Реферат по предмету "Медицина"


Лікарські розчини, одержувані в умовах фармацевтичного підприємства

--PAGE_BREAK--1.2 ТЕОРЕТИЧНІ ОСНОВИ ПРОЦЕСУ РОЗЧИНЕННЯ


Розчинення — спонтанний дифузійно-кінетичний процес, який відбувається при зіткненні речовини, що розчиняється, з розчинником.

У фармацевтичній практиці розчини одержують із твердих, порошкоподібних, рідких та газоподібних речовин. Як правило, одержання розчинів із рідких речовин, взаєморозчинних або таких, що змішуються між собою, відбувається без особливих труднощів, як просте змішування кількох рідин. А от розчинення твердих речовин, особливо тих, що розчиняються повільно і важко, є складним і трудомістким процесом. У процесі розчинення можна виділити умовно кілька стадій:

1.  Поверхня твердого тіла контактує з розчинником. Контакт супроводжується змочуванням, адсорбціею і проникненням розчинника в мікропори частинок твердого тіла.

2.  Молекули розчинника взаємодіють із шарами речовини на
поверхні розділення фаз. При цьому відбувається сольватація
молекул або іонів і відрив їх від поверхні розділення фаз.

3.  Сольватовані молекули або іони переходять у рідку фазу.

4.       Вирівнювання концентрацій в усіх шарах розчинника. Тривалість першої та четвертої стадій залежить переважно відшвидкості дифузійних процесів. Друга й третя стадії часто відбуваються миттєво або досить швидко і мають кінетичний характер (механізм хімічних реакцій). Із цього випливає, що швидкість розчинення залежить переважно від характеру дифузійних процесів.

Більшість твердих речовин є кристалічними. Розчинення кристалічної речовини складається з двох процесів, що відбуваються одночасно: сольватації (у даному випадку гідратації) частинок і руйнування кристалічних ґраток.

На рис. 1 показано процес розчинення натрію хлориду (кристалічна іонна сполука) у воді (полярна рідина). Іон натрію хлориду взаємодіє з дипольними молекулами води: до позитивного іону Nа+ диполі звернені своїми негативними полюсами, а до негативних іонів С1- — позитивними. Поступово диполі води проникають між іонами Nа+ і С1- у твердій фазі, відриваючи їх від кристалу.


Рис. 1. Схема процесу руйнації кристалічних ґраток натрію хлориду у воді
Для ефективності розчинення важливо, щоб сили зчеплення між молекулами розчинника і частинками речовини, що розчиняється, були більшими за сили взаємного притягання цих частинок між собою. Вода порівняно з іншими розчинниками має велику полярність (найвище значення діелектричної сталої). Саме цією властивістю зумовлюються висока іонізаційна здатність води та її руйнівна дія на кристалічні ґратки багатьох полярних сполук.

При розчиненні речовин спостерігається поглинання або виділення теплоти. Поглинання теплоти вказує на витрачання енергії. Пояснюється це тим, що для переходу речовини з твердого стану в рідкий, тобто для розчинення кристалічних ґраток, обов'язково потрібна енергія. Наприклад, іони натрію та хлору до розчинення натрію хлориду у воді фіксовані у вузлах кристалічних ґраток, мають при цьому тільки обертові й коливальні рухи. Після розчинення іони починають відносно вільно рухатися всередині розчину, а для цього необхідне збільшення їхньої кінетичної енергії. Саме це й відбувається за рахунок відбирання енергії в розчинника у формі теплоти, внаслідок чого відбувається охолодження розчину. Чим міцніші кристалічні ґратки, тим значніше охолодження розчину.

Виділення теплоти при розчиненні речовини завжди вказує на активну сольватацію, тобто утворення сполук між розчинною речовиною і розчинником.

