--PAGE_BREAK--
Контрольная работа №2.
Задача №1.
Имеются данные о реализации продукции (млн. руб.) фирмой “Орион”. Для июля эта фирма состояла из восьми торговых точек, затем появились еще четыре точки.
Месяц
3
4
5
6
7
8
9
10
11
8 торговых точек
235
300
267
285
289
-
-
-
-
12 торговых точек
-
-
-
-
462
509
456
487
516
Приведите уровни ряда в сопоставимый вид.
Задача №2.
Имеются следующие данные о валовом сборе овощей в хозяйствах области, млн. ц.:
1986
1987
1988
1989
1990
7,6
9,1
7,8
8,4
9,6
Определить средний уровень валового сбора овощей за пять лет.
Задача №3.
По следующим данным о товарных запасах в розничной сети торгующих организаций города определить величину среднеквартального запаса за 1989г., млн. руб.:
1 января
1989
64,1
1 апреля
1989
57,8
1 июля
1989
60,0
1 октября
1989
63,2
1 января
1990
72,3
Задача №4.
За январь 1990г. произошли следующие изменения в списочном составе работников предприятия, чел.:
состояло по списку на 1.01.90г.
842
выбыло с 5.01.90г.
4
зачислено с 12.01.90г.
5
зачислено с 26.01.90г.
2
Определить среднедневную списочную численность работников предприятия за январь 1990г.
Задача №5.
Используя взаимосвязь показателей динамики, определите уровни ряда добычи нефти и недостающие в таблице цепные показатели динамики:
Добыча
Цепные показатели динамики
Год
нефти,
млн.т
абсолют. прирост, млн.т.
темп
роста,
%
темп прироста,
%
абс.значение 1% прироста
1980
353
-
-
-
-
1981
24
1982
106,1
1983
7,25
1984
1985
32
4,59
1986
105,9
1987
5
1988
1989
14
5,72
Задача №6
Используя взаимосвязь показателей динамики, определите уровни ряда и недостающие в таблице базисные показатели динамики:
Производство эл.энергии
Базисные показатели динамики
Год
млрд.
кВт.ч.
абсолют. прирост,
темп роста,
%
темп прироста,
%
1980
741
-
-
-
1981
59
1982
115,6
1983
23,9
1984
131,7
1985
298
1986
149,9
1987
55,2
1988
461
1989
167,2
Продолжение контрольной работы №2 на странице 19.
Определение в рядах динамики
общей тенденции развития.
Определение уровней ряда динамики на протяжении длительного периода времени обусловлено действием ряда факторов, которые неоднородны по силе и направлению воздействия, оказываемого на изучаемое явление.
Рассматривая динамические ряды, пытаются разделить эти факторы на постоянно действующие и оказывающие определяющее воздействие на уровни ряда, формирующие основную тенденцию развития, и случайные факторы, приводящие к кратковременным изменениям уровней ряда динамики. Наиболее важна при анализе ряда динамики его основная тенденция развития, но часто по одному лишь внешнему виду ряда динамики ее установить невозможно, поэтому используют специальные методы обработки, позволяющие показать основную тенденцию ряда. Методы обработки используются как простые, так и достаточно сложные. Простейший способ обработки ряда динамики, применяемый с целью установления закономерностей развития — метод укрупнения интервалов.
Суть метода в том, чтобы от интервалов, или периодов времени, для которых определены исходные уровни ряда динамики, перейти к более продолжительным периодам времени и посмотреть, как уровни ряда изменяются в этом случае.
Пример.
Данные о реализации молочной продукции в магазинах города по месяцам представлены таблицей (в тоннах)
месяц
1987
1988
1989
январь
5,3
5,3
5,4
февраль
5,3
5,1
5,2
март
7,9
8,3
8,2
апрель
8,2
9,0
9,3
май
9,8
9,5
10,1
июнь
12,5
13,0
13,1
июль
11,8
12,2
12,5
август
10,3
10,4
10,8
сентябрь
8,2
8,0
8,3
октябрь
6,5
6,6
6,8
ноябрь
5,4
5,5
5,7
декабрь
5,5
5,5
5,6
итого за год
96,7
98,4
101
Исходные уровни ряда динамики подвержены сезонным изменениям; для определения общей тенденции развития переходят от ежемесячных уровней к годовым уровням:
1987г. — 96,7 тонн
1988г. — 98,4 тонн
1989г. — 101 тонна
Эти цифры, полученные в результате перехода к годовым уровням ряда динамики, показывают общую тенденцию роста реализации молочной продукции.
Другой способ определения тенденции в ряду динамики —метод скользящих средних. Суть метода заключается в том, что фактические уровни ряда заменяются средними уровнями, вычисленными по определённому правилу, например:
— исходные или фактические уровни ряда динамики заменяются средними уровнями:
...
...
...
В результате получается сглаженный ряд, состоящий из скользящих пятизвенных средних уровней . Между расположением уровней и устанавливается соответствие:
— — — — ,
сглаженный ряд короче исходного на число уровней , где k — число уровней, выбранных для определения средних уровней ряда.
Сглаживание методом скользящих средних можно производить по четырём, пяти или другому числу уровней ряда, используя соответствующие формулы для усреднения исходных уровней.
Полученные при этом средние уровни называются четырёхзвенными скользящими средними, пятизвенными скользящими средними и т.д.
