Реферат по предмету "Математика"


Возвратные задачи

--PAGE_BREAK----PAGE_BREAK--Таким образом, мы показали, что соотношения (11) и (12) верные.
Выше было показано, что J – рекуррентность имеет решение в двоичной записи: J((bmbm-1 … b1 b0)2) = (bm-1 … b1 b0bm)2,   где bm = 1. Можно показать, что и обобщенная рекуррентность (10) имеет похожее решение.
Запишем соотношение (10) следующим образом:
                 f(1) = α,
             f(2n + j) = 2f(n) + βj         при j = 0, 1     и     n ≥ 1,
если положить β0= β и β1 = γ. Тогда:
f((bmbm-1 … b1 b0)2) = 2f((bmbm-1 … b1)2) + βb = 4f((bmbm-1…b2)2)+2βb+βb= =…=2mf((bm)2)+2m-1βb+ … + 2βb+βb= 2m α + 2m-1βb+ … + 2βb+βb.
Если мы расширим систему счисления с основанием 2 таким образом, что в ней допустимы произвольные числа, а не только 0 и 1, тогда предыдущий вывод означает, что
             f((bmbm-1 … b1 b0)2) = (α βb βb …  βb βb)2                   (16)
Итак, изменение системы счисления привело нас к компактному решению (16) обобщенной рекуррентности (15).
Глава 2
Решение задач
Задача 1. То, что все лошади одной масти, можно доказать индукцией по числу лошадей в определенном табуне. Вот так:
«Если существует только одна лошадь, то она своей масти, так что база индукции тривиальна. Для индуктивного перехода предположим, что существует nлошадей (с номерами от 1 до n). По индуктивному предположению лошади с номерами от 1 до n−1 одинаковой масти, и, аналогично, лошади с номерами от 2 до nимеют одинаковую масть. Но лошади посередине с номерами от 2 до n−1 не могут изменять масть в зависимости от того, как они сгруппированы, — это лошади, а не хамелеоны. Поэтому в силу транзитивности лошади с номерами от 1 до nтакже должны быть одинаковой масти. Таким образом, все nлошадей одинаковой масти. Что и требовалось доказать».
Есть ли ошибка в приведенном рассуждении и, какая именно?
Решение. Ошибка в данном рассуждении есть, и она заключается в доказательстве по индуктивному предположению. Для доказательства того, что n лошадей имеют одинаковою масть, используется пересечение двух множеств от 1 до n−1 и от 2 до n, но для n = 2 этого пересечения нет. Поэтому, если есть две лошади, имеющие разную масть, то утверждение неверно. Если же любые две лошади имеют одинаковую масть, то доказательство будет верным для любого n.
Задача 2. Найдите кратчайшую последовательность перекладываний, перемещающих башню из nдисков с левого колышка А на правый колышек B, если прямой обмен между А и Bзапрещен. (Каждое перекладывание должно производиться через средний колышек. Как обычно, больший диск нельзя класть на меньший.)
      Решение.
 

