Реферат по предмету "Математика"


Область прогноза для однофакторной и двухфакторной модели. Точечный прогноз на основании линейно

--PAGE_BREAK--Прогноз на основании линейной модели для двуфакторной модели.
Целью регрессионного анализа является получение прогноза с доверительным интервалом. Прогноз делается по уравнению регрессии
(1)
Точка прогноза  из p-мерного пространства с координатами  выбирается из области прогноза. Если, например, модель двухфакторная , то область прогноза определяется прямоугольником, представленным на рис. 1.





Рис. 1


Т.е. область прогноза определяется системой неравенств:

Чтобы получить формулу для вычисления полуширины dдоверительного интервала, нужно перейти к матричной форме записи уравнения регрессии.
Матричная запись многофакторной регрессии
Данные для построения уравнения регрессии, сведем в таблицу:
Таблица 1

№ набл

Y

X1

X2



Xp

1

y1

x11

x12



x1p

2

y2

x21

x22



x2p













n

yn

xn1

xn2



xnp



(2)
Подставляя в уравнение (2) значения из каждой строки таблицы, получим n уравнений.
(2)


ei – случайные отклонения (остатки), наличие которых объясняется тем, что выборочные точки не ложатся в точности на плоскость (1), а случайным образом разбросаны вокруг нее.

Чтобы записать систему (2) в матричном виде, вводим матрицу X, составленную из множителей при коэффициентах b1, b2, …, bp.

Матрица . Размерность матрицы n´p+1.

Еще вводятся матрицы:

Вектор столбец , , , размерностью n´1.

Тогда в матричной форме уравнение регрессии записывается так:
.
Полуширина доверительного интервала рассчитывается по формуле:
,
где   — среднее квадратическое отклонение остатков;

  — критическая точка распределения Стьюдента, соответствующая уровню доверия g=(0.95, 0.99, 0.999) и степени свободы k=n-p-1.

вектор  точка из области прогноза.
2. Задача
Найдите коэффициент эластичности для указанной модели в заданной точке x. Сделать экономический вывод.
 

X=1

1.                 Найдем производную функции ,

2.                 Найдем эластичность. , тогда

3.                  Коэффициент эластичности для точки прогноза:

X=1



Коэффициент эластичности показывает, что при изменении фактора X =1 на 1% показатель Y уменьшится на 0,5%.
3. Задача
Для представленных данных выполнить следующее задание:

1. Провести эконометрический анализ линейной зависимости показателя от первого фактора. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.

2. Провести эконометрический анализ нелинейной зависимости показателя от второго фактора, воспользовавшись подсказкой. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.

3. Провести эконометрический анализ линейной зависимости показателя от двух факторов. Сделать точечный прогноз для любой точки из области прогноза. Найти частичные коэффициенты эластичности в точке прогноза.

Производительность труда, фондоотдача и уровень рентабельности по плодоовощным консервным заводам области за год характеризуются следующими данными:



№ района

Фактор

Уровень убыточности продукции животноводства %

Удельный вес пашни в сельскохозяйственных угодьях %

Удельный вес лугов и пастбищ %

1

80

20

20

 
2

87,2

12,8

37,5

 
3

90,8

9,2

43,4

 
4

94,7

11,3

45,6

 
5

81,4

18,6

23,4

 
6

79,2

10,8

25

 
7

71,3

28,7

17,2

 
8

86,2

13,8

33,3

 
9

71,4

28,6

15

 
10

77,7

22,9

18,7

 
11

75,4

14

24,8

 
12

77,9

13

34,5

 
13

87,2

12,8

33,1

 
14

68,1

25

19,2

 
15

86,2

13,8

31,8

 

Нелинейную зависимость принять

Обозначим вес пашни в с/х % – Х, уровень убыточности (%) – У. Построим линейную зависимость показателя от фактора. Найдем основные числовые характеристики. Объем выборки n=15 – суммарное количество наблюдений. Минимальное значение Х=68,1, максимальное значение Х=94,7, значит, удельный вес пашни меняется от 68,1 до 94,7 %. Минимальное значение У=15, максимальное значение У=46,5, уровень убыточности животноводства от 15 до 46,5%. Среднее значение . Среднее значение пашни составляет 80,1%, среднее значение уровня убыточности составляет 28,2%. Дисперсия = 58,83, = 92,965. Среднеквадратическое отклонение  7,67, значит среднее отклонение пашни от среднего значения, составляет 7,67%., 9,64, значит среднее отклонение уровня убыточности от среднего значения, составляет 9,64%. Определим, связаны ли Х и У между собой, и, если да, то определить формулу связи. По таблице строим корреляционное поле (диаграмму рассеивания) – нанесем точки  на график. Точка с координатами =(80; 27,08) называется центром рассеяния. По виду корреляционного поля можно предположить, что зависимость между y и x линейная. Для определения тесноты линейной связи найдем коэффициент корреляции: =0,88 Так как  то линейная связь между Х и У достаточная. Пытаемся описать связь между х и у зависимостью. Параметры b0, b1 находим по МНК.  Так как b1>0, то зависимость между х и y прямая: с ростом пашни уровень убыточности животноводства возрастает. Проверим значимость коэффициентов bi. Значимость коэффициента b может быть проверена с помощью критерия Стьюдента:

 -4,608. Значимость  равна 0,000490101, т.е практически 0%. Коэффициент b0 статистически не значим.

6,744. Значимость  равна 1,375·10-5, т.е 0%, что меньше, чем 5%. Коэффициент b1 статистически значим. Получили модель зависимости уровня пашни от убыточности животноводства

После того, как была построена модель, необходимо проверить ее на адекватность.

Для анализа общего качества оцененной линейной регрессии найдем коэффициент детерминации: =0,777. Разброс данных объясняется линейной моделью на 77,7% и на 22,3% – случайными ошибками. Качество модели плохое.

Проверим с помощью критерия Фишера.

Для проверки найдем величины: 1012,166 и 1012,166. Вычисляем k1=1, k2=13. Находим наблюдаемое значение критерия Фишера 45.48. Значимось этого значения a=1,37610-5, т.е. процент ошибки равен 0%, что меньше, чем 5%. Модель  считается адекватной с гарантией более 95%.

Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза , х=80

Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза:

Найдем полуширину доверительного интервала в каждой точке выборки xпр:

sе– средне квадратичное отклонение выборочных точек от линии регрессии

 4,72

ty = критическая точка распределения Стьюдента для надежности g=0,9 и k2=13.

n =15.

или

xпр– точка из области прогнозов.

Прогнозируемый доверительный интервал для любого х такой , где d(х=80)=10,53, т.е. доверительный интервал для хпр=80 составит от 16,55 до 37,61 с гарантией 90%.

Совокупность доверительных интервалов для всех х из области прогнозов образует доверительную область.

Т.е. при пашни 80 % уровень убытка животноводства составит от 16% до 37,5%.

Найдем эластичность.

Для линейной модели



Коэффициент эластичности показывает, что при изменении х=80 на 1% показатель y увеличивается на 3,29%.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.