,где = 1,29Вт/мК- 2-ая константа Вина.
Положения и отмечены на рис.1
а) Формула Релея-Джинса.
Основная проблема, с которой столкнулись в конце 19-го начале 20-го физики, изучавшие тепловое излучение, состояла в отсутствии теоретической модели, позволяющей рассчитать спектральную кривую , хотя бы приблизительно совпадающей с экспериментальной.
Классические термодинамика и электродинамика объясняли возникновение теплового излучения, но не позволяли предсказать его спектр.
В 1887 году Михельсон, представив нагретое тело как совокупность элементарных излучателей, интенсивность которых пропорциональна квадрату частоты, получил функцию, которая в общих чертах описывала вид зависимости, однако не совпадала с экспериментальной кривой.
Применив методы интерполяции, Вин получил формулу, дающую хорошее совпадение с экспериментом, но только в области коротких волн (больших частот).
Релей и Джинс сделали попытку определить равновесную плотность излучения , исходя из теоремы классической статистики о равнораспределении энергии по степеням свободы. Они предположили, что на каждое электромагнитное колебание приходится в среднем kT энергии, половина из которой приходилась на электрическую составляющую волны, вторая – на магнитную.
С учетом поляризации стоячих волн, образующихся в полости, они получили, что спектральная плотность равновесного теплового излучения равна:
,
где с- скорость света в вакууме, k – постоянная Больцмана..
Откуда, учитывая связь между спектральной плотностью и излучательной способностью, следовало, что:
. - формула Релея- Джинса.
Рис.2
Зависимость от длины волны для абсолютно черного тела.
Пунктир – кривая, построенная по формуле Релея- Джинса.
Однако, эта формула давала хорошее совпадение с экспериментом только в области длинных волн ( малых частот) и расходилась с ним в области коротких волн (больших частот).
Кроме того, при интегрировании выражения, определяющегопо частоте от 0
до , равновесная плотность излучения принимает значение равное . Этот результат называют ультрафиолетовой катастрофой и он находится в противоречии с опытом.
С классической точки зрения вывод формулы Релея-Джинса был безупречен. Поэтому, можно считать, что расхождение ее результатов с экспериментом, указывает на существование каких-то закономерностей, которые не могут быть учтены в рамках классической теории.
б) Формула Планка.
В 1900 году немецкий физик Макс Планк предположил, что элементарные осцилляторы, которыми являются молекулы (атомы) излучают энергию не непрерывно, как следовало из классической теории, а порциями, которые он назвал квантами или фотонами.
По Планку энергия каждого фотона определяется частотой электромагнитного излучения и равна:
, где , h=6,63Джс -постоянная Планка.
Согласно статистики Больцмана, вероятность того, что, совокупность идентичных осцилляторов, находящаяся в термодинамическом равновесии при температуре Т, в произвольный момент времени излучает энергию равна:
,
где - нормировочный множитель не зависящий от n.
Учитывая условие нормировки (вероятность того, что система в любой момент времени излучает энергию, будет равна единице), получим, что:
Следовательно:
.
Средняя энергия стоячей волны, образовавшейся в полости, будет равна:
.
Для упрощения вычислений обозначим , тогда:
.
Выражение, стоящее под логарифмом, есть сумма членов бесконечной геометрической прогрессии, у которой первое слагаемой равно единице и знаменатель равен .
Так как <1, то прогрессия будет убывающей и, следовательно,
Учитывая сказанное, среднее значение энергии одной стоячей волны будет равно:
,
или
Среднее число фотонов с частотой можно найти, разделив среднюю энергию волны на энергию одного фотона:
.
Равновесное излучение в полости является совокупностью стоячих волн, число которых, приходящихся на бесконечно малый интервал частот, согласно волновой теории, равно:
,
где V- объём полости, с- скорость света в вакууме.
Умножив среднюю энергию одной волны на число волн , найдем энергию этих волн в полости:
.
С другой стороны эта энергия равна:
,
где -спектральная плотность равновесного излучения.
Приравняв эти энергии, получим:
.
Учитывая, что излучательная способность абсолютно черного тела равна:
,
получим:
Мы получили формулу Планка, которая с хорошей точностью описывает зависимость излучательной способности абсолютно черного тела от частоты и температуры.
Первоначально новаторская гипотеза Планка рассматривалась современниками, как чисто математический приём для получения нужного результата. Но, по мере открытия новых эффектов ( фотоэффект, Комптоновское излучение и др.) и развития квантовой теории ( работы Шредингера, Эйнштейна и др.) понятие «квант» стало приобретать физический смысл. Фотоном называют квант электромагнитного излучения.
Пирометрией называют совокупность оптических (бесконтактных) методов измерения температуры. Приборы для измерения температуры сильно нагретых тел по их тепловому излучению в оптическом диапазоне спектра называют пирометрами.
Пирометры разделяются на три основные группы:
- радиационные пирометры,
- яркостные пирометры,
- цветовые пирометры.