Реферат по предмету "Информатика"


Планирование машинного эксперимента с имитационной моделью системы массового обслуживания

Лабораторная работа №4
Планирование машинного эксперимента с имитационной моделью системы массового обслуживания
1. Цель работы
Целью работы является:
1. Изучение методов планирования машинного эксперимента с моделью системы.
2. Приобретение практических навыков по оценке коэффициентов модели заданной функциональной зависимости
3. Проведение имитационного эксперимента в соответствии с построенным планом
2.Теоретические сведения
2.1 Планирование эксперимента
Эффективность машинных экспериментов с имитационными моделями систем массового обслуживания существенно зависят от выбора плана эксперимента, так как план определяет объем и порядок проведения вычислений на ЭВМ, приемы накопления и статистической обработки результатов моделирования системы и в целом влияет на эффективность использования ЭВМ при моделировании.
Планирование эксперимента – это средство построения математических моделей различных процессов, способ сокращения времени и средств, повышение производительности труда исследователя.
Под планированием эксперимента понимается процедура выбора числа опытов и условий их проведения, необходимых для решения поставленной задачи с требуемой точностью. Результаты эксперимента представляются в виде математической модели, обладающей хорошими статистическими свойствами.
Такой моделью является абстрактная схема типа «черного ящика» вида:
Y=F(x), (1)
Где Y={y1,y2…ym} — множество выходных переменных, называемых реакциями или откликами ( эндогенные переменные)
X={x1,x2,…xn}- множество переменных называемых факторами(экзогенные переменные)
F — функция, связывающая реакцию с факторами, называемая функцией реакции или отклика.
При проведении машинного эксперимента с моделью для оценки характеристик процесса функционирования исследуемой системы необходимо создать также условия, которые способствовали бы выявлению факторов, влияющих на реакцию системы. Для этого необходимо, в первую очередь, установить область экспериментирования.
Локальная область эксперимента задается выбором комбинации основных уровней факторов xi( i= 1,n), их интервалами варьирования />/>xi( i= 1,n) и центром эксперимента хi0( i= 1,n). Затем следует описать функциональную зависимость, оценить необходимое число реализаций и их порядок в эксперименте.
При классическом методе планирования опыта варьируется один фактор, а при математическом планировании эксперимента одновременно изменяются все факторы.
Одной из задач математического планирования эксперимента является получение модели описывающей реакции получаемой системы на много факторные экзогенные переменные. Наиболее распространенными и полно отвечающими задачам статистического моделирования являются полиномиальные модели вида:
y= a+/>aixi+/>/>aijxixj+/>/>/>aijkxixjxk+…… ( 2)
Для оценки коэффициентов данного уравнения используется метод множественной регрессии, оснований на методе наименьших квадратов.
После выбора модели планирования следующей задачей является планирование и проведение эксперимента.
Для планирования эксперимента составляется матрица планирования, в которой отражаются условия изменения уровней факторов xi( i= 1,n).
Эксперимент, в котором реализуются все возможные сочетания уровней называется полным факторным экспериментом (ПФЭ). Количество всех возможных испытаний определяется по формуле:
N=qn(3 )
где q – число уровней изменения факторов.
n — число факторов
При q = 2 получается двухуровневый план эксперимента. Такой план называется планом N=2n.. Для получения данного плана необходимо все факторы варьировать на двух уровнях: нижнем xi0-∆xiи верхнем xi0+∆ xi, расположенных симметрично, относительно центра эксперимента. Для упрощения и унификации записи условий опытов и облегчения обработки данных используются кодированные значения: на нижнем уровне -1 и на верхнем уровне +1. Тогда условия эксперимента удобно представить в виде таблицы- матрицы планирования, в которой строки соответствуют различным опытам, а столбцы значениям факторов. Так, для трех факторов (n=3 ) матрица планирования примет вид (Таблица 1). При этом в таблице добавлены “фиктивные переменные” единичного столбца х0и столбцов произведений х1*х2, х1*х3, х2*х3 и х1*х2*х3, которые используются для оценки свободного члена а0и эффектов взаимодействия а12, а13, а23, а123.
Таблица 1
Матрица планирования
Номер опыта
Факторы


