dU = TdS – pdV Эти выражения получились как преобразования
dН = TdS – Vdp фундаментального уравнения Гиббса к другим
dA = –SdT – pdV переменным, но содержат эквивалентную ему
dG = Vdp –SdT информацию.
В этих выражениях термодинамические параметры получили свое определение, независимое от эмпирической основы. Производные от характеристических функций по экстенсивным параметрам дают интенсивные характеристики системы и, наоборот, производные по интенсивным переменным приводят к экстенсивным параметрам. В фундаментальном уравнении Гиббса естественными параметрами служат экстенсивные величины - энтропия и объем. Это очень неудобно для практических целей, так как нет способа поддерживать постоянную энтропию в ТДС. В то же время интенсивные параметры легко контролировать в различных процессах, поскольку они выравниваются автоматически в состоянии равновесия. Поэтому наиболее важной функцией для химиков является энергия Гиббса, для которой определяющими параметрами служат температура и давление. При постоянстве этих параметров проходит большинство химических процессов. Поэтому остановимся более подробно на анализе этой функции.