Пусть Fn — минимальное число перекладываний, необходимых для перемещения n дисков с одного колышка на другой через колышек С.
Рассмотрим крайние случаи: F0=0, F1=2, F2=8, F3=26. Эксперимент с тремя дисками дает ключ к общему правилу перемещения n дисков: сначала мы перемещаем (n−1) меньших дисков на колышек B (что требует Fn-1 перекладываний), затем перекладываем самый большой диск на колышек С (одно перекладывание), потом помещаем (n−1) меньших дисков на колышек А (еще Fn-1 перекладываний), затем перекладываем самый большой диск на колышек B (одно перекладывание), и, наконец, помещаем (n−1) меньших дисков на колышек B (еще Fn-1 перекладываний). Таким образом, n дисков (при n>0) можно переместить самое большое за 3Fn-1+2 перекладываний (т.е. достаточно перекладываний):  Fn≤ 3Fn-1+2.
Сейчас покажем, что необходимо 3Fn-1+2 перекладываний. На двух этапах мы обязаны переместить самый большой диск. Когда мы это делаем, (n−1) меньших дисков должны находиться на одном колышке (А или B), а для того чтобы собрать их вместе, потребуется, по меньшей мере, Fn-1  перекладываний. Самый большой диск можно перекладывать и более одного раза. Следовательно, Fn≥ 3Fn-1+2.
Эти два неравенства вместе с тривиальным решением при n=0 дают рекуррентное соотношение:
       F0=0  
                                    Fn= 3Fn-1+2    при n>0
Решим данное соотношение.
Первый способ решения (угадывание правильного решения с последующим доказательством, что наша догадка верна). Вычислим: F1=2=31 −1, F2=32 −1, F3=33 −1. Из этого можно сделать предположение, что
                                   Fn= 3n−1  при n≥0.
Докажем методом математической индукции по числу n:
1)    База:  n=0,     F0=30–1=1–1=0 (верно);
2)          Индуктивный переход: пусть доказано для всех чисел t ≤ (n–1). Докажем для t=n:  Fn= 3Fn-1+2  3(3n-1−1)+2 = 3n − 1.
Из пунктов 1 и 2 следует:   при n≥0      Fn= 3n − 1.   
Второй способ решения.
К обеим частям соотношения (1) прибавим 1:
                                                       F0+1 = 1,
                                                   Fn+1 = 3Fn-1+3      при n>0.   
Обозначим Un= Fn+1, тогда получим: U0 = 1, Un= 3Un-1       при n>0.
Решением этой рекурсии есть Un=; следовательно, Fn = −1.
В дальнейшем мы не будем показывать достаточное и необходимое условие в решении подобных задач, а сразу будем описывать получение нужного равенства. Это связано, во-первых, с тем, что достаточное и необходимое условие показывается аналогично тому, как это сделано в данной задаче, а во-вторых, в виду ограниченности объема дипломной работы.
Задача 3. Покажите, что в процессе перемещения башни при ограничениях из предыдущего упражнения нам встретятся все допустимые варианты размещения nдисков на трех колышках.
    Решение. Занумеруем диски
 

 SHAPE  \* MERGEFORMAT
Существует (в соответствии с условиями задачи) только три возможных расположения каждого диска на одном из колышков: либо на первом колышке (А), либо на втором колышке (B), либо на третьем колышке (С). Это будут перестановки длины n из трех элементов. Например, .
Число перестановок длины k из n элементов:  . Следовательно, для нашего случая , т.е.  – это все возможные различные расположения n дисков на трех колышках.
В предыдущей задаче было показано, что наименьшее число перекладываний с колышка А на колышек B через колышек С равно −1. Таким образом, каждый раз перекладывая диск с одного колышка на другой, мы получаем все допустимые расположения n дисков на трех колышках (т.к. мы не перекладываем один диск с одного колышка на другой по несколько раз)
Задача 4. Имеются ли какие-нибудь начальная и конечная конфигурации из nдисков на трех колышках, которые требуют более чем −1 перекладываний, чтобы получить одну из другой по исходным правилам Люка?
Решение. Докажем методом математической индукции, что любая начальная и конечная конфигурации из n дисков на трех колышках требуют не более чем −1 перекладываний, чтобы получить одну из другой по исходным правилам Люка.
1)   База: если n=1, то требуется одно перекладывание, тогда 1 ≤ 20−1 (верно);
2) Индуктивный переход: пусть для любой начальной и конечной конфигурации из n−1 дисков на трех колышках требуется не более чем −1 перекладываний. Докажем для n дисков:
·                         если начальная и конечная конфигурации не предполагают перекладывание самого большого нижнего диска, тогда мы перекладываем только n−1 верхних дисков, а по индуктивному предположению для этого потребуется не более чем −1 перекладываний;
·                         если начальная и конечная конфигурации предполагают перекладывание самого большого нижнего диска, тогда мы перекладываем n−1 верхних дисков, а по индуктивному предположению для этого будет достаточно −1 перекладываний (т.е. n−1 верхних дисков разместили на одном колышке), затем перекладываем самый большой диск (одно перекладывание), и снова перекладываем n−1 верхних дисков, как требует конечная конфигурация (достаточно −1 перекладываний). Таким образом, получили, что потребуется не более чем −1 + 1+−1= перекладываний.
Из всего этого следует, что не существует начальной и конечной конфигурации из n дисков на трех колышках требующей более чем −1 перекладываний, чтобы получить одну из другой по исходным правилам Люка.
Задача 5. Так называемая «диаграмма Венна» с тремя пересекающимися окружностями часто приводится для иллюстрации восьми возможных подмножеств, связанных с тремя заданными множествами:
Можно ли проиллюстрировать четырьмя пересекающимися окружностями шестнадцать возможностей, которые возникают в связи с четырьмя заданными множествами?
Решение. Так как три пересекающиеся окружности иллюстрируют восемь различных подмножеств, то для того чтобы получить шестнадцать возможных подмножеств надо, чтобы четвертая окружность пересекала все восемь множеств. Но такого быть не может. Две произвольные окружности могут иметь не более двух точек пересечения, поэтому, проводя четвертую окружность, мы сможем получить максимум шесть дополнительных подмножеств. Так как возможно только два расположения четвертой окружности относительно трех данных окружностей: 1) четвертая окружность пересекает внешнее подмножество (рис. 1); 2) четвертая окружность лежит внутри трех пересекающихся окружностей (рис.2).
рис.1                                                            рис.2
 