х0
х1
х2
х3
х1*х2
х1*х3
х2*х3
х1*х2*х3
1
2
3
4
5
6
7
8
+1
+1
+1
+1
+1
+1
+1
+1
-1
+1
-1--PAGE_BREAK--
+1
-1
+1
-1
+1
-1
-1
+1
+1
-1
-1
+1
+1
-1
-1
-1
-1
+1
+1
+1
+1
+1
-1
-1
+1
-1
-1
-1
+1
+1
-1
+1
-1
-1
+1
-1
+1
+1
+1
-1
-1
-1
-1
+1
+1
-1
+1
+1
-1
+1
-1
-1
+1
Как видно из таблицы, количество опытов равно N=23=8.
Рассматриваемый полный факторный эксперимент 2n обладает тремя основными свойствами:
Симметричность относительно центра эксперимента. Это значит, что алгебраическая сумма элементов вектор – столбца для каждого фактора равна 0, т.е.
/>ij=0 (4 )
где i – номер фактора (i=1,n);
j – номер опыта (j=1,N ).
2. Условием нормировки, т.е. сумма квадратов элементов каждого столбца равна числу опытов:
/>ij2= N (i=1,n) (5 )
3.Ортогональностью, это означает, что сумма почленных произведений любых двух вектор- столбцов матрицы равна 0, т.е.
/>ij *хkj=0 (i/>k; i, k=1,n) (6 )
Данные свойства, особенно условие ортогональности, позволяют значительно упростить определение коэффициентов уравнения множественной регрессии. В этом случае оценки коэффициентов регрессионной модели можно вычислить по формуле:
ai=/>ij*yj /N (i=0,n) (7 )
А коэффициенты парных взаимодействий соответственно по формуле:
aik=/>ij*xkj*yj/N (i/>k; i, k=1,n) (8)
Количество испытаний в ПФЭ значительно превосходит число определяемых коэффициентов линейной модели плана эксперимента, т.е. ПФЭ обладает большой избыточностью и поэтому возникает проблема сокращения числа опытов. В связи с этим используется дробный факторный эксперимент (ДФЭ), который представляет часть полного факторного эксперимента. Матрица планирования для дробного факторного эксперимента называется дробной репликой. Различают регулярные и нерегулярные дробные реплики.
Регулярные реплики образуются из ПФЭ 2n делением пополам, на четыре части, восемь частей ит.д., т.е. на число кратное 2. Они называются соответственно: полурепликой, четверть- репликой, /> — реплики и т.д… ДФЭ обозначается как 2n-k, где
k – кратность деления ПФЭ 2n на части 2k. Например, ДФЭ типа 4-2 означает, что ПФЭ из N=24=16 делится на 22=4 и получается план эксперимента, состоящий из N=24-2=4 опытов.
Если регулярные реплики умножить на нечетные числа, больше единицы, то получаются нерегулярные реплики. Как например, />реплики, />реплики, />реплики и т.д. являются нерегулярными.
Использование ДФЭ позволяет значительно сократить количество экспериментов и тем самым сэкономить ресурсы ЭВМ.
2.2 Пример планирования машинного эксперимента для модели СМО
Пусть необходимо провести машинный эксперимент по определению функциональной зависимости среднего времени ожидания заявки в очереди (/>ож) от факторов: интенсивность поступления заявок λ, интенсивности обслуживания μ и емкости буфера L для однофазной одноканальной системы массового обслуживания со следующими параметрами: интенсивность поступления заявок λ=15/>5/>; интенсивность обслуживания μ=10/>5/>; количество мест в очереди L=10/>2.
Для определения заданной зависимости представим математическую модель системы в виде:
y= a+a1x1+a2x2+a3x3, (9)
x1= λ; x2= μ; x3= L; y=/>ож    продолжение
--PAGE_BREAK--
Так как порядок модели n=3, то матрица планирования для полного факторного эксперимента примет вид (Таблица 2).
Таблица 2. Матрица планирования для модели СМО
Номер опыта
х
х1
х2
х3
y
1
+1
-1
-1
-1


