинкиназ.  ПК Raf-1 фосфорилирует и активирует киназу МАПК, которая, в свою очередь, фосфорилирует и активируетмитогенактивируемые протеинкиназы МАПК.

МАПК фосфорилирует многие цитоплазматические белки: ПК pp90S6, бел­ки рибосом, фосфолипазу А2, активаторы транскрипции STAT.

В результате активации протеинкиназ происходит фосфорилирование ферментов и факторов транскрипции, что со­ставляет основу многочисленных эффектов ин­сулина. Например:

Активация гликогенсинтазы

ПК pp90S6 фосфорилирует и активирует фосфопротеинфосфатазу (ФПФ). ФПФ дефосфорилирует и инактивирует киназу гликогенфосфорилазы и гликогенфосфорилазу, дефосфорилирует и активирует гликогенсинтазу. В результате активируется синтез гликогена, а распад — ингибируется.

Активация инозитолтрифосфатной системы

Фосфорилированные инсулином белки IRS-1 присоединяются к ФЛ Си активируют ее.

ФЛ С расщепляет фосфатидилинозитолы с образованием инозитолфосфатов и ДАГ.

Фосфорилированные инсулином белки IRS-1 и Shcприсоединяются к фосфоинозитол-3-киназе (ФИ-3-киназа) и активируют ее.

ФИ-3-киназа катализирует фосфорилирование инозитолфосфатов (ФИ, ФИ-4-ф и ФИ-4,5-бф)в 3 положении, образуя инозитолполифосфаты: ФИ-3-ф, ФИ-3,4-бф, ФИ-3,4,5-тф.  ФИ-3,4,5-тф (ИФ3) стимулирует мобилизацию Са2+ из ЭПР.

Са2+ и ДАГактивирует специфические ПК С.

Са2+активирует  микроканальцы, которые осуществляют транслока­цию ГЛЮТ-4 в плазматическую мембрану, и та­ким образом ускоряет трансмембранный перенос глюкозы вклетки жировой и мышечной ткани.

Активация фосфодиэстеразы

Фосфорилированные инсулином белки IRS-1 и Shcприсоединяются к протеинкиназе В (ПК В) и активируют ее.ПК В фосфорилирует и активирует фосфодиэстеразу (ФДЭ).  ФДЭ катализирует превращение цАМФ в АМФ, прерывая эффекты контринсулярных гормонов, чтоприводит к торможению липолизав жировойткани, гликогенолиза в печени.

Регуляция транскрипции мРНК

STAT– особые белки, являются переносчиками сигнала и активаторами транскрипции. При фосфорилировании STATс участием IRили МАПКобразуют димеры, которые транспортируются в ядро, где связываются со специфическими участками ДНК, регулируют транскрипцию мРНК и биосинтез белков-фементов.

Путь Rasактивирует­ся не только инсулином, но и дру­гими гормонами и факторами роста.




ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ

кафедра биохимии

Утверждаю

Зав. каф. проф., д.м.н.

Мещанинов В.Н.

_____‘’_____________2006 г
ЛЕКЦИЯ № 11
    продолжение
--PAGE_BREAK--Тема: Сахарный диабет I и II типа: механизмы  возникновения, метаболические нарушения, осложнения.
Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.

2 курс.

В норме уровень глюкозы в крови натощак составляет 3.3 – 5.5 ммоль/л.

Гипергликемия – повышение уровня глюкозы в крови выше 6,1 ммоль/л. Гипергликемия бывает физиологической и патологической.

Причины физиологической гипергликемии:

1) алиментарная, при употреблении легкоусвояемых углеводов. Не превышает 11 ммоль/л, нормализуется в течение 3 часов;

2) стрессорная, под действием катехоламинов, глюкокортикоидов, вазопрессина;

3) кратковременные физические нагрузки.

Причины патологической гипергликемии:

1) судороги при эпилепсиях, столбняке;

2) эндокринные нарушения. Гиперпродукция контринсулярных гормонов (гипертириоз, синдромы Кушинга и Кона), абсолютный или относительный дефицит инсулина (сахарный диабет).

3) ЧМТ.

Гипогликемия снижение уровня глюкозы в крови ниже 3,3 ммоль/л. Гипогликемия бывает физиологической и патологической.

Причины физиологической гипогликемии: 1) алиментарная, при голодании; 2) длительная физическая нагрузка.