При сглаживании ряда динамики по чётному числу уровней выполняется дополнительная операция, называемая центрированием, поскольку, при вычислении скользящего среднего, например по четырём уровням, относится к временной точке между моментами времени, когда были зафиксированы фактические уровни и . Схема вычислений и расположений уровней сглаженного ряда становится сложнее:
… — исходные уровни;
— — ... — сглаженные уровни;
— — … — центрированные сглаженные уровни;
.
Метод скользящих средних не позволяет получить численные оценки для выражения основной тенденции в ряду динамики, давая лишь наглядное графическое представление (пример 1).
продолжение
--PAGE_BREAK--
Пример.
Таблица 1.
Годы
Валовый сбор хлопка-сырца, млн. т.
Скользящая средняя по 5 уровням
1960
4,3
—
1961
4,5
—
1962
4,3
4,72
1963
5,2
5,00
1964
5,3
5,30
1965
5,7
5,64
1966
6,0
5,78
1967
6,0
5,86
1968
5,9
6,10
1969
5,7
6,32
1970
6,9
6,58
1971
7,1
6,94
1972
7,3
7,48
1973
7,7
7,68
1974
8,4
7,92
1975
7,9
8,22
1976
8,3
8,38
1977
8,8
8,54
1978
8,5
8,94
1979
9,2
9,18
1980
9,9
9,30
1981
9,6
—
1982
9,3
—
На рис. 1 показан график, построенный по данным о валовом сборе хлопка-сырца в стране за ряд лет наблюдения и по расчетным данным, представленным в таблице 1.
Рис. 1. Валовый сбор хлопка — сырца.
Наиболее совершенным способом определения тенденции развития в ряду динамики является метод аналитического выравнивания. При этом методе исходные уровни ряда динамики заменяются теоретическими или расчетными , которые представляют из себя некоторую достаточно простую математическую функцию времени, выражающую общую тенденцию развития ряда динамики. Чаще всего в качестве такой функции выбирают прямую, параболу, экспоненту и др.
Например, ,
где — коэффициенты, определяемые в методе аналитического выравнивания;
— моменты времени, для которых были получены исходные и соответствующие теоретические уровни ряда динамики, образующие прямую, определяемую коэффициентами .
Расчет коэффициентов ведется на основе метода наименьших квадратов:
Если вместо подставить (или соответствующее выражение для других математических функций), получим:
Это функция двух переменных (все и известны), которая при определенных достигает минимума. Из этого выражения на основе знаний, полученных в курсе высшей математики об экстремуме функций n переменных, получают значения коэффициентов .
Для прямой:
где n — число моментов времени, для которых были получены исходные уровни ряда .
Если вместо абсолютного времени выбрать условное время таким образом, чтобы , то записанные выражения для определения упрощаются:
Пример.
Нечетное число уровня ряда.
1981
1982
1983
1984
1985
1986
1987
абсолютное время
-3
-2
-1
1
2
3
условное время
Чётное число уровней ряда.
1981
1982
1983
1984
1985
1986
1987
1988
абсолютное время
-7
-5
-3
-1
1
3
5
7
условное время
В обоих случаях .
Пример.
Выполняется аналитическое выравнивание ряда, отражающего производство стали в стране по годам (млн. т).
1985
1986
1987
1988
1989
141,3
144,8
146,7
151,5
149,0
В качестве математической функции, отражающей тенденцию развития, выбирается прямая , определение производится для условного времени, в результате , .
Год
Производство стали
Условное время
Теоретические уровни
1985
141,3
-2
142,2
1986
144,8
-1
144,4
1987
146,7
146,7
1988
151,5
1
148,9
1989
149,0
2
151,1
Определение в рядах внутригодовой динамики.
Многие процессы хозяйственной деятельности, торговли, сельского хозяйства и других сфер человеческой деятельности подвержены сезонным изменениям, например, продажа мороженого, потребление электроэнергии, производство молока, сахара, продажа сельхозпродукции и др.
Для анализа рядов динамики, подверженных сезонным изменениям, используются специальные методы, позволяющие установить и описать особенности изменения уровней ряда. Прежде, чем использовать методы изучения сезонности, необходимо подготовить данные, приведённые в сопоставимый вид, за несколько лет наблюдения по месяцамили кварталам. Изменения сезонных колебаний производится с помощью индексов сезонности. В зависимости от существующих в ряду динамики тенденций используются различные правила построения индексов.
1. Ряд динамики не имеет общей тенденции развития, либо она не велика.
Индекс сезонности: ,
где — средний уровень ряда, полученный в результате осреднения уровней ряда за одноимённые периоды времени (например, средний уровень января за все годы наблюдения);
— общий средний уровень ряда за всё время наблюдения.
Вывод о наличии или отсутствия в ряду динамики ярко выраженной тенденции может производиться, например, при помощи метода укрупнения интервалов.
Пример.
Имеются данные заключения брака в городе за ряд лет наблюдения:
Месяц
1986
1987
1988
январь
173
183
178
февраль
184
185
179
март
167
162
161
апрель
142
160
184
май
137
143
151
июнь
145
150
156
июль
153
167
177
август
171
173
181
сентябрь
143
150
157
октябрь
162
165
174
ноябрь
178
181
193
декабрь
185
189
197
итого за год
1940
2008
2088
продолжение
--PAGE_BREAK--