2
+1
+1
-1
-1


3
+1
-1
+1
-1


4
+1
+1
+1
-1


5
+1
-1
-1
+1


6
+1
+1
-1
+1


7
+1
-1
+1
+1


8
+1
+1
+1
+1

При этом следует помнить, что кодированные значения факторов соответствуют -1 нижнему уровню фактора, а +1 верхнему уровню фактора:
для интенсивности поступления заявок λ нижний уровень равен λk=10/>, а верхний λb=20/>;
для интенсивности обслуживания μ нижний уровень равен μk=5/>, а верхний 15 μb/>;
для количества мест в очереди L нижний уровень Lk =8и верхний Lb=12
Поэтому при моделировании этих уровней факторов в блоке управления необходимо организовать их изменения. Это можно сделать путем введения нуля циклов. Тогда блок- схема управления вариантами моделирования примет вид (Рис1)
Рис1. Блок- схема управления вариантами моделирования
/>

/>

/>/>/>/>

/>

/>/>/>/>

/>

/>/>/>/>

/>

/>

/>

/>

/>

/>

/>/>/>/>/>

Для определения среднего времени ожидания />ож можно воспользоваться блок- схемой Рис лабораторной работы 3. Результаты моделирования заносятся в Таблицу 2 в колонку для y.
По Таблице 2 и формуле 7 определяются коэффициенты выбранной модели планирования эксперимента аi (i=0.3). Таким образом, зависимость среднего времени ожидания от интенсивности поступления заявок, интенсивности обслуживания и количества мест в очереди примет вид:
/>ож =…..λ+….μ+…L (10)
Содержание исследования
В состав исследования, проводимого в данной лабораторной работе, входит:
1. Анализ зависимости влияния экзогенных переменных модели однофазной одноканальной СМО на эндогенные переменные.
2. Построение плана машинного эксперимента на основе множественного регрессионного анализа и метода наименьших квадратов.
3.Моделирование системы массового обслуживания
В качестве объекта моделирования рассматривается однофазная одноканальная система, структура, которой показана на Рис 2:
/>μ
очередь
/>/>/>/>/>/>/>/>λ
/>/>/>

