В гидравлике местные сопротивления делятся на 2 группы:
Внезапные.
Постепенные (плавные).
В каждую группу входят:
Расширение
Сужение
Поворот
5.1. Внезапное расширение канала.
Рис. 5.1
Рассматривается турбулентный режим течения
Коэффициент внезапного расширения: ,
Для идеальной жидкости:
Потери полного давления при внезапном расширении
Примем следующие допущения:
?1=1, ?2=1 - турбулентное течение
касательными напряжениями пренебрегаем из-за малой длины
Р=Р1 давление на боковой стенке (эксперимент).
Тогда
Для контура, ограниченного сечениями 1-1, 1-2 и боковой стенкой канала запишем уравнения сохранения количества движения в проекции на ось канала:
Учитывая уравнения неразрывности V1S1=V2S2, после преобразований получим
(5.1)
Эта формула носит наименование теоремы Борда-Карно.
Вводя понятие степени расширения канала n = S2/S1, будем иметь
Тогда коэффициент сопротивления
(5.2)
Этот результат хорошо согласуется с опытами.
5.2. Постепенное расширение канала. Диффузор
Рис. 5.2
Определим коэффициент местных потерь диффузора. Представив, что потери полного напора складываются из двух составляющих. Потери на трение и потери на вихреобразование.
VS=const VS=V1S1,
, где во – вихреобразование, вр – внезапное расширение.
к – коэффициент смягчения. Для диффузоров с малым углом полураствора (0) к = sin ?. Тогда:
(5.3)
Из формулы (5.3) следует, что существует оптимальный угол полураствора диффузора, соответствующий минимальному гидравлическому сопротивлению. Это утверждение подтверждает рис. 5.3.
Рис. 5.3
Все необходимые преобразования представлены ниже:
(5.4)