Реферат по предмету "Математика"


Системы, эквивалентные системам с известным типом точек покоя

Министерствообразования Республики БеларусьУчреждениеобразования Гомельский государственныйуниверситетимени Франциска СкориныМатематическийфакультетКафедраДифференциальных уравненийКурсоваяработа«Системы, эквивалентныесистемам с известным типом точек покоя»Гомель 2005
Реферат
Курсоваяработа состоит из 14 страниц, 2-х источников.
Ключевыеслова: вложимая система, с известным типом точек покоя, первый интегралдифференциальной системы, отражающая функция, класс систем эквивалентныхсистеме с известным типом точек покоя, непрерывно дифференцируемая функция.
Цельюкурсовой работы является исследование системы с известным типом точек покоя, нахождениепервого интеграла системы, применение теоремы об эквивалентности дифференциальныхсистем.

Содержание
 
Введение
Определение вложимойсистемы. Условия вложимости
Общее решение системы
Нахождение первогоинтеграла дифференциальной системы и условия его существования
Отражающая функция
Применение теоремы обэквивалентности дифференциальных систем
Заключение
Список использованныхисточников

Введение
 
В курсовойработе рассматривается вложимая система с изаестным типом точек покоя. Какизвестно система является вложимой, если любая компонента этой системы вложима,т.е. система вложима тогда и только тогда, когда множество её решений являетсяподмножеством множества решений некоторой линейной стационарной системы.
В 1–2 мпунктах рассматривается вложимая система, с известным типом точек покоя. Далеепроверяем являются ли x и y общим решением нашей системы уравнений.
Во 3-м мы находимпервый интеграл системы и проверяем выполнение тождества.
В 4-м пунктеприменяем теорему об эквивалентности дифференциальных систем.

1. Определение вложимойсистемы. Условия вложимости
Рассмотримдифференциальную систему
/> /> />D. (1)
Будемназывать i-юкомпоненту x/> системы (1) вложимой,если для любого решения x(t)=(x/>(t),…, x/>(t)), t/>, этой системы функция x/>t/>, являетсяквазимногочленом. Таким образом i-я компонента системы (1) вложима тогда и только тогда, когдадля каждого решения x(t)этой системы существует линейное стационарное уравнение вида
/>
/>/>, (2)
для которого/> является решением.
Вообщеговоря, порядок и коэффициенты уравнения (2) зависят от выбора решения />. В частном случае, когдакомпонента /> любого решения /> системы (1) являетсяодновременно и решением некоторого, общего для всех решений /> уравнения (2), компоненту />системы (1) будем называтьсильно вложимой в уравнение (2).
 
2. Общеерешение системы
Рассмотрим вложимуюсистему
/> (1)

/>(b>0 и а-постоянные) с общим решением
/>, если с/>0;
x=0, y=at+c/>, если с=0, гдепостоянные с, с/>, с/> связаны соотношением с/>(b+c/>+c/>)=a/>, имеет два центра вточках/>/>и />./>
Решение:
Подставимобщее решение
/> в нашу систему (1) получим />
/>/>
=/>/>=c(c/>cosct-c/>sinct)=/>
a-/>/>
Для краткостираспишем знаменатель и преобразуем

x/>+y/>+b=/>
/>/>=/>
/>/>
=a+c(c/>sinct+c/>cosct)
a-/>/>
/>
Получаем, чтоx и y являются общим решениемсистемы.
 3. Нахождениепервого интеграла дифференциальной системы и условия его существования
Рассмотримсистему />= f (t, x), x= (x/>,…, x/>), (t, x)/> (1) снепрерывной в области D функцией f. Дифференцируемая функция U (t, x), заданная в некоторойподобласти Gобласти D,называется первым интегралом системы (1) в области G, если для любого решенияx(t), t/>, системы (1), графиккоторого расположен в G функция U (t, x(t)),t/>, постоянна, т.е. U (t, x(t)) зависит только отвыбора решения x(t)и не зависит от t.
Пусть V (t, x), V:G/>R, есть некоторая функция.Производной от функции V в силу системы (1) назовем функцию V/> V/>R, определяемую равенством
V/> (t, x(t))/>t/>.
 
Лемма 1.
Для любогорешения x(t), t/>, системы (1), графиккоторого расположен в G, имеет место тождество
V/>/> t/>.
Бездоказательства.
Лемма 2.
Дифференцируемаяфункция U(t, x), U:G/>R, представляет собой первыйинтеграл системы (1) тогда и только тогда, когда производная U/> в силу системы (1)тождественно в G обращается в нуль.
Необходимость.Пусть U (t, x) есть первый интегралсистемы (1). Тогда для любого решения x(t) этой системы, применяя лемму 1 будем иметь тождества
U/>/>/>
Откуда при t=t/> получим равенство U/>(t/> справедливое при всехзначениях t/> и x(t/>). Необходимостьдоказана.
Достаточность.Пустьтеперь U/> при всех (t, x)/> Тогда для любого решения x(t) системы (1) наосновании леммы1 будем иметь тождества

