Городская открытая научно-практическая конференция
школьников и студентов
Тема: «ИЗУЧЕНИЕ ТЕОРЕМЫ БЕЗУ ДЛЯ РЕШЕНИЯ УРАВНЕНИЙ n-Й СТЕПЕНИ, ПРИ n>2»
Выполнила:
Научный руководитель:
2007
Оглавление
Введение
Этьен Безу
Теорема Безу
Доказательство теоремы 6
Следствия из теоремы:
Доказательство:
По теореме Безу остаток от деления многочлена f(x) на (x-a) равен f(a), а по условию a является корнем f(x), а это значит, что f(a)=0, что и требовалось доказать.
Из данного следствия теоремы Безу видно, что задача решения уравнения f(x)=0 равносильна задаче выделения делителей многочлена f, имеющих первую степень (линейных делителей).
Следствие 3:
Если многочлен f(x) имеет попарно различные корни a1, a2 ,… ,an ,то он делится на произведение (x-a1)…(x-an) без остатка.
Доказательство:
Проведём доказательство с помощью математической индукции по числу корней. При n=1 утверждение доказано в следствии 2. Пусть оно уже доказано для случая, когда число корней равно k, это значит, что f(x) делится без остатка на
(x-a1)(x-a2)…(x-ak), где a1, a2,…, ak - его корни.
Пусть f(x) имеет (k+1) попарно различных корней. По предположению индукции a1, a2, ak,…, (ak+1) являются корнями многочлена, а, значит, многочлен делится на произведение (x-a1)…(x-ak), откуда выходит, что
f(x)=(x-a1)…(x-ak)q(x).
При этом (ak+1) - корень многочлена f(x), т.е.
f(ak+1) = 0.
Значит, подставляя вместо x (ak+1), получаем верное равенство:
f(ak+1)=(ak+1-a1)…(ak+1-ak)q(ak+1)=0.
Но (ak+1) отлично от чисел a1,…, ak, и потому ни одно из чисел (ak+1-a1),…, (ak+1-ak) не равно 0. Следовательно, нулю равно q(ak+1), т.е. (ak+1) - корень многочлена q(x). А из следствия 2 выходит, что q(x) делится на (x-ak+1) без остатка.
q(x)=(x-ak+1)q1(x), и потому
f(x)=(x-a1)…(x-ak)q(x)=(x-a1)…(x-ak)(x-ak+1)q1(x).
Это и означает, что f(x) делится на (x-a1)…(x-ak+1) без остатка.
Итак, доказано, что теорема верна при k=1, а из её справедливости при n=k вытекает, что она верна и при n=k+1. Таким образом, теорема верна при любом числе корней, что и требовалось доказать.
Следствие 4:
Многочлен степени n имеет не более n различных корней.
Доказательство:
Воспользуемся методом от противного: если бы многочлен f(x) степени n имел бы более n корней - n+k (a1, a2,..., an+k - его корни), тогда бы по ранее доказанному следствию 3 он бы делился на произведение (x-a1)...(x-an+k), имеющее степень (n+k), что невозможно.
Мы пришли к противоречию, значит наше предположение неверно, и многочлен степени n не может иметь более, чем n корней, что и требовалось доказать.
Следствие 5:
Для любого многочлена f(x) и числа a разность (f(x)-f(a)) делится без остатка на двучлен (x-a).
Доказательство:
Пусть f(x) - данный многочлен степени n, a - любое число.
Многочлен f(x) можно представить в виде: f(x)=(x-a)q(x)+R, где q(x) - многочлен, частное при делении f(x) на (x-a), R - остаток от деления f(x) на (x-a).
Причём по теореме Безу:
R=f(a), т.е.
f(x)=(x-a)q(x)+f(a).
Отсюда
f(x)-f(a)=(x-a)q(x),
а это и означает делимость без остатка (f(x)-f(a))
на (x-a), что и требовалось доказать.
Следствие 6:
Число a является корнем многочлена f(x) степени не ниже первой только тогда, когда f(x) делится на (x-a) без остатка.
Доказательство:
Чтобы доказать данную теорему требуется рассмотреть необходимость и достаточность сформулированного условия.
1. Необходимость.
Пусть a - корень многочлена f(x), тогда по следствию 2 f(x) делится на (x-a) без остатка.
Таким образом делимость f(x) на (x-a) является необходимым условием для того, чтобы a являлось корнем f(x), т.к. является следствием из этого.
2. Достаточность.
Пусть многочлен f(x) делится без остатка на (x-a),
тогда R=0, где R - остаток от деления f(x) на (x-a), но по теореме Безу R=f(a), откуда выходит, что f(a)=0, а это означает, что a является корнем f(x).