Кінцевий тепловий ефект розчинення потрібно розглядати як суму двох складників — позитивного теплового ефекту сольватації (Д) і негативного теплового ефекту руйнації кристалічних ґраток (С):

Знак теплового ефекту розчинення залежатиме від того, який складник переважає. Якщо кристалічні ґратки міцні, складник С чисельно більший від Д, у цьому разі розчинення речовини відбувається з поглинанням теплоти. Iнавпаки, у речовин зі слабкими кристалічними ґратками і сильно сольватованих (гідратованих) превалює складник Д, при цьому розчинення відбувається з виділенням теплоти. Часто позитивний і негативний теплові ефекти розчинення виявляються однаковими або дуже близькими, у таких випадках при розчиненні ми не спостерігаємо охолодження або розігрівання розчину.

Тепловий ефект розчинення відносять до 1 моля речовини, що розчиняється в досить великій кількості розчинника. 3 поглинанням теплоти розчиняються багато кристалічних речовин. 3 виділенням теплоти розчиняються луги та деякі інші речовини.

При розчиненні кристалогідратів у воді спостерігається більш низький тепловий ефект, ніж при розчиненні безводної солі.

Рідини здатні по-різному змішуватись одна з одною — від повної нерозчинності до змішування в будь-яких кількісних співвідношеннях.

У формі водних розчинів звичайно застосовують рідкі лікарські речовини, що мають повну взаємну розчинність, але можуть бути прописані й речовини з обмеженою розчинністю у воді. У разі розчинення полярних сполук відбуваються гідратація полярних молекул та дисоціація їх у розчині на вільні гідратовані іони (рис. 2). Наприклад, так поводяться молекули НСІ, що дисоціюють у водних розчинах на вільні гідратовані іони Н+ і С1-.



Рис. 2.
Схема іонізації полярного електроліту

При розчиненні неорганічних кислот у воді спостерігається виділення теплоти. Очевидно, що у всіх цих випадках позитивний ефект гідратації значно вищий за негативний тепловий ефект руйнації асоціатів молекул. Аналогічна картина спостерігається і при розчиненні етилового спирту у воді.

При розчиненні рідин у рідині помітніше, ніж при розчиненні твердих речовин у рідині, відбувається збільшення або зменшення сумарного об’єму. Збільшення сумарного об’єму звичайно залежить від руйнації асоціатів молекул. Зменшення сумарного об’єму (стиснення, концентрація) найчастіше спричиняється утворенням сполук між рідинами, що змішуються.

Зміна об’єму розчину, якщо вона викликана його самоохолодженням або саморозігріванням, має тимчасовий характер, тому її слід враховувати під час готування розчинів заданого об’єму.

Уперше дифузійний механізм розчинення описав А. М. Шукарев у 1896 році. За його рівнянням швидкість процесу залежить від різниці концентрацій і поверхні розділення фаз. Сучасна теорія про розчинення твердих тіл ґрунтується на уявленні про цей процес як про кінетику гетерогенних процесів, під час яких можуть проявлятися і дифузійні, і міжфазні процеси (хімічні). Ця теорія розвинута в наукових працях О. Б. Здановського, М. Товдіна, О. Брама та ін. Відправним положенням дифузійно-кінетичної теорії слід вважати наявність пограничного дифузійного шару і його вплив на зміну швидкості процесу.



    продолжение
--PAGE_BREAK--1.3 ТИПИ РОЗЧИНЕННЯ


Залежно від співвідношення дифузійних і кінетичних (міжфазних) механізмів можливі три основні типи розчинення:

1.  Дифузійний, якщо значення коефіцієнта швидкості міжфазного процесу менше швидкості дифузійного процесу в 5 та більше разів.

2.  Кінетичний, якщо значення коефіцієнта швидкості міжфазного процесу більше швидкості дифузійного процесу в 5 та більше разів.

3.  Дифузійно-кінетичний, якщо значення коефіцієнта швидкості міжфазного і дифузійного процесів порівнювані.

На виробництві розчинення бажано проводити в кінетичній області, прискорюючи дифузійні процеси перемішуванням рідкої фази. Однак для повільно- і важкорозчинних речовин міжфазний процес відбувається навіть при інтенсивному перемішуванні.