/>
а с ним идостаточность.
Изопределения первого интеграла следует, что постоянная на G функция также являетсяпервым интегралом системы (1). Первый интеграл U (t, x) будем называть на G, если при всех (t, x)/> выполняется неравенство.
/>
Функцию U(x) будем называть стационарнымпервым интегралом системы (1), если она не зависит от t и является первыминтегралом системы (1).
Найдемпервый интеграл нашей системы:
/>
Возведем вквадрат и выразим с
/>
y/>
/>
/>
/>
/>
Положим />, получим
/>
/>
/>
/>
/>
Проверим, чтофункция />/> – это первый интегралсистемы (1), т.е. проверим выполнение тождества /> (2)
Найдемпроизводные по t, x, y
/> /> />
/>/>/>/>/>/>/>/>
После вышесделанных преобразований получаем, что функция />/> – это первый интегралсистемы (1),

2) Положим />, т.е. />,
где />, Q/>/>
3) Проверимвыполнение тождества:
/> (3), где />
Преобразуем(3).
/>[в нашем случае />] = />/>/>/>=/>[учитывая все сделанныеобозначения] =
=/>
=/>
=/>[ввиду того, что />которое в свою очередь какмы уже показали есть тождественный ноль]/>
Таким образом,тождество (3) истинное.
/>

4.Отражающая функция
 
Определение. Рассмотрим систему
/> (5)
cчитая, что правая частькоторой непрерывна и имеет непрерывные частные производные по />. Общее решение в формеКоши обозначено через />). Через />обозначим интервалсуществования решения />.
Пусть
/>
 
Отражающейфункцией системы (5) назовём дифференцируемую функцию />, определяемую формулой
/>
Дляотражающей функции справедливы свойства:
1.)      длялюбого решения />системы (5) вернотождество
/>
2.)      дляотражающей функции F любой системы выполнены тождества
/>

3) дифференцируемаяфункция /> будет отражающей функциейсистемы (5) тогда и только тогда, когда она удовлетворяет системе уравнений вчастных производных
/>
и начальномуусловию
/>
5. Применениетеоремы об эквивалентности дифференциальных систем
Получаем /> где />-любая нечетная непрерывная функция.
Наряду сдифференциальной системой /> (1)
рассмотримвозмущенную систему/> (2), где /> — любая непрерывнаянечетная функция. Известно по [3], что дифференциальная система /> /> /> (3)
эквивалентнавозмущенной системе
/> /> /> (4), где />непрерывная скалярнаянечетная функция удовлетворяющая уравнению />
Так как вышеуже показано, что функция /> где /> {есть первый интеграл}удовлетворяет этому уравнению, то справедлива следующая теорема.Теорема1.
Система /> (1) эквивалентна системе /> (2) в смысле совпаденияотражающей функции.
Так каксистема /> (1) имеет две особыеточки, в каждой из которых находится центр, то и система /> (2) имеет центры в этихточках.

Заключение
В даннойкурсовой работе рассмотрена вложимая система с известным типом точек покоя, провереноудовлетворение общего решения нашей системе, найдены первый интеграл ипроверено выполнение тождества, затем с помощью теоремы 1 доказанаэквивалентность дифференциальных систем. Сформулированы определения вложимойсистемы, первого интеграла, отражающей функции и общие свойства отражающейфункции. Cформулированатеорема при помощи которой мы доказали эквивалентность нашей системы сдифференциальной системой.

Списокиспользованных источников
 
1.        Мироненко В.И. Линейнаязависимость функций вдоль решений дифференциальных уравнений. – Мн., Изд-во БГУим. В.И. Ленина, 1981, 50 – 51 с.
2.        Мироненко В.И. Отражающаяфункция и периодические решения дифференциальных уравнений. – Мн.: изд-во «Университетское»,1986, 11,17 – 19 с.
3.        Мироненко В.В. Возмущениядифференциальных систем, не изменяющие временных симметрий. 2004 г.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат «Учебно-научный медицинский центр»
Реферат Создание Красной Армии
Реферат Розрахунок і проектування зубчато-пасового приводу
Реферат Об’єкти права природокористування
Реферат О технических предпосылках управления временем и изменением метрики пространства. Природа пространства времени
Реферат Тактика уловок собеседника
Реферат Таможенное регулирование ВЭД
Реферат Анализ рынка международных инвестиций
Реферат Обработка деталей резанием, оборудование, оснастка, инструмент, управление качеством поверхности
Реферат Великая Отечественная война основные события и значение победы
Реферат Тамплиеры История
Реферат Система пожаротушения внутри двигателя ССП-2А. ССП-7 САМОЛЁТА АН12 А
Реферат Россия в международных рейтингах конкурентоспособности
Реферат Philip morris
Реферат Организационно-кадровый аудит