Прямое толкование термина "корреляция" — стохастическая, вероятная, возможная связь между двумя (парная) или несколькими (множественная) случайными величинами.
Выше говорилось о том, что если для двух случайных величин X и Y имеет место равенство P(X ÇY) = P(X)·P(Y), то эти величины считаются независимыми. Ну, а если это не так!?
Ведь всегда важно знать: насколько зависит одна СВ от другой? Дело не только в присущем людям стремлении анализировать что-либо обязательно в числовом измерении. Уже понятно, что прикладная статистика требует непрерывных вычислений, что использование компьютера вынуждает нас работать с числами, а не с понятиями.
Для числовой оценки взаимосвязи между двумя СВ: Y – с известными M(Y) и sy
и X – с M(X) и sx принято использовать так называемый коэффициент корреляции
. {3–1}
Обратим внимание на способ вычисления коэффициента корреляции. В числителе находится математическое ожидание произведения отклонений величин X и Y от собственных математических ожиданий.
Этот коэффициент может принимать значения от –1 до +1 — в зависимости от тесноты и характера связи между данными СВ.
Если коэффициент корреляции равен нулю, то X и Y называют некоррелированными. Считать их независимыми обычно нет оснований — оказывается, что существуют такие, как правило — нелинейные связи величин, при которых коэффициент корреляции равен нулю, хотя величины зависят друг от друга.
Обратное всегда верно — если величины независимы, то R(XY) = 0. Но, если модуль R(XY) равен 1, то есть все основания предполагать наличие линейной связи между Y и X. Именно поэтому часто говорят о линейной корреляции при использовании такого способа оценки связи между СВ.
Если у нас имеется ряд наблюдений за двумя случайными величинами, то можно оценить выборочное значение коэффициента корреляции –
{3–2}
Оценку корреляционной связи двух СВ можно производить и без учета их дисперсий.
Числитель коэффициента корреляции
. {3–3}
называют ковариацией случайных величин, которая также служит мерой связи, но без непосредственного учета дисперсий.
Различие между такими двумя показателями парной связи СВ достаточно существенное.
· Коэффициент корреляции определяет степень, тесноту линейной связи между величинами и является безразмерной величиной.
· Ковариация двух СВ определяет эту связь безотносительно к ее виду и является величиной размерной.