Причины патологической гипогликемии: 1) эндокринные нарушения при избытке инсулина (инсулинома – доброкачественная опухоль β-клеток, передозировка инсулина у больных СД) или недостаточности контринсулярных гормонов (гипотиреоз, дефицит глюкокортикоидов); 2)  гликогенозы, агликогенозы, препятствующие гликогенолизу;  3) печеночная недостаточность, связанная с низкой активностью глюконеогенеза; 4) почечная недостаточность, связанная с врожденной патологией реабсорбции глюкозы (почечный диабет); 5) отравления монойодацетатом (вызывает глюкозурию).

Сахарный диабет(СД) — системное гетерогенное заболевание, обусловленное абсолютным или относительным дефицитом инулина, который сначала вызывает нарушение углеводного, а затем всех видов обмена, что в итоге поражает все функциональные системы организма.

СД широко распространенное заболевание, им страдает 6,6% населения, в России – 5%.

СД бывает первичным и вторичным. Кроме того, выделяют нарушение толерантности к глюкозе и СД беременных.

Первичный СД— самостоятельное заболевание.

Вторичный СДявляется симптоматическим, он возникает при патологии эндокринных желез (акромегалия, феохромоцитома, глюкагонома, синдромы Кушинга, Кона) и патологии поджелудочной железы (хронический панкреатит, рак, панкреатэктомия, гемохроматоз, генетические синдромы).

Первичный СД по механизму развития подразделяется на СД Iтипа (раньше ИЗСД) и СД IIтипа (раньше ИНСД).

Общими симптомами любого СД являются жажда, полиурия, кожный зуд, склонность к инфекциям.

Этиологическая классификация СД (ВОЗ 1999).

1. Сахарный диабет
Iтипа (раньше ИЗСД)

а). Аутоиммунный

б). Идиопатический

2. СД
IIтипа (раньше ИНСД)

3. Другие специфические типы

а). генетические дефекты β-клеток

б). генетические дефекты в действии инсулина

в). болезни экзокринной части поджелудочной железы (панкреатит и т.д.)

г). эндокринопатии

д). СД, индуцированный лекарствами и химикатами (глюкокортикоиды, никотиновая кислота, тиреоидные гормоны, тиазиды, вакор, пентамидин и т.д.)

е). Инфекции (врожденная краснуха, цитомегаловирус и т.д.).

ж). Необычные формы иммуноопосредованного диабета.

з). Другие генетические синдромы, иногда сочетающиеся с диабетом (Дауна, Тернера и т.д.).

4.  Гестационный СД (беременных)
САХАРНЫЙ ДИАБЕТ
Iтипа

СД
Iтипа— за­болевание, которое возникает вследствие абсолютного дефицита инсулина,вызванного аутоиммунным разрушением β-клеток поджелудочной железы. СД Iтипа поражает в большинстве случаев де­тей, подростков и молодых людей до 30 лет, но может про­явиться в любом возрасте. СД Iтипа редко является семейным заболеванием(10-15% всех случаев).

Причины СД
Iтипа

1.      Генетическая предрасположенность. Генетические дефекты ведущие к СД могут реализоваться в клетках иммунной системы и β-клетках поджелудочной железы.В β-клетках известно около 20 генов, способствующих развитию СДIтипа.В 60-70% случаях СД Iтипа связан с наличием в 6 хромосоме HLAрегиона генов DR3, DR4 и DQ.

2.      Действие на β-клеткиβ-цитотропных вирусов(оспа, краснуха, корь, пароти­т, Коксаки, аденовирус, цитомегаловирус), химических и других диабетогенов.

Вариант 1

При наличии генетического дефекта, на поверхности β-клеток накапливаются антигены, имеющие схожую аминокислотную последовательность с β-цитотропнымивирусами.

В случае возникновения инфекции β-цитотропныхвирусов, развиваются иммунные реакции против этих вирусов и аутоиммунные реакции против схожих антигенов β-клеток. Реакция идет с участием моно­цитов,Т-лимфоцитов, антител к β-клеткам, инсулину, глутамат декарбоксилазе (фермент 64кДа, находиться на мембране β-клеток). В результате аутоиммунные реакции вызывают гибель β-клеток.