Змочування твердого тіла залежить від полярності поверхні та розчинника. Гідрофільні і гідрофобні властивості поверхні можуть змінюватися внаслідок адсорбції повітря, вологи або домішок. На змочування і проникнення розчинника у пори впливають також пористість і шорсткість поверхні, наявність дефектів кристалічних ґраток й мікротріщин. Для кращого змочування і для запобігання адсорбції здрібнення доцільно проводити в середовищі розчинника, іноді з додаванням поверхнево-активних речовин.

Вступаючи в контакт при змочуванні, молекули чи іони твердої фази і розчинника починають взаємодіяти, утворюючи відповідні сольвати або їх асоціати. У близьких за властивостями і структурою розчинних системах (наприклад сполуки гомологічного ряду або ізомери між собою майже не взаємодіють) властивості розчинених речовин і розчинника зберігаються, змінюється лише концентрація речовини в розчині і може змінитися агрегатний стан. Однак частіше між розчинником і поверхневими молекулами твердих тіл утворюються водневі зв'язки, відбувається міждипольна взаємодія. Це приводить до утворення сольватів, асоційованих комплексів із різним ступенем стійкості та до дисоціації комплексів і молекул на іони. У таких розчинах розчинна речовина і розчинник знаходяться в зміненому стані порівняно з початковим.
1.4 ТЕОРІЯ ГІДРАТАЦІЇ


За молекулярно-кінетичною теорією гідратації при розчиненні речовин, що дають частинки з досить високою густиною заряду (іони Са, Мg, ін.), молекули розчинника, які знаходяться навколо цих частинок, притягуються, їх рухливість зменшується, уповільнюється обмін з іншими молекулами. Це явище одержало назву позитивної гідратацїї. Деякі іони, такі як К, Nа, Вг, I, С1, неначе відштовхують молекули розчинника, що спричиняє збільшення обміну між найближчими молекулами у порівнянні з чистим розчинником, зростає невпорядкованість молекул розчинника. У цьому разі відбувається негативна гідратація. Встановлено, що вона можлива тільки у певному інтервалі температур. При досягненні граничних температур негативна гідратація переходить у позитивну. Це пояснюється тим, що з підвищенням температури зростає тепловий рух молекул розчинника. Різноманітність взаємодій настільки велика, що досі немає єдиної теорії розчинів.

Однак сучасні уявлення про процес розчинення дозволяють на наукових засадах трактувати біофармацевтичні закономірності в зміні біологічної доступності і терапевтичної активності лікарських речовин у розчинах залежно від діелектричної проникності, наявності постійних та індукованих дипольних моментів, поляризованості іонів та молекул розчиненої речовини. У технології розчинів стає зрозумілою роль вибору середовища або додавання електролітів, високомолекулярних сполук, поверхово-активних речовин тощо.

При розчиненні руйнуються зв'язки між молекулами або іонами в розчинній речовині та розчиннику, що пов'язано із витрачанням енергії. Водночас починається процес комплексоутворення, тобто виникають нові зв'язки між молекулами та іонами, утворюються сольвати. Процес супроводжується виділенням енергії. Загальна енергетична зміна в системі може бути позитивною або негативною.

Так, при розчиненні спирту й води, багатьох лугів, кислот та інших речовин у воді виділяється теплота, тому додаткове нагрівання призводить до зменшення розчинності. Якщо розчинення супроводжується поглинанням теплоти, нагрівання збільшує розчинність.

Іноді розчинність супроводжується зміною сумарного об’єму (явище контракції) при відмірюванні метанолу, етанолу, гліцерину та інших спиртів з водою.

Очевидно, що цим процесом можна керувати, варіюючи різні технологічні фактори. Так, для збільшення швидкості розчинення можна змінити температурний режим, збільшити різницю концентрацій, зменшити в'язкість і товщину пограничного дифузійного шару шляхом зміни гідродинамічних умов, здрібнити вихідну речовину, збільшуючи таким чином поверхню контакту з розчинником. Для реалізації цих можливостей технологічний процес здійснюють у реакторах, які мають оболонку для обігрівання парою або для охолодження системи розсолом і перемішувальне обладнання. Інтенсивне перемішування зменшує товщину пограничного дифузійного шару.
1.5 СПОСОБИ ОБТІКАННЯ ЧАСТИНОК РІДИНОЮ


В умовах гетерогенного масообміну при перемішуванні рідина обтікає частинки твердої фази по-різному.