Если добавленная окружность пересекает внешнее множество, то она не сможет пересечь как минимум два внутренних множества (зависит от радиуса окружности).
Если добавленная окружность лежит внутри трех пересекающихся окружностей, то она не пересекает внешнее множество и как минимум одно внутреннее множество.
Таким образом, получили, что четырьмя окружностями можно проиллюстрировать максимум 14 (8+6=14) возможных подмножеств.
Задача 6. Некоторые из областей, очерчиваемых nпрямыми на плоскости, бесконечны, в то время как другие конечны. Какое максимально возможное число конечных областей?
Решение. Пусть  - максимальное число возможных конечных областей, очерчиваемых n прямыми.
Рассмотрим частные случаи (при условии, что n-я прямая не параллельна никакой другой прямой (следовательно, она пересекает каждую из них), и не проходит ни через одну из имеющихся точек пересечения (следовательно, она пересекает каждую из прямых в различных местах)):
   


 
Обобщая, приходим к следующему выводу: новая n-я прямая (при n≥3) пересекает n–1 старых прямых в n−1 различных точках, следовательно, получаем n областей и две крайние из которых бесконечны. Таким образом, получили следующее рекуррентное соотношение:
                                       
Решим данное соотношение.

 
(Здесь Ln =  + 1 — максимальное число областей, на которые плоскость делится n прямыми).
Докажем полученное равенство методом математической индукции по числу n:
1) База:    n=0,    (верно);
2) Индуктивный переход:   пусть доказано для всех чисел t ≤ (n–1). Докажем для t=n:   = =
=
Из пунктов 1 и 2 следует:     при n ≥ 0      
Задача 7. Пусть H(n) = J(n+1)−J(n). В силу уравнения (7) (см. теорию) H(2n) = J(2n+1)− J(2n)(2J(n)+1) − (2J(n)−1) = 2, aH(2n+1) = J(2n+2)− −J(2n+1) = (2J(n+1)−1)−(2J(n)+1) = 2H(n)−2 при всех n≥1. Поэтому представляется возможным доказать индукцией по n, что H(n)=2 при всех n. Что здесь не верно?
Решение. Ошибка заключается в том, что в данном рассуждении хотят доказать по индукции, что H(n)=2 при всех n (показали, что данное равенство выполняется для чисел вида 2n и 2n+1, т.к. любое натуральное число можно представить в таком виде), но при этом не проверили базу индукции (т.е. когда n принимает свое наименьшее значение: n = 1).
H(1) = J(2) − J(1) = 2J(1) −1 − J(1) = 2∙1−1−1 = 0 H(1)2 база индукции не выполняется, следовательно равенство H(n)=2 верно не при всех n.  
Задача 8. Решите рекуррентное соотношение
                                   Q= α,           Q1= β,
                        Qn=                 при  n>1.
Примите, что Qn≠ 0 при всех n≥ 0.
Решение.    ;             ;
;
;
;                       ;
;    .
Получили: ; ; ; ; .
Обобщая, приходим к выводу, что данная последовательность периодическая: если n = 5k+r (), тогда (для n ≥ 5)
Докажем методом математической индукции:
1) База:   n=5    (верно, показано выше);
                n=6    (верно, показано выше);
                n=7    (верно, показано выше);
                n=8    (верно, показано выше);
                n=9    (верно, показано выше);
2) Индуктивный переход: пусть верно для всех чисел t ≤(n−1). Докажем для t=n:     n = 5k + 0,    тогда      ;
·        n = 5k + 1,    тогда      ;