 Вариант 2

При действии на β-клетки с генотипом HLAβ-цитотропных вирусов или диабетогенов на поверхности β-клеток происходит изменение антигенов.

На измененные антигены β-клетки развиваются аутоиммунные реакции. Аутоиммунные реакции вызывают гибель β-клеток.

Вариант 3

β-цитотропные вирусы имеют схожую последовательность аминокислот с глутамат декарбоксилазой β-клеток.  Генетический дефект СД8+ лимфоцитов (Т-супрессоров) не позволяет им отличить аминокислотную последовательность вируса иглутамат декарбоксилазы,поэтому при возникновении инфекции, Т-лимфоциты реагируют на глутамат декарбоксилазуβ-клеток как на вирус.

Вариант 4

Некоторые β-цитотропные вирусы и химические диабетогены, например, производные нитрозомочевины, нитрозамины, аллоксан самостоятельно и избирательно поражают β-клетки,вызывая их лизис;

Стадии развития СД
Iтипа

1.      Стадия генетической предрасположенности. Есть генетические маркеры, нет нарушений углеводного обмена. Может длиться всю жизнь;

2.      Стадия провоцирующих событий. Инфекция β-цитотропных вирусов или действие химических диабетогенов. Протекает без клинических симптомов;

3.      Стадия явных иммунных аномалий. Развитие смешанных аутоиммунных реакций против β-клеток. Ресурсы инсулина достаточны. Протекает без клинических симптомов.Развивается от 2-3 месяцев до 2-3 лет;

4.      Стадия латентного диабета. Гибель 75% β-клеток,небольшое снижение инсулина, гипергликемия при нагрузочных пробах, снижение аутоиммунных процессов. Протекает без клинических симптомов;

5.      Явный диабет. Гибель 80-90% β-клеток,заметное снижение инсулина, гипергликемия натощак, нет или слабые аутоиммунные реакции. Появляются клинические симптомы. Развивается 2 года. Необходима инсулинотерапия;

6.      Терминальный диабет. Полная гибель β-клеток, высокая потребность в инсулинотерапии, аутоиммунные проявления снижены или их нет. Выраженные клинические проявления, появляются ангиопатии.Развивается до 3,5 лет;

Изменения метаболизма при СД
Iтипа

При СД Iтипаисчезаетинсулин, т.к. инсулин ингибитор секреции глюкагона, в крови происходит увеличение глюкагона.

Изменения в углеводном обмене



В  печени дефицит инсулина и избыток глюкагона стимулирует реакции глюконеогенеза, гликогенолиза и ингибирует реакции гликолиза, ПФШ и синтеза гликогена. В результате в печени глюкозы больше образуется, чем потребляется.

Так как реакции глюконеогенеза протекают через ЩУК, он, образовавшись из ПВК, аспартата и малата, активно вовлекается в глюконеогенез, вместо того чтобы включаться в ЦТК. В результате ЦТК и ДЦ тормозится, снижается образование АТФ, возникает энергодефицит.

В инсулинзависимых тканях (мышцы, жировая ткань) дефицит инсулина препятствует поступлению глюкозы в клетки и ее использованию в реакциях гликолиза, ПФШ и синтеза гликогена. Блокирование ЦТК и ДЦ также вызывает энергодефицит.

Снижение потребления глюкозы инсулинзависимыми тканями и усиление ее образования в печени приводит к гипергликемии.Когда гипергликемия превышает кон­центрационный почечный порогвозникаетглюкозурия.

Глюкозурия– наличие глюкозы  моче.Внорме проксимальные канальцы по­чек реабсорбируют всю фильтрующуюся в клу­бочках глюкозу. Если уровень глюкозы превышаетв крови 9-10 ммоль/л, глюкоза не успевает полностью реабсорбироваться из первичной мочи и частично выводится с вторичной мочой.

У больных с СД после приёма пищи концентрация глюкозы в крови может достигать 300-500 мг/дл и со­храняется на высоком уровне в постабсорбтивном периоде, т.е. снижается толерантность к глюкозе.



Изменения в липидном обмене

Дефицит АТФ, НАДФН2, инсулина и избыток глюкагона тормозят липогенез  и  усиливают липолиз в жировой ткани. В результате в крови повышается концентрация свободных жирных кислот, которые поступают в печень и окисляются там до Ацетил-КоА. АцетилКоА при дефиците ЩУК не может включаться в ЦТК. Поэтому он накапливается и поступает на альтернативные пути: синтез кетоновых тел (ацетоуксусная,β-гидроксимасляная кислоты) ихолестерина.