L    продолжение
--PAGE_BREAK--
Рис2Структура исследуемой системы
Параметры системы:
интенсивность поступления заявок λ=15/>5/>;
интенсивность обслуживания μ=10/>5/>;
длина очереди L=10/>2;
Варианты лабораторной работы приведены в таблице 3, в которой ПФЭ полный факторный эксперимент; ДФЭ – дробный факторный эксперимент; />ож — среднее время ожидания заявок в очереди; />сист — среднее время пребывания заявок в системе; /> — средняя длина очереди; Ротк – вероятность отказа; А – абсолютная пропускная способность системы; q — относительная пропускная способность системы; Кпр – коэффициент простоя системы.
Порядок выполнения работы
Ознакомится с методическими указаниями по выполнению данной лабораторной работы.
Получить у преподавателя вариант задания на составление плана машинного эксперимента для СМО
Составить матрицу планирования для проведения машинного эксперимента
Разработать блок- схему моделирующего алгоритма в соответствии с содержанием проводимого исследования
Составить программу на одном из языков программирования
Произвести отладку программы и решение поставленной задачи на ПЭВМ
Оформить отчет
Интерфейс программы
/>
Листингпрограммы
Private Sub Command1_Click()
Dim L As Integer
Dim Tobs As Currency
Dim Tosv As Currency
Dim Toch() As Currency
Dim Potk As Currency
Dim q As Currency
Dim a(8) As Currency
Dim Kpr As Currency
List1.Clear
List2.Clear
List2.AddItem («Коэффициенты:»)
For lyamda = 10 To 20 Step 10
For nyu = 5 To 15 Step 10
For L = 8 To 12 Step 4
ReDim Toch(L) As Currency
x = 0.5
k = 0
Kotk = 0
Noch = 0
Toj = 0
Tsis = 0
Kobs = 0
Tnezan = 0
Tpost = 0
Tosv = 0
10: x = Rnd(x)
T = -1 / lyamda * Log(x)
Tpost = Tpost + T
k = k + 1
If k > 50 Then
GoTo 100
End If
30: If Tpost
GoTo 20
Else
GoTo 40
End If
20: If Noch = L Then
Kotk = Kotk + 1
GoTo 10
Else
Noch = Noch + 1
Toch(Noch) = Tpost
GoTo 10
End If
40: If Noch = 0 Then
Kobs = Kobs + 1
Tnezan = Tpost — Tosv
x = Rnd(x)
Tobs = -1 / nyu * Log(x)
Tosv = Tpost + Tobs
Tsis = Tsis + Tobs
GoTo 10
Else
Voj = Tosv — Toch(1)
For i = 1 To Noch — 1
Toch(i) = Toch(i + 1)
Next i
Noch = Noch — 1
Toj = Toj + Voj
x = Rnd(x)
Tobs = -1 / nyu * Log(x)
Tsis = Tsis + Tobs + Voj
Tosv = Tosv + Tobs
Kobs = Kobs + 1
GoTo 30
End If
100: Kpr = Tnezan / Tsis
Potk = Kotk / k
q = 1 — Potk
Ab = q * L
j = j + 1
List1.AddItem (Str(j) + "-е испытание при:")
List1.AddItem («Лямбда=» + Str(lyamda) + " Нью=" + Str(nyu) + " L=" + Str(L))
List1.AddItem («Количество заявок в» + Str(j) + " испытании = " + Str(k) + " и потраченное время =" + Str(Tsis))
List1.AddItem («Вероятность отказа=» + Str(Potk))
List1.AddItem («Коэффициент простоя=» + Str(Kpr))
List1.AddItem («Относительная пропускная способность» + Str(q))
List1.AddItem («Обсолютная пропускная способность» + Str(Ab))
List1.AddItem ("")
List1.AddItem ("")
a(j) = (lyamda + nyu + L) * Toj
List2.AddItem («a(» + Str(j — 1) + ")=" + Str(a(j)))
Next L
Next nyu
Next lyamda
Label1.Caption = «Tож = » + Str(a(1)) + " + " + Str(a(2)) + «lymda» + " + " + Str(a(3)) + «nyu» + " + " + Str(a(4)) + «L»
End Sub


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Macbeth Character Sketch Essay Research Paper MacbethMacbeth
Реферат Кант, учение о целесообразности в органической природе
Реферат Коковцев, Савва Григорьевич
Реферат Совершение преступлений против жизни и здоровья при превышении пределов необходимой обороны
Реферат Криминологическая характеристика преступлений, совершенных против собственности
Реферат Dna Four Bases Essay Research Paper In
Реферат Chemist Essay Research Paper Becoming a chemist
Реферат Методичні рекомендації до семінарських занять з курсу Політологія
Реферат Администрация муниципального образования сиверское городское поселение гатчинского муниципального района ленинградской области
Реферат Статистические оценки критериев надежности РЭСИ
Реферат The Lottery Essay Research Paper Essay
Реферат Jerry Uselmann Essay Research Paper Jerry Uelsmann
Реферат Зарубежная Европа
Реферат Egyptian Afterlife Essay Research Paper Egyptian View
Реферат Расчёт водоснабжения посёлка и расчёт насосной установки