·        n = 5k + 2,    тогда      ;
·        n = 5k + 3,    тогда      ;
·        n = 5k + 4,    тогда      .
Из пунктов 1 и 2 следует: для n ≥ 5      .
Ответ:  при всех n ≥ 0 и k, r Z+.
Задача 9. Иногда возможно использование «обратной индукции», т.е. доказательства от nк n−1, а не наоборот. К примеру, рассмотрим утверждение
P(n):                  ≤  ,       если  x1,x2,…,xn≥ 0
    продолжение
--PAGE_BREAK--Оно справедливо для n=2, так как
                             (x1+x2)2 − 4x1x2= (x1−x2)2 ≥ 0.
a) Полагая , докажите, что P(n) влечет P(n−1) при всяком n> 1.
b) Покажите, что P(n) и P(2) влекут P(2n).
c) Объясните, почему отсюда следует справедливость P(n) при всех n.
Решение. а) подставим  в P(n):
P(n): ≤
преобразуем правую скобку: =
получили:   ≤
разделим левую и правую части неравенства на (эта скобка не равна нулю, т.к. x1,x2,…,xn >0 и n > 1, т.к. случай всех хi=0 тривиальный, поэтому мы его не рассматриваем)
получим    P(n−1):                  ≤  .
Следовательно, при   P(n) влечет P(n−1) при всяком n>1.
b) запишем P(n) для двух конечных последовательностей чисел.
P(n):       ≤      (для n первых членов)
      ≤  (для n членов начиная с )
перемножим эти два неравенства, используя свойство неравенств: если 0
 ≤ .
Преобразуем правую скобку неравенства, используя утверждение Р(2)
                                      P(2):       
,
возведем левую и правую части неравенства в n-ую степень, получим

Таким образом, получили:
  P(2n):    ≤  .
Следовательно, P(n) и P(2) влекут P(2n).
c) Выше было показано, что из P(n) следует P(n−1), а из P(n) и P(2) следует P(2n). Следовательно, мы можем утверждать, что P(n) выполняется для любого n > 1, т.к. P(от нечетного числа n) следует из P(от четного числа (n−1)), а P(от четного числа) следует из P(2) и P(от четного или нечетного числа) и т.д., в конечном итоге приходим к P(2), а оно выполняется.
Например, P(9) следует из P(8), а P(8) следует из P(2) и P(4), P(4) следует из P(2) и P(2), а P(2) выполняется.
Задача 10. Пусть Qn— минимальное число перекладываний, необходимых для перемещения башни из nдисков с колышка А на колышек B, если все перекладывания осуществляются по часовой стрелке – т.е. с А на B, или с Bна другой колышек, и с другого колышка на А. Кроме того, пусть Rn– минимальное число перекладываний, необходимых для перемещения башни с В обратно на А при том же ограничении. Докажите, что
                                     
                                 
Решение.
Рассмотрим частные случаи: Q0=0, R0=0; Q1=1, R1=2; Q2=5, R2=7; Q3=15= =R2+1+R2, R3=21= Q3+1+Q2.
Эксперимент с тремя дисками дает ключ к общему правилу перемещения n дисков c колышка А на колышек B по часовой стрелке: сначала мы перемещаем (n−1) меньших дисков с колышка А на C, через колышек B (для этого потребуется  перекладываний, т.к. это тоже самое если бы мы перекладывали диски с колышка B на колышек А через колышек С), затем перекладываем самый большой диск c колышка A на колышек B (одно перекладывание), потом помещаем (n−1) меньших дисков с колышка C на B (что требует  перекладываний, по тем же соображениям). Таким образом, n дисков (при n>0) c колышка A на колышек B можно переместить за  перекладываний. Получили соотношение:
   