Пряме обтікання відбувається, коли рідина переміщується між нерухомими частинками твердої фази. Швидкість обтікання тут залежить від швидкості руху рідини.

Гравітаційне обтікання виникає при падінні частинок твердої фази в рідині, що рухається.

Природна циркуляція відбувається за рахунок різниці густин рідини і твердої фази.

Інерційне обтікання виникає під дією сил інерції в тих випадках, коли потік або струмінь рідини змінює свій напрямок, а тверді частинки, що рухаються в цій рідині з певною швидкістю під дією інерції, не можуть змінити напрямок руху. Швидкість обтікання частинок у цьому разі буде найбільшою, а товщина дифузійного пограничного шару в частинках твердої фази — мінімальною.

У реальних умовах масообмін відбувається з кількома способами обтікання. Найбільш сприятливі умови створюються при гравітаційному та інерційному способах. Гідродинамічний режим процесу залежить не тільки від способу обтікання, але й від швидкості потоків рідини. При ламінарному русі рідини швидкість конвективної дифузії зростає тільки в напрямку руху потоків і залежить від молекулярної в'язкості. При турбулентному (вихревому) потоці масоперенесення може здійснюватися навіть у поперечному напрямку потоків, а його швидкість не залежатиме від молекулярної в'язкості. Крім того, вдаються до перемішування шару рідини в реакторі, завдяки цьому збільшується різниця концентрацій і молекулярна дифузія в рідкому середовищі замінюється на кон-вективне і турбулентне масоперенесення. Інтенсивне масоперенесення сприяє швидшому розчиненню.

    продолжение
--PAGE_BREAK--ГЛАВА 2 ХАРАКТЕРИСТИКА РОЗЧИННИКІВ 2.1 ВИМОГИ ДО РОЗЧИННИКІВ


У процесі готування рідких лікарських форм завжди потрібен розчинник, який є відповідно дисперсійним середовищем. Розчинниками називають хімічні сполуки або суміші, здатні розчиняти різні речовини, тобто утворювати з ними однорідні системи — розчини, що складаються з двох або більше компонентів. Як розчинники для приготування розчинів у медичній практиці використовують: воду очищену, спирт етиловий, гліцерин, жирні олії та мінеральні масла, хлороформ, етер діетиловий. Тепер асортимент розчинників значно розширився за рахунок силіційорганічних сполук, етилен- і пропіленгліколів, поліетиленоксидів, диметилсульфоксидів та інших речовин.

До розчинників, які необхідні для приготування рідких лікарських форм, висуваються певні вимоги:

—вони мають бути стійкими при зберіганні, хімічно і фармакологічно індиферентними;

—повинні мати високу розчинювальну здатність;

—не повинні мати неприємного смаку та запаху;

—мають бути доступними за вартістю;

—не повинні бути середовищем для розвитку мікроорганізмів.
Виходячи з хімічної класифікації, усі рідкі дисперсні системи

розподіляють на неорганічні та органічні сполуки.
2.2 ВОДА ОЧИЩЕНА


Серед неорганічних сполук вона є найпоширенішим розчинником.

Вода фармакологічно індиферентна, доступна і добре розчиняє багато лікарських речовин, але водночас у ній дуже легко й швидко гідролізуються деякі речовини та розвиваються мікроорганізми.