Таким образом, делимость f(x) на (x-a) является и достаточным условием для того, чтобы a являлось корнем f(x).
Делимость f(x) на (x-a) является необходимым и достаточным условием для того, чтобы a являлось корнем f(x), что и требовалось доказать.
Следствие 7:
Многочлен, не имеющий действительных корней, в разложении на множители линейных множителей не содержит.
Доказательство:
Воспользуемся методом от противного: предположим, что не имеющий корней многочлен f(x) при разложении на множители содержит линейный множитель
(x-a):
f(x)=(x-a)q(x),
тогда бы он делился на (x-a), но по следствию 6 a являлось бы корнем f(x), а по условию он действительных корней не содержит. Мы пришли к противоречию, значит наше предположение неверно и многочлен, не имеющий действительных корней, в разложении на множители линейных множителей не содержит, что и требовалось доказать.
Применение теоремы
Остановлюсь на рассмотрении некоторых примеров применения теоремы Безу к решению практических задач.
Следует отметить, что при решении уравнений с помощью теоремы Безу необходимо:
· найти все целые делители свободного члена;
· из этих делителей найти хотя бы один корень уравнения (a);
· левую часть уравнения разделить на (x-a);
· записать в левой части уравнения произведение делителя и частного;
· решить полученное уравнение.
Пример 1
на двучлен x-2.
По теореме Безу:
R=f(2)=23-3*22+6*2-5=3.
Ответ: R=3.
Пример 2
При каком значении a многочлен x4+ax3+3x2-4x-4 делится без остатка на двучлен x-2?
По теореме Безу: R=f(2)=16+8a+12-8- 4=8a+16.
Но по условию R=0, значит 8a+16=0, отсюда a=-2.
Ответ: a=-2.
Пример 3
При каких значениях a и b многочлен ax3+bx2-73x+102 делится на трёхчлен x2-5x+6 без остатка?
Разложим делитель на множители: x2-5x+6=(x-2)(x-3).
Поскольку двучлены x-2 и x-3 взаимно просты, то данный многочлен делится на x-2 и на x-3, а это значит, что по теореме Безу:
R1=f(2)=8a+4b-146+102=8a+4b-44=0
R2=f(3)=27a+9b-219+102=27a+9b-117=0
Решу систему уравнений:
8a+4b-44=0 2a+b=11
27a+9b-117=0 3a+b=13
Отсюда получаем: a=2, b=7.
Ответ: a=2, b=7.
Пример 4.
При каких значениях a и b многочлен x4+ax3-9x2+11x+b
делится без остатка на трёхчлен x2-2x+1?
Представим делитель так: x2 - 2x + 1 = (x - 1)2
Данный многочлен делится на x-1 без остатка, если по теореме Безу:
R1=f(1)=1+a-9+11+b=a+b+3=0.
Найдём частное от деления этого многочлена на x-1:
_ x4+ax3-9x2+11x-a-3 x-1
x4-x3 x3+(a+1)x2+(a-8)x+(a+3)
_(a+1)x3-9x2
(a+1)x3-(a + 1)x2
_(a-8)x2+11x
(a-8)x2-(a-8)x
_(a+3)x-a-3
(a+3)x-a-3
0
Частное x3+(a+1)x2+(a-8)x+(a+3) делится на (x-1) без остатка, откуда
R2=f(1)=1+(a+1)*1+(a-8)*1+a+3=3a-3=0.
Решу систему уравнений:
a + b + 3 = 0 a + b =-3
3a - 3 = 0 a = 1
Из системы: a=1, b=-4
Ответ: a=1, b=-4.
Пример 5
Разложить на множители многочлен f(x)=x4+4x2-5.
Среди делителей свободного члена число 1 является корнем данного многочлена f(x), а это значит, что по следствию 2 из теоремы Безу f(x) делится на (x-1) без остатка:
f(x)/(x-1)=x3+x2+5x+5, значит f(x)=(x-1)(x3+x2+5x+5).
Среди делителей свободного члена многочлена x3+x2+5x+5 x=-1 является его корнем, а это значит, что по следствию 2 из теоремы Безу x3+x2+5x+5 делится на (x+1) без остатка:
_x4+4x2-5 x-1 _x3+x2+5x+5 x+1
x4-x3 x3+x2+5x+5 x3+x2 x2 +5
_x3+4x2 _5x+5
x3-x2 5x+5
_5x2-5 0
5x2-5x
_5x-5
5x-5
0
(x3+x2+5x+5)/(x+1)=x2+5, значит x3+x2+5x+5=(x+1)(x2+5).