Эксперимент с тремя дисками дает ключ и к общему правилу перемещения n дисков c колышка B на колышек A по часовой стрелке: сначала мы перемещаем (n−1) меньших дисков с колышка B на А (что требует Rn-1 перекладываний), затем перекладываем самый большой диск c колышка B на колышек С (одно перекладывание), потом помещаем (n−1) меньших дисков с колышка А на B (что требует Qn-1 перекладываний), затем перекладываем самый большой диск c колышек С на колышек А (одно перекладывание), и, наконец, помещаем (n−1) меньших дисков с колышка B на колышек А (еще Rn-1 перекладываний). Таким образом, n дисков (при n>0) c колышка B на колышек А можно переместить за  перекладываний. Получили соотношение:        
    И если мы вместо  подставим  (т.к. , показали выше), то получим нужную нам систему:
Таким образом, получили, что системы (1) и (2) справедливы.
Задача 11. Двойная ханойская башня состоит из 2nдисков nразличных размеров – по два диска каждого размера. Как и в случае обычной башни, за один раз разрешается перекладывать только один диск и нельзя класть больший диск на меньший.
a) Сколько перекладываний необходимо для перемещения двойной башни с одного колышка на другой, если диски одинаковых размеров неотличимы друг от друга?
b) Что если в окончательном расположении дисков требуется воспроизвести исходный порядок всех одинаковых дисков сверху донизу?
Решение. a) Пусть  - минимальное число перекладываний башни 2n дисков с одного колышка на другой. Рассмотрим частные случаи: P0=0, P2=2, P4=6, P6=14. Эксперимент с шестью дисками дает ключ к общему правилу перемещения 2n дисков: сначала переместить (2n−2) меньших дисков с одного колышка на другой (что требует перекладываний), затем перекладываем 2 самых больших диска (одно перекладывание), потом помещаем (2n−2) меньших дисков на большие диски (что требует  перекладываний). Таким образом, 2n дисков (при n>0) можно переместить за  перекладываний.
Получили рекуррентное соотношение:
                                         
Решим данное соотношение. P0 =0=,  P2 =2=,  P4 =6 = ,  P6== 14= (Здесь Tn = 2n−1 — минимальное число перекладываний, необходимых для перемещения n дисков с одного колышка на другой по правилам Люка)  гипотеза:  при n ≥ 0
Докажем методом математической индукции по числу n, что  при n ≥ 0.
1) База:   n=1    (верно);
2) Индуктивный переход: пусть верно для всех чисел t ≤(2n−2). Докажем для 2n дисков:
Из пунктов 1 и 2 следует, что  при n ≥ 0.
b) Пусть — минимальное число перекладываний башни из 2n дисков с одного колышка на другой в исходном порядке всех одинаковых дисков сверху донизу.
Рассмотрим частные случаи: R0=0, R2=3, R4=11. Эксперимент с четырьмя дисками дает ключ к общему правилу перемещения 2n дисков в исходном порядке: сначала переместить (2n−2) меньших дисков с одного колышка на другой (что требует перекладываний), затем перекладываем два самых больших диска на свободный колышек (два перекладывания; эти диски будут положены неправильно), потом перекладываем (2n−2) меньших дисков на свободный колышек (что требует  перекладываний), затем снова перекладываем два самых больших диска (два перекладывания; эти диски будут положены правильно), и, наконец, перекладываем (2n−2) меньших дисков на большие диски в исходном порядке (потребуется  перекладываний). Таким образом, 2n дисков (при n>0) можно переместить с одного колышка на другой в исходном порядке всех одинаковых дисков сверху донизу за  перекладываний.
Получили рекуррентное соотношение:
                                                                               (*)
Решим данное соотношение. R2 = 3 = 2P2−1,  R4 = 11 = 2P4−1,  R6 = 27 = 2P6−1 гипотеза:    при n > 0.
Докажем методом математической индукции по числу n, что  при n > 0.
1) База:   n=1    (верно);
2) Индуктивный переход: пусть верно для всех чисел t ≤(2n−2). Докажем для 2n дисков:
Из пунктов 1 и 2 следует, что  при n > 0.
  Еще можно заметить следующее: т.к. , следовательно , то, подставляя данное равенство в соотношение (*) получим рекуррентное соотношение:           
имеющее то же самое решение
Задача 12. Давайте еще обобщим задачу 11а, предполагая, что имеется nразличных размеров дисков и ровно mkдисков размера k. Определите наименьшее число A(m1, m2, …,mn) перекладываний дисков, необходимых для перемещения такой башни, если считать диски одинаковых размеров неразличимыми.
Решение. Для того, что переложить башню, состоящую из n различных размеров дисков, среди которых ровно mk дисков размера k, потребуется следующее число перекладываний:
                