Воду очищену можна одержати дистиляцією, іонним обміном, електролізом, зворотним осмосом. Вона має бути безбарвною, прозорою, без смаку і запаху, з рН = 5,0...7,0, не повинна містити відновлювальних речовин, нітратів, нітритів, хлоридів, сульфатів, слідів амоніаку та інших домішок.
2.3 СПИРТ ЕТИЛОВИЙ


Прозора, безбарвна, рухлива рідина з характерним запахом і пекучим смаком, кипить при температурі 78 °С. У фармацевтичному виробництві застосовують етиловий спирт С2Н5ОН, одержаний шляхом зброджування сировини, що містить крохмаль, — переважно картоплі й зерна. Зброджене сусло, яке містить 8—10 % спирту, зміцнюють простою перегонкою. Одержують спирт-сирець, що містить близько 88 % спирту. Спирт-сирець очищають від летких органічних кислот (переважно оцтової, молочної, масляної), сивушних масел (вищих спиртів одного гомологічного ряду з етиловим спиртом — пропілового, ізобутилового, ізоамілового та інших), естерів (оцтово-етилового, масляно-етилового та інших), альдегідів (оцтового альдегіду та інших) і одночасно зміцнюють до 95—96 % багатократною перегонкою — ректифікацією. Етанол іншого походження для виробництва лікарських препаратів непридатний через присутність неприпустимих домішок (спирту метилового та інших сполук).

Спирт етиловий можна віднести до неводних розчинників умовно, тому що використовується не абсолютний етанол, а водно-спиртові розчини різної концентрації.

Спирт змішується в будь-яких співвідношеннях із водою, гліцерином, ефіром, хлороформом. Він нейтральний, не окиснюється киснем повітря, має бактеріостатичну й бактерицидну дію.

До негативних властивостей спирту слід віднести його неіндиферентність, смертельна доза 96 % -вого спирту етилового — приблизно 200—300 мл. Він сприяє осадженню білків, ферментів, легкозаймистий, має високу гігроскопічність, несумісний з окисниками, а з деякими солями утворює кристалічні сполуки.

Етиловий спирт є одним із найбільш пріоритетних розчинників у виробництві фармацевтичних препаратів. На виробництво надходить 96,2—96,7 %-вий етанол, який розводять водою або слабким спиртом до необхідної концентрації.

Вміст етанолу в розчині (концентрація) виражається у відсотках за об’ємом, тобто як об’ємна частка, % (об. ч.); і у відсотках за масою, тобто як масова частка, % (мас. ч.). Якщо немає спеціального зазначення, мається на увазі об’ємна частка у відсотках (Су). Вміст етанолу в розчині у відсотках за об’ємом (Су) показує, яка кількість мілілітрів безводного етанолу міститься в 100 мл водно-спиртового розчину при 20 °С. Концентрація етанолу в розчині у відсотках за масою (Ст) показує, яка кількість грамів безводного етанолу міститься в 100 г водно-спиртового розчину. Співвідношення між відсотками за об’ємом і відсотками за масою наведені в таблиці 1 ДФ XI.

Вміст етанолу у водно-спиртових розчинах визначають скляним і металевим спиртомірами, а також за густиною — денсиметром (ареометром) або пікнометром (рис. 3). За допомогою значення густини при 20 °С визначають Су і Ст, користуючись таблицею 1 ДФ XI. За значеннями густини, які отримані при інших температурах, і показаннями скляного і металевого спиртомірів переведення в відсотки за об’ємом при 20 °С здійснюють за спеціальними таблицями видавництва стандартів.

Концентрацію етанолу визначають скляними спиртомірами класу 0,1 (ціна поділки — 0,1 %) або класу 0,5. Арбітражні визначення міцності спиртових розчинів проводять металевими або скляними спиртомірами класу 0,1. Для практичних цілей користуються спиртомірами класу 0,5 із вбудованим термометром. Комплект складається з двох або трьох спиртомірів (0—60, 60— 100 або 0—40, 40—70, 70—100 %). Скляний спиртомір при температурі 20 °С показує об’ємну частку етанолу у відсотках. Але в умовах великих фармацевтичних виробництв температура часто відхиляється від 20 °С. У цих випадках визначення проводять при фактичній температурі, а отримані значення скляного спиртоміра приводять до 20 °С за допомогою таблиці IIIвидавництва стандартів.


