Конспект лекций по предмету "Статистика"


Краткая история статистических методов

Типовые примеры раннего этапа применения статистических методов описаны в Библии, в Ветхом Завете. Там, в частности, приводится число воинов в различных племенах. С математической точки зрения дело сводилось к подсчёту числа попаданий значений наблюдаемых признаков в определённые градации.
Сразу после возникновения теории вероятностей (Паскаль, Ферма, XVII век) вероятностные модели стали использоваться при обработке статистических данных. Например, изучалась частота рождения мальчиков и девочек, было установлено отличие вероятности рождения мальчика от 0.5, анализировались причины того, что в парижских приютах эта вероятность не та, что в самом Париже, и т. д.
В 1794 г. (по другим данным — в 1795 г.) немецкий математик Карл Гаусс формализовал один из методов современной математической статистики — метод наименьших квадратов[7]. В XIX веке заметный вклад в развитие практической статистики внёс бельгиец Кетле, на основе анализа большого числа реальных данных показавший устойчивость относительных статистических показателей, таких, как доля самоубийств среди всех смертей[8].
Первая треть ХХ века прошла под знаком параметрической статистики. Изучались методы, основанные на анализе данных из параметрических семейств распределений, описываемых кривыми семейства Пирсона. Наиболее популярным было нормальное распределение. Для проверки гипотез использовались критерии Пирсона, Стьюдента, Фишера. Были предложены метод максимального правдоподобия, дисперсионный анализ, сформулированы основные идеи планирования эксперимента.
Разработанную в первой трети ХХ века теорию анализа данных называют параметрической статистикой, поскольку её основной объект изучения — это выборки из распределений, описываемых одним или небольшим числом параметров. Наиболее общим является семейство кривых Пирсона, задаваемых четырьмя параметрами. Как правило, нельзя указать каких-либо веских причин, по которым распределение результатов конкретных наблюдений должно входить в то или иное параметрическое семейство. Исключения хорошо известны: если вероятностная модель предусматривает суммирование независимых случайных величин, то сумму естественно описывать нормальным распределением; если же в модели рассматривается произведение таких величин, то итог, видимо, приближается логарифмически нормальным распределением и так далее.


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.