где mn – это количество самых больших нижних дисков.
Решим данное рекуррентное соотношение.
A(m1)=2A(0)+m1=m1;
A(m1,m2)=2A(m1)+m2=21∙m1+m2;
A(m1,m2,m3)=2A(m1,m2)+m3=22∙m1+21∙m2+m3;
A(m1,m2,m3,m4)=2A(m1,m2,m3)+m4=23∙m1+22∙m2+21∙m3+m4.
Отсюда можно выдвинуть гипотезу, что
             A(m1,m2,…,mn)= 
Докажем методом математической индукции по числу n.
1) База:   n=1   A(m1)=20∙m1=m1  (верно);
2) Индуктивный переход: пусть верно для всех чисел t ≤(n−1). Докажем для t=n:  =2∙()
=
Из 1 и 2 следует, что A(m1,m2,…,mn)= 
при n > 0.
Задача 13. На какое максимально возможное число областей плоскость делится nзигзагообразными линиями, каждая из которых состоит из двух параллельных полубесконечных прямых, соединенных прямолинейным отрезком?
Решение. Пусть — это максимальное число областей, на которые плоскость делится n зигзагообразными линиями. Рассмотрим частные случаи:
                                                  
           
                                                
(Здесь Ln =  + 1- максимальное число областей, на которые плоскость делится n прямыми)
Из этих частных случаев можно видеть, что зигзагообразная линия подобна трем прямым с тем лишь отличием, что области сливаются, если «три» прямые не продолжать после их пересечения:
Области 1, 2, 6 и 3, 4, 5, которые были бы разделены при наличии трех прямых, превращаются в единую область в случае одной зигзагообразной линии, т.е. мы теряем четыре области. Так же у нас имеется две параллельные прямые, следовательно, мы теряем еще одну область. Таким образом, если привести все в надлежащий порядок, то все зигзагообразные линии должны пересекаться между собой и точки изломов должны лежать «по ту сторону» пересечений с другими линиями, и мы теряем только пять областей на одну линию. Таким образом,
.
Данную задачу можно решить и по другому, если заметить, что зигзаг можно рассматривать как «прямую», и отрезок, соединяющий две полупрямые, может быть сколь угодно длинным. Тогда данная задача аналогична задаче о нахождении максимального числа Ln областей, на которые плоскость делится n прямыми (две прямые имеют одну точку пересечения). В нашем случае две зигзагообразные линии имеют девять точек пересечения.
С другой стороны, две зигзагообразные линии подобны шести прямым с тем лишь отличием, что области сливаются, если «шесть» прямых не продолжать после их пересечения,
Эти шесть прямых образуют 20 областей, следовательно, при пересечении двух зигзагообразных линий мы теряем восемь областей.
Таким образом, получаем рекуррентное соотношение:
                                        