В норме кетоновые тела являются источником энергии для аэробных тканей, они превращаются в АцетилКоА, которыйокисляется в ЦТК. Так как ЦТК заблокирован дефицитом ЩУК, кетоновые тела накапливаются в крови и вызывают кетонемию.Кетонемия усугубляет недостаточность инсулина, подавляя остаточную секреторную активность β-клеток. Когда кетонемия превышает кон­центрационный почечный порог(выше 20 мг/дл, иногда до 100 мг/дл) возникаеткетонурия.Кетонурия– наличие кетоновых тел в моче.

В тканях ацетоуксусная кислота частич­но декарбоксилируется до ацетона, запах которого исходит от больных сахарным диабе­том и ощущается даже на расстоянии.

Липопротеины крови поставляют субстраты для липогенеза в тканях. Дефицит инсулина блокирует липогенезв жировой ткани, ингибирует липопротеинлипазу в сосудах, это препятствует расщеплению липопротеинов крови (в основном, ЛПОНП), в результате они накапливаются, вызывая гиперлипопротеинемию.

Изменения в белковом обмене

Энергодефицит, недостаток инсулина и избыток глюкагонаприводит к снижению скорости синтеза белков в организме и усилению их распада, чтоповышает концентрацию аминокис­лот в крови. Аминокислоты поступают в печень и дезаминируются до кетокислот. Кетокислотывключаются в глюконеогенез, что усиливает гипергликемию. Из аммиака активно синтезируется мочевина. Повышение в крови аммиака, мочевины, аминокислотвызываетазотемию – увеличение концентрации азота в крови. Азотемия приводит к азотурии – увеличению концентрации азота в моче. Развивается отрицательный азотистый баланс. Катаболизм белков ведет к миодистрофии и вторичному иммунодефициту.

Изменения в водно-солевом обмене

Поскольку возможностипочек ограничены, высокие концентрации глюкозы, кетоновых тел и мочевины не успевают реабсорбироваться из первичной мочи.  Они создают в первичной моче высокое осмотическое давление, которое препятствует реабсорбции воды в кровь и образованию вторичной мочи. У таких пациентов развивается полиурия, выделение мочи воз­растает до 3—4 лв сутки (в некоторых случаях до 8—9 л). Потеря воды вызывает по­стоянную жажду илиполидипсию.Без частого питья, полиурия может приводить к обезвожива­нию организма. Потеря с мочой глюкозы усугубляет энергодефицит, может увеличить аппетит и полифагию. С первичной мочой из организма уходят некоторые полезные минеральные компоненты, что приводит к нарушению минерального обмена.

Высокие концентрации глюкозы, кетоновых тел и мочевины создают в плазме крови значительное осмотическое давление, которое способствует дегидратации тканей. Кроме воды ткани теряют электро­литы, прежде всего ионы К+, Na+, С1-, НСО3-.

Изменение в газообмене тканей

Общая де­гидратация организма, вызванная полиурией и дегидратацией тканей приводит к снижению пери­ферического кровообращения, уменьшению мозгового и почечного кровотока и гипоксии. Причиной гипоксии является также гликозилирование Hbв HbA1c, который не переносит О2 к тканям. Гипоксия ведет к энергодефициту и накоплению в организме лактата.

Изменения в кислотно-основном равновесии

Накопление кетоновых тел, лактата и потеря щелочных валентностей с мочой снижает буферную ёмкость крови и вызывает ацидоз.

Симптомы СД I типа

Общие симптомы (жажда, полиурия, кожный зуд, склонность к инфекциям) выражены. Общая слабость, похудание, снижение трудоспособности, сонливость. Ожирение отсутствует. Повышенный аппетит при кетоацидозе сменяется анорексией.Развивается быстро, склонен кразвитию кетоацидотической комы.
САХАРНЫЙ ДИАБЕТ
II типа

СД II типа представляет собой группу гетерогенных нарушений углеводного обмена. СД IIтипа не инсулинозависимый, не склонен к кетоацидотической коме, не имеет антител к β-клеткам, не аутоиммунной природы, не имеет связи с определенными HLAфенотипами. Ожирение в 80%. На долю СД II типа приходится примерно 85-90% всех случаев СД, онпоражает людей, как правило, старше 40 лет ихарактеризуется высо­кой частотой семейных форм (риск СД II типа у бли­жайших родственников больного достигает 50%, тогда как при СД I типа он не превышает 10%). СД II типапоражает преимущественно жителей развитых стран, особенно горожан.

В основе СД II типа лежат множество причин. СД II типа развивается при:

·        генетических дефектах рецепторов инсулина, у них снижается чувствительность к инсулину;

·        синтезе дефектного инсулина с низкой биологической активностью (мутация гена инсулина: в позиции 24 В-цепи вместо фен присутствует лей);

·        нарушении превращения проинсулина в инсулин;

·        нарушении секреции инсулина;

·        повреждении инсулина и его рецепторов антителами;

·        повышения скорости катаболизма инсулина;

·        действия контринсулярных гормонов (создают гипеинсулинемию, которая вызывает инсулинорезистентность);

·        нарушении глюкозочувствительного механизма b-клеток (мутации гена глюкокиназы)и т.д.

Основным провоцирующим фактором СД II типа служит ожирение.


Стадии СД II типа

1.      Стадия генетической предрасположенности. Есть генетические маркеры, нет нарушений углеводного обмена. Может длиться всю жизнь;

2.      Стадия латентного диабета. Гипергликемия при нагрузочных пробах. Протекает без клинических симптомов СД;

3.      Явный диабет. Гипергликемия натощак. Появляются клинические симптомы.

Симптомы СД II типа

Общие симптомы (жажда, полиурия, кожный зуд, склонность к инфекциям) выражены умеренно или отсутствуют. Часто ожирение(у 80-90% больных).
Изменения метаболизма при СД II типа

Относительный дефицитинсулинавызывает метаболические нарушения, схожие с теми которые возникают при абсолютном дефиците инсулина, однако эти нарушения менее выражены, а у50% больных с ожирением и умеренной гипергликемией СД II типа вообще протекает бессимптомно.

В отличие от абсолютного дефицита инсулина, при относительном дефиците инсулина, влияние инсулина сохраняется на жировую ткань, имеющую высокое содержание рецепторов к инсулину. Инсулин в жировой ткани стимулирует липогенез, блокирует липолиз и выход жирных кислот в кровь, поэтому при СД II типане наблюдается кетоацидоз, масса тела не уменьшается, а наоборот развивается ожирение.Таким образом, ожирение, с одной стороны, важней­ший фактор риска, а с другой — одно из ран­них проявлений СД II типа.

Так как синтез инсулина как правило не нарушен, высокий уровень глюкозы в крови стимулирует секрецию инсулина из β-клеток, вызывая гиперинсулинемию. Высокая концентрация инсулина вызывает инактивацию и разрушение инсулиновых рецепторов, что снижает толерантность тканей к глюкозе. Инсулин больше не может нормализовать гликемию, возникает инсулинорезистентность. При этом,высокий уровень глюкозы в крови снижает чувствительность β-клеток к глюкозе, в результате запаздывает или отсутствует первая фаза секреции инсулина.

При СД II типа наблюдается гиперинсулинемия (80%), артериальная гипертензия (50%), гиперлипидемия (50%), атеросклероз, нейропатия (15%) и диабетическая нефропатия (5%).    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Ефективність інвестування проектів і шляхи вдосконалення обґрунтування його доцільності
Реферат Учет и анализ дебиторской задолженности ТОО Авто-Альянс
Реферат Аналогии и модели - один из методов обучения физики средней школы
Реферат 7 способов зарядить мобильный телефон в дороге
Реферат Ссавці гризуни
Реферат Реорганизация юридических лиц 2 Анализ истории
Реферат Комплекс дифференцированных заданий к текстам как средство обучения чтению на уроках английского языка в 6 классе
Реферат Анализатор цветового набора для WEB-страницы
Реферат Контрольная работа по статитстике
Реферат We Real Cool The Pool Player Seven
Реферат Абрамов ф. б. - О чем плачут лошади1
Реферат «Оценка финансового состояния организации и разработка мероприятий по его стабилизации»
Реферат Стратегия управления сбытовой деятельностью организации (на примере ООО "Фармос")
Реферат Всесвітня історія
Реферат 1. является ли любовь искусством