Рис. 3.
Прилади для визначення концентрації етанолу


а — скляний спиртомір із вбудованим термометром; б — скляний спиртомір; в — денсиметр (ареометр); г — металевий спиртомір; Ґ — пікнометри
Точніше (із точністю 0,1 %) концентрацію спирту визначають металевим спиртоміром (рис. 3), що являє собою порожню кулю з припаяною шкалою зверху і конічним стержнем для навішення гирі знизу. На шкалі нанесені поділки від 0 до 10, кожна з яких розділена на п'ять частин. Під нульовою поділкою шкали нанесена поділка 100. До спиртоміра додаються 10 гирок у формі кульового сегмента з прорізом під номерами 0, 10, 20, 30, 40, 50, 60, 70, 80, 90. Найбільша гирка має нульовий номер, найлегша — номер 90. Показання металевого спиртоміра є умовними і складаються з показань гирки і шкали. При зануренні спиртоміра без гирки до показань шкали додають 100. Об’ємну частку етанолу Су в розчині за показаннями металевого спиртоміра визначають у відповідності з таблицею IVвидавництва стандартів.

Денсиметр (ареометр) при температурі 20 °С показує густину водно-спиртового розчину, за якою знаходять концентрацію етанолу, користуючись алкоголеметричною таблицею 1 ДФ XI. Концентрацію етанолу за показниками денсиметра при температурі, що відрізняється від 20 °С, визначають за допомогою таблиці IIвидавництва стандартів (точність до 0,01).

Більш точні значення густини розчинів (0,001) можна одержати за допомогою пікнометра при 20 °С. За отриманими даними розраховують густину при 20 °С (з урахуванням густини повітря при нормальному барометричному тискові) і знаходять концентрацію етанолу в алкоголеметричній таблиці 1 ДФ XI.

Вміст спирту у водно-спиртовому розчині визначається також рефрактометрично і за величиною поверхневого натягу.

Розведення водно-спиртових розчинів необхідно проводити за об’ємом і за масою. При цьому зручно виходити з рівняння матеріального балансу абсолютного спирту.

Існують формули прийнятні для розрахунків розведення як у масових, так і в об’ємних відсотках. Але слід пам'ятати, що у випадках розведення об'ємів може бути використана тільки концентрація за об'ємом, при розведенні масових кількостей — тільки концентрація за масою.

При розведенні за об’ємом розраховують необхідний об’єм міцного етанолу. Визначення кількості води утруднене через явище контракції, тобто зменшення об’єму суміші води і етанолу проти їхньої арифметичної суми. Тому простіше не розраховувати необхідну кількість води, а до розрахованої кількості міцного етанолу додати воду до необхідного об’єму при температурі 20 °С. Можна також скористатися алкоголеметричними таблицями 3 і 4 ДФ XI.

Облік етанолу. На хіміко-фармацевтичних підприємствах облік здійснюють за об’ємом безводного етанолу при 20 °С, адже склади одержують етанол-ректифікат в об’ємі. У документації вказують температуру в мірнику, показання металевого спиртоміра, концентрацію етанолу (при 20 °С), множника об'ємного вмісту безводного етанолу, об’єму безводного етанолу при 20 °С.

У виробничих умовах етанол розводять переважно за масою (температура при цьому не має значення). Концентрацію етанолу за об’ємом переводять у відсотки за масою і виконують розрахунки у відповідності з формулами або правилом змішування.

Переведення об’єму одержаного етанолу-ректифікату в масу здійснюється зважуванням, а також розрахунково — через абсолютний етанол за таблицею VI, складеною з урахуванням зважування в повітрі (наказ МОЗ СРСР № 580 від 14.12.62 р.).

Зберігається спирт у спиртосховищі фармацевтичного підприємства, що має стандартні мірники, які підлягають перевірці спеціальною службою стандартизації раз на рік. На виробництво етанол відпускається в міру необхідності мірниками. При цьому облік ведуть за масою 96 % -вого (або 95 % -вого) етанолу, за об’ємом етанолу безводного або об’ємом при фактичній концентрації. У зв'язку з цим кількість отриманого і витраченого етанолу перераховують на 96 % -вий етанол або ж об’єм безводного етанолу при 20°С.

    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.