Решим данное соотношение. +9n−
−8=
+9∙(n−1)−8+9n−8=
=   при n ≥ 0.
Докажем полученное равенство методом математической индукции.
1)     База:    n=0,    (верно);
2)      Индуктивный переход:   пусть верно для всех чисел t ≤ (n–1). Докажем для t=n:   = +9n−7=.
Из пунктов 1 и 2 следует:     при n > 0       .
Задача 14. На какое максимальное число частей можно разделить головку сыра с помощью пяти плоских разрезов? (Головка сыра должна оставаться в исходном положении, пока вы ее режете, и каждому разрезу должна соответствовать некоторая плоскость в трехмерном пространстве.) Найдите рекуррентное соотношение для Рn— максимального числа трехмерных областей, на которое может быть разбито пространство nпроизвольно расположенными плоскостями.
Решение. Сначала найдем рекуррентное соотношение для Рn, а потом с помощью этого соотношения определим, на сколько частей можно разделить головку сыра с помощью пяти плоских разрезов (головка сыра является ограниченным пространством).
Итак, рассмотрим частные случаи: Р1=2, Р2=4, Р3=4+4=8, Р4=8+7=15. Эксперимент показывает, что данная задача аналогична задаче о нахождении максимального числа Ln областей, на которые плоскость делится n прямыми (Ln=Ln-1+n), но только с тем отличием, что дело обстоит в пространстве. Две произвольные плоскости пересекаются по единственной прямой, и для того, чтобы получить максимальное число трехмерных областей надо, чтобы каждая новая проведенная плоскость не была параллельна никакой другой плоскости (следовательно, она пересекает каждую из них), и не проходила ни через одну из имеющихся прямых пересечения (следовательно, она пересекает каждую из плоскостей по различным прямым). Таким образом, проводя новую n-ую плоскость, мы к старым  областям добавляем столько трехмерных областей, сколько образуется областей на n-ой плоскости образованных  прямой пересечения этой плоскости со всеми остальными плоскостями. Поэтому рекуррентное соотношение имеет вид:
                                       

Следовательно, головку сыра можно разделить с помощью пяти плоских разрезов не более чем на 26 частей.
Задача 15. У Иосифа был друг, которого он спас, поставив на предпоследнее спасительное место. Чему равен F(n) — номер предпоследнего выжившего, если экзекуции подлежит каждый второй?
Решение. Допустим, что первоначально имеется 2n людей. После первого обхода мы остаемся с номерами: 1, 3, 5, 7, …, 2n−3, 2n−1. Следующий обход будет начинаться с номера 3. Это то же самое, если бы мы начинали с n людей, за исключением того, что номер каждого уцелевшего удваивается и уменьшается на 1. Тем самым          
                           F(2n) = 2∙F(n) − 1    при n > 1
Теперь посмотрим, что будет в случае, когда имеется 2n+1 людей. После первого обхода жертва с номером 1 уничтожается сразу после жертвы с номером 2n, и мы остаемся с номерами: 3, 5, 7, …, 2n−1,2n+1. Получили почти первоначальную ситуацию с n людьми, но на этот раз номера уцелевших удваиваются и увеличиваются на 1. Таким образом,
                          F(2n+1) = 2∙F(n) + 1    при n > 1
Объединение полученных равенств дает рекуррентное соотношение, которое определяет F(n) для n>3, т.к. F(1) не определено:
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Анализ медицинских информационных систем для лечебно-профилактических учреждений санаторного типа
Реферат Feudalism Essay Research Paper Feudalism began between
Реферат Понятие и источники избирательного права России
Реферат Сравнение трудового договора и гражданско-правового
Реферат Гурьялов, Иван Степанович
Реферат Имперская палата культуры
Реферат "Горе от ума" произведение непревзойденное, единственное в мировой литературе, не разгаданное до конца"
Реферат Особенности межличностного общения детей младшего школьного возраста с разным уровнем академичес
Реферат Геннадий Рождественский
Реферат You Need A
Реферат Особенности осознания собственных поступков старшеклассниками с разной репрезентацией причинности в сознании
Реферат Образы революции у А Белого и А Блока
Реферат Проектирование и организация комплекса работ по стереотопографичес
Реферат Аварии на химически опасных объектах. Медико-тактическая характеристика очага химического пораже
Реферат Монархия как форма правления