Отсюда f(x)=(x-1)(x+1)(x2+5).
По следствию 7 (x2+5) на множители не раскладывается, т.к. действительных корней не имеет, поэтому f(x) далее на множители не раскладывается.
Ответ: x4+4x2-5=(x-1)(x+1)(x2+5).
Пример 6
Разложить на множители многочлен f(x)=x4+324.
f(x) корней не имеет, т.к. x4 не может быть равен -324, значит, по следствию 7 f(x) на множители не раскладывается.
Ответ: многочлен на множители не раскладывается.
Пример 7
Составить кубический многочлен, имеющий корень 4 кратности 2 и корень -2.
По следствию 3, если многочлен f(x) имеет корень 4 кратности 2 и корень -2, то он делится без остатка на (x-4)2(x+2), значит:
f(x)/(x-4)2(x+2)=q(x), т.е.
f(x)=(x-4)2(x+2)q(x),
f(x)=(x2-8x+16)(x+2)q(x),
f(x)=(x3-8x2+16x+2x2-16x+32)q(x),
f(x)=(x3-6x2+32)q(x).
(x3-6x2+32) - кубический многочлен, но по условию f(x) - также кубический многочлен, следовательно, Q(x) - некоторое действительное число. Пусть Q(x)=1, тогда f(x)=x3-6x2+32.
Ответ: x3-6x2+32.
Пример 8
Решить уравнение x4+3x3-13x2-9x+30=0.
301; 2, 3, 5, 6, 10.
(x-2)(x3+5x2-3x-15)=0
(x-2)(x+5)(x2-3)=0
_x4+3x3-13x2-9x+30 x-2
x4-2x3 x3+5x2-3x-15
_5x3-13x2
5x3-10x2
_-3x2-9x
-3x2+6x
_-15x+30
-15x+30
0
Ответ: x1=2, x2=-5, x3,4=.
Пример 9
Решить уравнение x6+x5-7x4-5x3+16x2+6x-12=0.
Посмотрев на уравнение, сразу можно сказать, что по следствию 4 оно имеет не более 6 корней уравнения.
-12 1; 2; 3; 4; 6; 12.
_x6+x5-7x4-5x3+16x2+6x-12 x-1
x6-x5 x5+2x4-5x3-10x2+6x+12
_2x5-7x4
2x5-7x4
_-5x4-5x3
-5x4+5x3
_-10x3+16x2 _x5+2x4-5x3-10x2+6x+12 x+2
-10x3-10x2 x5+2x4 x4-5x2+6
_6x2+6x _ -5x3-10x2
6x2-6x -5x3-10x2
_12x-12 _ 6x+12
12x-12 6x+12
0 0
x6+x5-7x4-5x3+16x2+6x-12=(x-1)(x5+2x4-5x3-10x2+6x+12)=0
x6+x5-7x4-5x3+16x2+6x-12=(x-1)(x+2)(x4-5x2+6)=0
x4-5x2+6=0 - биквадратное уравнение, x1,2=, x3,4=.
Ответ: x1,2=, x3,4=, x5=1, x6=-2.
Пример 10
Решить уравнение x3-5x2+8x-6=0.
-6 1; 2; 3; 6.
_x3-5x2+8x-6 x-3
x3-3x2 x2-2x+2
_-2x2+8x
-2x2+6x
_2x-6
2x-6
0
x3-5x2+8x-6=(x2-2x+2)(x-3)=0
x2-2x+2=0 - квадратное уравнение, корней не имеет, т.к. D<0.
Ответ: x=3.
Пример 11
Решить уравнение 6x3+11x2-3x-2=0.
-2 1; 2.
_6x3+11x2-3x-2 x+2
6x3+12x2 6x2-x-1
_-x2-3x
-x2-2x
_-x-2
-x-2
0
6x3+11x2-3x-2=(6x2-x-1)(x+2)=0
6x2-x-1=0 - квадратное уравнение, x1=Ѕ, x2=-?.
Ответ: x1=Ѕ, x2=-?, x3=-2.
Заключение
Теорема Безу - одна из основных теорем алгебры, названная именем французского ученого Этьена Безу.
Существует несколько следствий из теоремы, которые помогают при решении практических задач. Из рассмотренных примеров можно сделать вывод, что теорема Безу находит применение при решении задач, связанных с делимостью многочленов, например, нахождение остатка при делении многочленов, определение кратности многочленов и т.д. Также, теорема работает при разложении многочленов на множители, при определении кратности корней и многих других.
Теорема Безу находит применение при рассмотрении одной из важнейших задач математики - решении уравнений.
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |