Содержательная часть |
Формально-математическая часть |
||
Верхний уровень |
Разработка способов оптимизации состава и пополнения флота (определение оптимальных характеристик судов, указываемых в задании на проектирование). Установление общих требований к судам. |
Разработка математических методов решения задач В-С. Автоматизация процессов решения задач В-С. |
|
Нижний уровень |
Исследование взаимосвязи между элементами и характеристиками судов. Разработка методов проектирования (определения оптимальных элементов проектируемого судна). Разработка методов построения теоретического чертежа и схемы общего расположения судна. |
Разработка математических методов решения задач Н-С. Автоматизация решения задач Н-С. |
|
К первой, содержательной части ТПС, занимающейся исследованием физической стороны проектных задач, относятся следующие вопросы:
выявление взаимосвязи элементов и характеристик с техническими, эксплуатационными и экономическими требованиями, предъявляемыми к судну;
разработка методик проектирования;
разработка методов построения теоретического чертежа и схемы общего расположения судна.
Вторая, формально-математическая часть ТПС, занимается поиском математических способов решения проектных задач, в частности автоматизацией проектных расчетов.
Задачи верхнего уровня или внешняя задача ТПС заключается в разработке вопросов, связанных с определением характеристик проектируемых судов, которые указываются в задании на проектирование, а также установлении общих требований, предъявляемых к проектируемым судам.
Задачи нижнего уровня или внутренняя задача ТПС заключается в определении элементов проектируемого судна.
Внутреннюю задачу содержательной части подразделяют еще на два уровня: верхний, связанный с определением основных элементов (главных размерений и коэффициентов полноты) и нижний, на котором решаются вопросы архитектурно-конструктивного оформления проекта, оборудования и общего расположения.
Поскольку результаты проектирования должны не просто удовлетворять требованиям задания, но удовлетворять наилучшим образом, под характеристиками и элементами следует понимать их оптимальные значения. Таким образом, можно сказать, что целью решения внешней задачи ТПС является оптимизация состава флота и разработка общих требований к судам, а внутренней задачи - оптимизация элементов судна.
ТПС тесно связана с другими судостроительными дисциплинами, в основном с теорией и строительной механикой корабля. Меньше - с технологией и экономикой судостроения и другими дисциплинами. В ТПС используется научный аппарат этих дисциплин, при рассмотрении вопросов, связанных с остойчивостью, качкой, ходкостью, прочностью проектируемого судна. Но в отличие от названных дисциплин этот аппарат используется исходя из других позиций. Это обусловлено двумя важнейшими особенностями ТПС:
Во-первых, в ТПС решаются не прямые задачи, а обратные. Например, если в теории корабля при известных размерениях судна следует определить параметры остойчивости, то в ТПС задача ставится следующим образом - найти такие размерения судна, которые бы обеспечили заданные параметры остойчивости.
Во-вторых, в отличие от остальных дисциплин, рассматривающих свойства судна по отдельности, вне связи друг с другом, для ТПС характерен комплексный подход к показателям проектируемого судна. Следует учитывать, как изменение того или иного показателя скажется на прочих характеристиках судна. Так увеличение длины L благоприятно сказывается на ходкости, но отрицательно отражается на прочности судна. По этой причине не все рекомендации ТПС, совпадают с аналогичными рекомендациями других дисциплин.
Стадии проектирования судна
Процесс проектирования судна, согласно ГОСТ 2.103, разделяется на несколько стадий. Как уже указывалось, непосредственному проектированию судна, т.е. решению внутренней задачи ТПС, должно предшествовать решение задачи внешней, которая начинается с определения оптимального состава.
Сам процесс разработки проекта судна начинается с заявки заказчика - владельца будущего судна, содержащей исходные основные технико-эксплуатационные требования к судну (ОТЭТ). В числе этих требований обычно указывается: назначение, условия эксплуатации, а также количество судов, необходимых заказчику. Эта заявка поступает в проектную организацию, которая на ее основе разрабатывает техническое задание на проектирование судна.
В техническом задании на основе изучения предполагаемого характера эксплуатации судна, обобщения и анализа опыта и тенденций мирового судостроения развиваются и уточняются данные ОТЭТ. Применительно к транспортным судам в техническом задании обычно указывают: тип и назначение судна; грузоподъемность (пассажировместимость) и характер перевозимого груза; скорость хода; тип энергетической установки; район и дальность плавания; автономность; ограничения главных размерений; класс Регистра; международные конвенции, требованиям которых должно удовлетворять судно; требования к общему расположению и обитаемости; численность и состав экипажа; специальные требования, относящиеся к мореходным качествам, устройствам, системам, средствам связи и навигации, степени автоматизации и т.п.
Одно из важных условий к содержанию технического задания является отсутствие противоречий между отдельными требованиями.
Техническое задание согласовывается с заказчиком, и после его утверждения передается проектно-конструкторским организациям для разработки на его основе технического предложения, которое, по сути, является сокращенным проектом судна. К основным задачам, решаемым на данной стадии, относятся следующие: проверка выполнимости и совместимости требований задания, предварительное определение основных элементов и общего расположения судна, проверка возможности комплектации судна необходимым оборудованием, определение проектной стоимости и экономической эффективности его эксплуатации, сопоставление проектируемого судна с существующими судами. В состав материалов данной стадии включаются, кроме пояснительной записки и расчетов, эскизы теоретического чертежа и общего расположения судна.
Как правило, техническое предложение разрабатывается в нескольких вариантах несколькими проектными организациями. В результате конкурса выбираются лучшие из них, которые являются основой для дальнейшей разработки проекта.
На основе этих вариантов, прошедших экспертизу, согласование и утверждение, разрабатывается эскизный проект, в котором уточняются характеристики полученные на предыдущей стадии путем более детальных расчетов и чертежей. На этом этапе разрабатывается конструктивный мидель-шпангоут, выполняются расчеты по прочности судна и определению элементов корпусных конструкций, разрабатываются положения по технологии и организации постройки судна, определяется стоимость головного и серийного судов.
Эскизный проект должен содержать принципиальные проектные и конструктивные решения по всем элементам судна и обоснование выбора оптимального варианта, для последующей разработки. Так же как и техническое предложение, эскизный проект проходит экспертизу, согласование и утверждение. На следующей стадии проектирования разрабатывается технический проект, в котором окончательно определяются все элементы суда и его технические и эксплуатационно-экономические характеристики. Как правило, элементы судна и его технические характеристики, принятые в эскизном проекте существенно не меняются. На данной стадии решаются в основном конструктивные и технологические вопросы по корпусу, энергетической установке, оборудованию и расположению помещений. Технический проект проходит через экспертизу, согласование, одобрение органами надзора (Регистр, техническая инспекция, комитет по экологи и пр.) и утверждение. На основе материалов технического проекта комплектуется документация для заключения договора на постройку судна.
На основе технического проекта разрабатывается рабочая конструкторско-технологическая документация, позволяющая организовать технологический процесс обработки и сборки конструктивных составляющих судна, монтаж его оборудования и всю последовательность постройки судна.
Проект |
Часть |
Этап |
Стадия |
||
разработка проекта |
проектная |
внешнее проектирование |
ОТЭТ |
||
техническое задание |
|||||
внутреннеепроектирование |
верхнийуровень |
техническое предложение |
|||
эскизный проект |
|||||
нижнийуровень |
технический проект |
||||
технологическая |
конструкторско-технологический |
конструкторско-технологическаядокументация |
|||
Пересчет элементов плавучести и остойчивости судна по прототипу
Определение ряда показателей мореходных качеств проектируемого судна путем пересчета с прототипа играет существенную роль в ТПС.
позволяет рассчитать эти показатели, минуя расчеты по теоретическому чертежу, то есть еще до его построения;
уменьшает трудоемкость, а следовательно продолжительность расчетов. Это дает возможность оценить мореходные качества судна, сравнить их c требуемыми по заданию на проектирование и отсечь заранее неприемлемые решения.
Структура формул пересчета позволяет установить характер влияния элементов на показатели мореходных качеств проектируемого судна.
В то же время точность этого метода уступает точности прямых расчетов по теоретическому чертежу, поэтому достоверные результаты могут быть получены только при использовании близкого прототипа.
Для получения удовлетворительных результатов расчета необходимо выполнение условия геометрического подобия формы корпуса прототипа и проектируемого судна. В первую очередь, условие подобия предполагает равенство коэффициентов полноты, то есть:
= 0; = 0; = 0,
где индексом "0" обозначены величины, относящиеся к прототипу.
Различают полное и частичное подобие. При полном подобии сопоставляемых судов должно выполняться условие
L/L0 = B/B0 = T/T0 = ,
где л - модуль подобия. При частичном (аффинном) подобии
L/L0 = l; B/B0 = b; T/T0 = t; l ? b ? t.
Пересчет элементов плавучести и начальной остойчивости может быть осуществлен по двум способам - на основе структуры физических формул между характеристиками и элементами судна и путем замены в формулах теории корабля элементов проектируемого судна элементами прототипа с переходными модулями. Например для водоизмещения
V = LBT = lL0 bB0 tT0 = lbt L0B0T0 = lbtV0
или по зависимости теории корабля
.
Момент инерции площади ВЛ Ix можно представить как часть момента инерции прямоугольника LB,
или по формулам теории корабля
.
При ненулевых углах крена при выводе формул пересчета необходимо учитывать изменение углов и длин отрезков в зависимости от изменения размерений проекта по отношению к прототипу.
Рассмотрим, как соотносятся углы крена прототипа и проектируемого судна. Пусть действующая ватерлиния прототипа описывается прямой А0В0, расположенной под углом И0 к оси y (см. рис. 1). Тогда,
.
При изменении масштаба по оси y в b раз, а по оси z в t раз, точки А0 и В0 перейдут в точки А и В, с координатами А (0; tzА0) и В (byВ0; tzВ0). Тогда,
.
Аналогично можно найти, как соотносятся длины отрезков прототипа и проекта. Пусть а0 = А0В0 - длина какого-то отрезка прототипа, расположенного под углом И0 к оси у (см. рис. 2). Проекция отрезка на эту ось,
А0С0 = а0Соs0.
При изменении масштаба вдоль оси у в b раз отрезок трансформируется в а = АВ, расположенный под углом И. При этом его проекция на ось у,
АС = b(А0С0) = b а0Соs0.
Изменение масштаба по оси z в t раз переместит точки А, В и С, соответственно в А, В и С. Отрезок а = АВ, расположенный под углом И к оси у будет связан с а0 следующими соотношениями:
АС = АС = b(А0С0) = b а0Соs0,
Откуда
.
При = 0 данное выражение совпадает с полученными ранее выражениями для L, В и T. Поперечный момент инерции проектируемого судна при 0 с учетом выражения полученного ранее для Ix.
,
а метацентрический радиус,
.
Для больших углов крена показателем остойчивости служит не метацентрическая высота, а плечо статической остойчивости lcт. Получим выражение для его определения. Из рис. 3 видно, что,
.
Из треугольника C0QP,
.
QR = FC1. Из треугольника C1FP,
.
Из треугольника C0GE,
.
Окончательно получим,
lст = уСosИ + zcSinИ - aSinИ.
С учетом масштабов длин, данное выражение можно переписать в виде,
lст = bуc0СosИ + tzc0SinИ - ta0SinИ.
Частными случаями полученной зависимости будут выражения:
при l 1, b = t = 1
И= И0 , с = с0, lcт = lcт0.
При l = b = t = l
И= И0 , с = l с0, lcт = l lcт0.
Таким образом, если известны значения плеч статической остойчивости прототипа, задача решается довольно просто.
При пересчете параметров непотопляемости, проектанта, в первую очередь, интересуют следующие параметры: приращение осадки носом DTн, приращение осадки носом DTк и угол дифферента y.
При условии при l 1, b = t = 1 и одинаковых относительных координатах поперечных переборок, длина (и объем) поврежденного отсека изменяется пропорционально l. Соответственно, масса влившейся в отсек воды Р = lP0, а координата ЦТ отсека х = lx0.
Рис. 4. Соотношение затопленных отсеков подобных судов
Тогда:
,
.
Аналогично DTк = DTк0.
Таким образом, при изменении длины судна, аварийная осадка не меняется, а дифферент уменьшается пропорционально l.
При b 1, l = t = 1 получаем DTн = DTн0,--DTк = DTк0, y = y0.
При t 1, l = b = 1 получаем DTн = t DTн0,--DTк = t DTк0, y = ty0.
Показателем общей прочности являются максимальные нормальные напряжения возникающие в продольных связях корпуса под действием изгибающего момента Мизг.
,
где W - момент сопротивления корпуса.
,
где I - момент инерции площади эквивалентного бруса относительно нейтральной оси, а - численный коэффициент, Н - высота борта. Поскольку момент инерции равен площади поперечного сечения корпуса S, умноженный на квадрат радиуса инерции r, зависящего от высоты борта, то
.
Изгибающий момент возникает под воздействием сил, пропорциональных объему погруженной части корпуса, приложенном на плече, зависящим от длины корпуса. Следовательно
.
Тогда:
.
Таким образом, напряжения, возникающие в связях корпуса, пропорциональны длине и обратно пропорциональны высоте, а поскольку степень при модуле длины равняется двойке, увеличение длины судна приводит к интенсивному росту массы корпуса.
Относительно модуля t следует отметить, что полученная зависимость справедлива при условии Т = tT0 и H = tH0. Если изменяется только высота борта при неизменной осадке (Т = T0, H = tH0), то
.
В обратном случае (Т = tT0, H = H0) получим
.
При независимом изменении осадки и высоты борта (Т = tT0, H = hH0)
.
Нагрузка судна. Виды водоизмещения
Согласно ОСТ 5.0206-76 нагрузка судна делится на 17 разделов.
01 - Корпус, включающий массы корпусных конструкций, надстроек, рубок, дельных вещей, окраски, изоляции и оборудования помещений.
02 - Устройства судовые, включая средства активного управления.
03 - Системы, к которым относятся трубопроводы, арматура, механизмы и приводы управления насосов, кондиционеров и холодильных машин.
04 - Энергетическая установка - главные и вспомогательные механизмы.
05 - Электроэнергетическая система, внутрисудовая связь и управление. Источники электроэнергии, кабельные трассы, телефонная связь, машинные и рулевые телеграфы, аппаратура радиотрансляции, авторулевые.
07 - Вооружение (штурманское). Навигационное оборудование такое как: средства радиосвязи, гидролокации и радиолокации, компасы, лаги и т.п., а также вертолеты, если они есть на судне.
09 - Запасные части, к механизмам, устройствам, системам и пр.
10 - Постоянный балласт, твердый или жидкий, постоянно присутствующий на судне.
11 - Запас водоизмещения, остойчивости. Фиктивная масса, вводимая в нагрузку, во избежание возможной перегрузки, вследствие ошибок в расчетах.
12 -Постоянные жидкие грузы. Неудалимые остатки жидкостей в трубопроводах и цистернах, а также заправочные жидкости в механизмах.
13 - Снабжение, имущество. Шкиперское, спасательное, медицинское и пр.
14 - Экипаж, провизия, вода, расходные материалы и среды. Помимо собственно масс экипажа с багажом, провизии и пресной воды сюда относят запасы песка, цемента, красок и т.п., а также топливо для катеров и вертолетов.
15 - Груз перевозимый, состоящий из коммерческого груза и массы пассажиров с багажом, запасами пресной вводы и провизии для них.
16 - Запасы топлива, масла, воды, необходимые для работы энергетической и электроэнергетической установок.
17 - Переменные жидкие грузы. Вода в цистернах успокоителей качки, в плавательных бассейнах, в цистернах сбора загрязненных вод и т.д.
18 - Жидкий балласт, принимаемый для регулирования посадки и остойчивости.
19 - Грузы, снабжение, запасы дополнительные, принимаемые в перегруз.
В свою очередь каждый раздел делится на группы. Например, 01 раздел:
0101 - Корпус металлический.
0102 - Подкрепления и фундаменты.
0103 - Дельные вещи.
0104 - Неметаллические части корпуса.
0105 - Покрытия, окраска.
0106 - Изоляция, зашивка.
0107 - Воздух в корпусе.
0108 - Оборудование помещений, постов.
Группы делятся на подгруппы. Например, группа 0101:
010101 - Обшивка наружная, настил второго дна.
010102 - Палубы и платформы корпуса.
010103 - Переборки корпуса (включая шахты и выгородки).
010104 - Надстройки, рубки, мачты.
010105 - Конструкции специальные.
010106 - Выступающие части.
Наконец, подгруппы делятся на статьи. Например для 010101:
01010101 - Обшивка наружная.
01010102 - Настил второго дна.
01010103 - Набор продольный, междудонный.
01010104 - Набор поперечный, междудонный.
01010105 - Набор бортов продольный.
01010106 - Набор бортов поперечный.
01010107 - Набор продольный в оконечностях.
01010108 - Набор поперечный в оконечностях.
01010109 - Бульбовые и корпусные обтекатели.
01010110 - Штевни, кронштейны, мортиры, клюзы и т.п.
01010111 - Пилоны воздушных винтов, стабилизаторы.
01010112 - Металлические части привальных брусьев.
01010113 - Кингстонные и ледовые ящики, патрубки.
01010114 - Скуловые кили.
Характерный состав нагрузки некоторых судов приведен в табл. 3.
Состав нагрузки различных судов таблица 3
Назначение судна |
Разделы нагрузки, (% от D) |
|
|||||||
01 |
02 |
03 |
04 |
05 |
|||||
Группы, (% от Р01) |
|
||||||||
0101 |
0101 - 0107 |
0108 |
|
||||||
Пассажирское |
? 40 |
? 67 |
? 97 |
? 3 |
? 3,5 |
? 2,5 |
? 8,5 |
? 2,5 |
|
Универсальное сухогрузное |
20 - 22 |
77 - 90 |
95 - 98 |
2 - 5 |
2,2 - 2,4 |
0,7 - 1,7 |
3,0 - 7,0 |
0,6 - 3,0 |
|
Лесовоз |
23 - 25 |
2,7 - 2,8 |
0,9 - 0,9 |
2,9 - 3,8 |
1,3 - 1,5 |
||||
Контейнеровоз |
? 27 |
? 3 |
? 1 |
? 4,5 |
? 1,2 |
||||
Навалочное |
17 - 26 |
0,7 - 1,1 |
0,5 - 0,7 |
1,4 - 1,9 |
? 0,3 |
||||
Нефтеналивное |
12 - 24 |
97 - 98 |
98 - 99 |
1 - 2 |
0,7 - 1,2 |
0,7 - 2,0 |
0,9 - 4,0 |
0,1 - 0,6 |
|
Промысловое |
34 - 47 |
3,4 - 12,4 |
0,8 - 2,5 |
4,7 - 11,1 |
1,2 - 2,1 |
||||
Буксир |
39 - 54 |
6,4 - 8,8 |
1,6 - 3,8 |
10,9 - 24,7 |
1,1 - 5,3 |
||||
Назначение судна |
Разделы нагрузки, (% от D) |
||||||||
|
10 |
11 |
12 |
14 |
16 |
прочие разделы |
15 (зг) |
зDW |
|
Пассажирское |
? 2 |
? 2,5 |
? 1,0 |
? 10 |
? 0,6 |
? 25 |
? 33 |
||
Универсальное сухогрузное |
? 2,5 |
0,3 - 1,8 |
0,2 - 1,0 |
0,1 - 2,8 |
2,6 - 13,0 |
0,02 - 0,3 |
45 - 61 |
50 - 73 |
|
Лесовоз |
- |
0,9 - 1,4 |
0,7 - 0,9 |
0,2 - 0,8 |
6,0 - 8,0 |
0,05 - 0,15 |
57 - 60 |
65 - 68 |
|
Контейнеровоз |
до 15 |
? 0,5 |
? 0,9 |
? 0,2 |
? 6,5 |
? 0,2 |
? 55 |
? 62 |
|
Навалочное |
до 15 |
0,4 - 1,2 |
0,2 - 0,3 |
0,1 - 0,8 |
7,0 - 10,0 |
0,02 - 0,11 |
60 - 70 |
67 - 79 |
|
Нефтеналивное |
до 15 |
0,3 - 1,0 |
0,4 - 0,7 |
0,1 - 0,8 |
4,0 - 9,0 |
0,02 - 0,10 |
55 - 80 |
60 - 84 |
|
Промысловое |
- |
1,7 - 2,9 |
0,6 - 1,3 |
2,9 - 5,8 |
6,0 - 16,5 |
0,21 - 4,21 |
10 - 29 |
20 - 47 |
|
Буксир |
- |
1,6 - 4,0 |
0,9 - 1,2 |
1,3 - 4,0 |
9,0 - 26,5 |
0,81 - 2,71 |
0,00 |
11 - 30 |
|
Сумма разделов с 01 по 13 составляют водоизмещение порожнем (Dпор), сумма разделов с 14 по 18 - дедвейт (DW). Водоизмещение порожнем и дедвейт составляют полное водоизмещение (D). 19 раздел учитывается только для тех судов, которые не подпадают под соглашение о грузовой марке и для которых не регламентируется минимальная высота надводного борта.
Стандартный подход к делению нагрузки неудобен в проектных расчетах, поскольку удельное значение разделов отличается довольно сильно. Например, 01 раздел занимает 12 - 54 % от D, разделы 02, 03, 05 - от 1 до 10 %, а разделы 07, 09, 13 - десятые и сотые доли процентов. Для предварительных расчетов применяется проектная разбивка масс по разделам, отличающаяся меньшим количеством составляющих.
При подобном подходе нагрузка делится на 8 разделов:
Корпус Рк = Р01+Р10.
Оборудование, Ро = Р02+Р03+Р05+Р07+Р09+Р13.
Балласт Рб = Р12+Р17+Р18.
Механизмы, Рм = Р04.
Топливо, Рт = Р16.
Запас водоизмещения, Рзв = Р11.
Экипаж, Рэ = Р14.
Груз Рг = Р15.
Определение массы корпуса
01 раздел - самый "тяжелый" в нагрузке порожнего судна. Массу этого раздела можно определить одним из четырех способов:
В способах первой группы используются наиболее простые, а поэтому и наименее точные формулы вида,
Рк = рк D или Рк = qк LBH,
где D, LBH - модули, а рк, qк - измерители, определяемые по прототипу, отнесенные к соответствующим модулям.
Формулы второй группы учитывают такие особенности, как: тип судна, высота надводного борта, количество палуб, развитость надстроек и т.п. Результаты расчета по формулам второй группы оказываются более достоверными, чем в первом случае. Типовая формула второй группы для массы голого корпуса (суммы групп с 0101 по 0107)
,
где А1 = 1 - для судов с минимальным надводным бортом и 0,96 - для судов с избыточным надводным бортом. А2 = 1 - для однопалубных судов, 1,06 - для двухпалубных судов, 1,12 - для трехпалубных судов. А3 = 1 - для судов длиной более 70 м, для судов меньшей длины А3 = 2,9 : L0,25. Приведенная высота борта Н, определяется по формуле
,
где hн и lн - соответственно высота и длина надстроек.
Формулы третьей группы выведены исходя из требований, предъявляемых к прочности судна. Выполнение этих требований обеспечивается, в первую очередь, продольными связями, входящими в эквивалентный брус. Следовательно, строго говоря, по формулам третьей группы, можно определить массу именно этих связей, но поскольку их масса составляет 80 - 90 % массы стали в составе корпуса, то формулы распространяются на все остальные связи, что приводит к незначительной погрешности, допустимой на начальных этапах проектирования.
Масса связей, участвующих в продольном изгибе, зависит от удельной массы стали с, площади поперечного сечения эквивалентного бруса F и длины судна L.
Рпс = с L сF,
где с - коэффициент уменьшения площади сечения эквивалентного бруса по длине судна.
Площадь поперечного сечения влияет на момент сопротивления эквивалентного бруса
W = з H F,
где з - коэффициент утилизации площади сечения эквивалентного бруса. В то же время минимальный момент сопротивления равен отношению изгибающего момента к допустимым напряжениям в связях корпуса
.
Изгибающий момент при постановке судна на волну
,
где k - коэффициент изгибающего момента.
Тогда:
,
.
По статистике, коэффициент с ? д1/3, а з ? 0,05L1/2. Тогда
,
где - измеритель массы продольных связей корпуса.
Учитывая, что Рпс = (0,8 - 0,9) Р01, можно определить массу всего раздела.
Способы четвертой группы основаны на постатейном пересчете масс отдельных конструкций. В этом случае общую массу корпуса разбивают на ряд составляющих (объединяя отдельные статьи, например, по функциональным признакам), для каждой из которых подбирают соответствующий модуль пересчета. Результаты, получаемые в результате расчета, по формулам четвертой групп наиболее точны, но в то же время трудоемкость расчетов гораздо больше, чем в предыдущих способах.
Разобьем массу раздела корпус на следующие составляющие:
Продольные связи
.
Поперечные переборки
где nпер - число переборок.
Местные конструкции (платформы, выгородки, шахты и т.п.)
Надстройки и рубки
,
где Wнр - объем надстроек и рубок.
Оборудование помещений
.
Прочие части раздела
.
Формулы первой группы используют для ориентировочных первоначальных расчетов. При сопоставлении вариантов технического предложения пользуются более точными формулами второй или третьей группы. Расчет массы корпуса выбранного варианта осуществляют по наиболее точным формулам четвертой группы.
Определение массы механизмов
При определении массы механизмов исходят из предположения, что данная масса зависит от мощности энергетической установки N (кВт).
Рм = рмN.
Измеритель рм принимает следующие значения: для СЭУ с малооборотными дизелями (МОД) - 0,09 - 0,11 т/кВт; для СЭУ со среднеоборотными дизелями (СОД) - 0,07 - 0,09 т/кВт. Более легкими являются паротурбинные СЭУ (ПТУ) - 0,06 - 0,08 т/кВт и газотурбинные (ГТУ) - 0,04 - 0,06 т/кВт. С увеличением мощности СЭУ значение рм снижается. Для установок с N до 2 МВт измеритель принимает максимальные значения, а при N > 10 МВт значение рм приближается к нижнему пределу.
Определение мощности на ранних стадиях весьма затруднительно. Используя данные прототипа можно применить формулу адмиралтейских коэфициентов.
,
где С - адмиралтейский коэффициент устанавливаемый по прототипу.
При перемещении СЭУ из середины судна в корму ее масса уменьшается на 5 - 6 % для МОД, на 7 - 8 % для СОД и на 9 - 12 % для ПТУ и ГТУ.
Обычно, уже на ранних стадиях определяется марка двигателя подлежащая к установке на судно, а, следовательно, и его масса Ргд. В этом случае величину Рм можно определить исходя из соотношения Рм и Ргд. Для МОД при n ? 100 об/мин Ргд = 50 - 55 %, при больших n Ргд = 40 - 45 %. Для СОД на долю дизель-редукторных агрегатов (ДРА) приходится приблизительно 40 % Рм, причем Ргд составляет 70 - 80 % массы ДРА. Для ГТУ Ргд составляет 25 - 50 % Рм. Для ПТУ масса главного турбозубчатого агрегата (ГТЗА) составляет 18 - 20 % Рм. Масса парогенераторов для ПТУ 24 - 27 %, паропроводов 3 - 4 % Рм. Масса трубопроводов для МОД и СОД - 15 - 20 %, для ПТУ и ГТУ - 11 - 12 % Рм. Масса вспомогательных механизмов для МОД и СОД - 16 - 20 %, для ПТУ и ГТУ - 3 - 5 % Рм. Масса гребных винтов и валопроводов для МОД и СОД - 6 - 8 %, для ПТУ и ГТУ - 16 - 18 % Рм.
Определение массы топлива
Общая масс а раздела 16 складывается из массы собственно топлива Ртп, массы питательной воды для котлов Рвд и массы смазочного масла Рмс.
Ртп зависит от удельного расхода q, мощности N и времени работы t главных и вспомогательных механизмов.
Ртп = kм У(qi Ni ti)гл/всп,
где kм = 1,10 - 1,20 - коэффициент морского запаса. Поскольку на начальных стадиях проектирования неизвестен состав СЭУ, а следовательно неизвестны ни мощность, ни удельный расход, ни время работы вспомогательных механизмов, то расчет осуществляют введением в формулу коэффициента внутреннего потребления kв = 1,03 - 1,06 для СОД, МОД, ГТУ и 1,08 - 1,12 для ПТУ.
Таким образом
Ртп = kм kв q N t,
где q [т/кВт час] = (0,12 - 0,17)•10-3 - для ПТУ и ГТУ, (0,15 - 0,20)•10-3 - для СОД и МОД.
Масса питательной воды Рвд определяется из расчета пополнения утечек воды и пара и периодической смены грязной воды в котлах.
Рвд = kма1Пк tк + а2Пк + а3NПТУ,
где а1 = 0,06 - 0,08 - коэффициент утечек, а2 ? 2 - коэффициент смены воды, а3 = (3,0 - 3,5)•10-3 [т/кВт] - коэффициент смены воды в паропроизводительном котле турбины (только для ПТУ), tк и Пк - время работы и паропроизводительность вспомогательных и утилизационных котлов определяемая по прототипу пропорционально D.
Рмс зависит от типа СЭУ, мощности, продолжительности работы, утечек, угара, смены загрязненного масла и т.п. При детальном расчете определяется для каждого механизма в отдельности.
Обычно массы Рвд и Рмс определяют как надбавку к массе топлива, которая в среднем составляет kт = 6 - 12 % Ртп.
Ходовое время можно t выразить как отношение дальности плавания к экономической скорости хода. Таким образом
Рт = Р16 = q kм kв kт N R /хs эк.
Определение массы оборудования
Массу оборудования судна, при наличии близкого прототипа, можно определить, используя простейшие формулы, аналогичные формулам первой группы для корпуса.
или
Если по заданию на проектирование требуется введение новых элементов оборудования (например, подруливающих устройств, авиатехники и т.п.), то необходимо исправить нагрузку прототипа, введя туда соответствующие статьи за счет других разделов, определить новые значения измерителей и использовать их значения в расчетах по проекту.
Определение массы балласта
Массу балласта определяют исходя из требований к посадке и остойчивости судна прямым расчетом на поздних стадиях проектирования. Для предварительных расчетов пользуются данными подходящего прототипа, считая Рб пропорциональной водоизмещению судна.
Определение массы экипажа
Значение 14 раздела зависит от количества экипажа (nэ) и автономности и складывается из трех слагаемых: массы непосредственно людей с багажом, массы провизии и массы пресной воды.
Рэ = Рлб + Рпр + Рв,
где
Рлб = рэ nэ,
Рпр = kм nэ Апр рпр,
Рв = kм nэ Ав рв.
Таким образом
Рэ = рэ nэ + kм nэ (Ав рв + Апр рпр),
где kм - коэффициент морского запаса, Апр - автономность по запасам провизии, Ав - автономность по запасам пресной воды, которая принимается равной 5 суткам, в случае наличия на судне опреснительной установки. В противном случае Ав = Апр. Измеритель массы экипажа рэ = 100 - 200 кг/чел, провизии рпр = 3 - 5 кг/чел•сут, воды рпр = 100 - 300 кг/чел•сут.
Обеспечение запаса водоизмещения и остойчивости
При выполнении расчетов нагрузки вследствие приблизительного характера формул неизбежны неточности. Кроме этого в процессе постройки в нагрузку могут быть введены новые элементы. Возможны и отступления от номинальных толщин листов, размеров местных конструкций и т.п. Все это может привести к увеличению водоизмещения по сравнению с его расчетным значением. Чтобы избежать перегрузки судна в нагрузку вводится фиктивная масса запаса водоизмещения.
Величина этой массы зависит от стадии проектирования, размеров судна, наличия близкого прототипа. Определяется в долях от водоизмещения.
Рз = Р11 = рз D
На стадии технического предложения принимается рз = 2,0 - 3,0 %, на стадии эскизного проекта - рз = 1,5 - 2,0 %, на стадии технического проекта - рз = 1,0 - 1,5 %.
Отмеченная выше перегрузка относится, как правило, к высокорасположенным частям судна, что приводит к повышению ЦТ и, следовательно, к уменьшению h. Для избежания этого в проект вводится запас остойчивости Этот запас достигается путем искусственного повышения расчетного ЦТ на величину zg = h. Таким образом, в дальнейших расчетах
zg = zg +zg.
Подъем ЦТ может быть достигнут путем надлежащего размещения массы запаса водоизмещения по высоте. При наличии близкого прототипа zg = 10 - 25 см, при его отсутствии zg = 20 - 35 см.
Координата zз может быть найдена из уравнения статических моментов
Dzg = (D - Рз) zg +Pз zз.
Тогда
zз = zg + zg / рз.
Вычисленная по этой формуле величина zз обычно близка к высоте борта. Поэтому считается, что масса запаса водоизмещения принимается на палубу. Положение ЦТ запаса водоизмещения по длине судна совмещают с положением с ЦТ водоизмещения порожнем.
.
Два выражения, полученные для dP, отличаются на величину
,
которая характеризует абсолютную погрешность метода. Относительная погрешность е/Р0 будет зависеть от соотношения dХ/Х и степени n и при различных значениях этих показателей будет иметь следующие значения.
При использовании дифференциальных уравнений считается, что погрешность не выходит из допустимых пределов, если изменения параметров проекта, по отношению к прототипу, не превосходит следующих значений: скорость хода - 4 - 5 %, главные размерения - 7 - 10 %, водоизмещение до 20 %.
dХ/Х |
Относительная погрешность е/Р0, % |
|||||
n = 3,0 |
n = 2,0 |
n = 1,0 |
n = 2/3 |
n = 0,5 |
||
0,05 0,10 0,20 |
0,75 3,0 12,0 |
0,25 1,0 4,0 |
0 0 0 |
0,03 0,11 0,45 |
0,03 0,12 0,50 |
|
Р = D - УРi(д, L, B, H, T, хs, r, a, b,…) = D - F,
где, как и прежде УРi = F - массы зависимые от размерений, коэффициентов полноты, скорости, дальности плавания и прочих независимых переменных, Р - независимые массы. Дифференцируя это уравнение, получим
dР = dD - dF,
и раскроем dD и dF как полные дифференциалы по всем независимым переменным, т.е. по д, L, B, H, T, хs, r, a, b, c….
выражение для dD будет выглядеть следующим образом:
.
Найдем частные производные.
.
Подобным же образом можно вывести, что , , . Тогда
.
Аналогично можно написать, что
Введем обозначение
,
то есть полный дифференциал функции F по всем переменным, исключая главные размерения и коэффициент полноты.
Окончательный вид уравнения масс в этом случае примет вид
.
Величины, стоящие в левой части уравнения, должны, очевидно, рассматриваться как заданные. Соответственно заранее необходимо определить полный дифференциал функции F по независимым переменным. Так же определяются и искомые частные производные по главным размерениям и коэффициенту полноты. Отношение водоизмещения к главным размерениям и коэффициенту полноты принимается по прототипу.
Для вычисления частных производных функции F надо найти частные производные каждого из разделов входящих в F по каждой из переменных д, L, B, H, T. Например, пусть какой-нибудь из разделов выражается зависимостью
Рi = pi дmLnBkHxTy,
в которой степени могут быть целыми или дробными, положительными или отрицательными.
Частная производная Рi по коэффициенту полноты
.
Величину этой частной производной можно вычислить по прототипу. Частная производная функции F определяется как сумма частных производных отдельных разделов.
.
Очевидно, что частные производные по другим переменным будут определяться подобным же образом.
Поскольку в полученном уравнении фигурируют пять неизвестных, то для решения уравнения необходимо задаться дополнительными зависимостями, для выражения одного элемента через другой. Это могут быть либо уравнения теории корабля, либо ограничения размерений, либо соотношение размерений прототипа. Последний способ выражения главных размерений является наиболее употребительным. В этом случае
,
откуда
.
Аналогично выражаются и прочие приращения главных размерений. Коэффициент общей полноты задают исходя из статистических зависимостей, или принимают по прототипу. В первом случае dд = д - д0, во втором dд = 0.
Дифференциальное уравнение масс Бубнова
От обобщенного дифференциального уравнения масс уравнение Бубнова отличается тем, что второе слагаемое левой части [dF]0 = 0. Для учета изменения скорости хода, дальности плавания, измерителей и прочих независимых переменных И.Г.Бубнов предложил пересчитывать элементы проектируемого судна не относительно элементов прототипа, а относительно элементов какого-то судна, имеющего главные размерения и коэффициенты полноты прототипа, но независимые переменные, соответствующие проектируемому судну. Поскольку такое сочетание у реально существующих судов найти практически невозможно, необходимо изменить нагрузку прототипа, таким образом, чтобы оказались выполненными элементы технического задания проекта. Поскольку после введения изменений нагрузка прототипа не будет соответствовать водоизмещению прототипа, его необходимо компенсировать за счет независимых масс.
Общая формула определения масс разделов исправленного прототипа
.
Изменение масс независимых разделов осуществляется прямым расчетом. Для компенсации получившегося расхождения между нагрузкой и водоизмещением необходимо изменить массу перевозимого прототипом груза.
Обобщенный коэффициент приращения водоизмещения
Для вывода уравнения будем рассматривать приращение высоты борта как заданную величину. Преобразуем исходное уравнение dP = dD - d(УPi) к виду
,
где - полный дифференциал переменных масс по главным размерениям подводной части и коэффициенту полноты. Объедением приращение независимых масс и приращение масс разделов вызванное изменением независимых переменных.
.
Тогда обобщенное дифференциальное уравнение можно записать в виде
.
Если вести обозначение
,
где , то обобщенное уравнение можно записать, относительно неизвестного dD, в виде
dD = зД.
Зная численное значение коэффициента з можно определить приращение водоизмещения, соответствующее заданному приращению масс Д. Но для этого необходимо исключить из уравнения неизвестные приращения элементов. Предположим, что заданное приращение Д компенсируется за счет приращение только какого-то одного элемента. Пусть dL = dB = dT = 0, dд ? 0.
Тогда
.
Можно составить такие же выражения применительно к другим элементам судна. Аналогично формуле для обобщенного коэффициента запишем формулы для частных случаев
для dL = dB = dT = 0, dд ? 0.
для dд = dB = dT = 0, dL ? 0.
для dд = dL = dT = 0, dB ? 0.
для dд = dL = dB = 0, dT ? 0.
Полученные коэффициенты зд, зL, зB, зT могут рассматриваться как частные коэффициенты приращения водоизмещения по соответствующим элементам. Для определения приращения водоизмещения в каждом из случаев, по аналогии с общей формулой, можно записать
,
,
,
.
Частные коэффициенты приращения водоизмещения могут быть вычислены для каждого конкретного судна, если известны его элементы и нагрузка.
С точки зрения экономии масс выгоднее всего увеличивать водоизмещение проектируемого судна за счет тех элементов, которым соответствуют минимальным значениям коэффициентов зi. Минимальное водоизмещение будет у того судна, у которого зд = зL = зB = зT. Однако, это практически неосуществимо, поскольку кроме соотношения нагрузок по отдельным разделам, приходится учитывать требования к остойчивости, ходкости, вместимости и пр. Поэтому приходиться говорить не о минимальном, а о минимально возможном водоизмещении судна.
Независимое приращение масс Д - есть сумма частных приращений.
Д = Дд + ДL + ДB + ДT.
Разделив полученное выражение на D, получим, после подстановки значений Дi, следующую формулу
.
Из выражения dD = зД получим формулу для определения з.
.
Или
.
Пользуясь этой формулой, легко определить значение коэффициента з для любых частных случаев.
Если алгебраическое уравнение масс, выраженное в функции водоизмещения привести к виду
Р = D - УPi(D, хs, r, a, b,…),
в котором, как и раньше а, b - какие-то независимые переменные, то при дифференцировании, с учетом выведенных ранее формул, получим
,
где, как и раньше
.
Тогда искомое приращение водоизмещения
.
где - коэффициент Нормана, являющийся частным случаем обобщенного коэффициента приращения водоизмещения. Нахождение коэффициента Нормана, при наличии подходящего прототипа, не вызывает затруднений.
Связь коэффициентов зн и зг
Коэффициенты зн и зг можно рассматривать как величины, характеризующие нагрузку судна. Преобразуем алгебраическое уравнение масс. Если исключить из рассмотрения массу экипажа, то независимые массы будут представлены только массой перевозимого груза, которую можно выразить через соответствующий коэффициент утилизации водоизмещения.
D = УPi(D) + P = УPi(D) + Pг = УPi(D) + згD.
Из полученной зависимости следует, что
.
Найдем частную производную переменных масс по водоизмещению.
.
Тогда коэффициент Нормана
.
После приведения подобных получим,
.
В полученной формуле четко прослеживается влияние зг на зн. Если же предположить, что степень при D в зависимостях для масс всех разделов равна единице, то выражение упрощается до вида
.
Эта простая зависимость будет давать несколько преувеличенное значение зн при том же значении зг.
Наименованиепомещения |
№№ шп. |
Объем, м3 |
Координаты ЦТ, м |
|||||
Wт |
Wс |
Wшт |
х |
у |
z |
|||
Трюм № 1…Твиндек № 3…Баковый твиндек… |
16 - 42…121 - 133…16 - 42… |
528…1375…311… |
518…1350…305… |
413…1149…243… |
62,7…- 29,2…61,9… |
0…0…0… |
5,1…8,9…10,3… |
|
Наименованиепомещения |
№№ шпангоутов |
Теоретический объем, м3 |
Коэффициент заполнения, kж |
Объем нетто, м3 |
Вместимость,т |
Координаты ЦТ, м |
|||
х |
у |
z |
! | Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать. |