Министерство образования РФ
Тульский Институт Экономики и Информатики
Кафедра информационных технологий
Контрольная работа
По дисциплине «Теория систем и системный анализ»
По теме «Моделирование линейных систем»
Выполнил: студентка 1-го курса
Специальности ПИвЭ05
Андрианова К.Г.
Проверил:
Токарев В.Л.
Тула 2006
Введение
Целью системного анализа является моделирование системы.
Существуют два способа моделирование системы:
-аналитический;
-имитационный.
Аналитический способ применяется тогда, когда закономерности процессов, протекающих в системе, известны.
Имитационный способ применяется тогда, когда такие закономерности не известны, но в процессе функционирования системы, может быть накоплена выборка данных, содержащих информацию о поведении системы.
В контрольной работе решается задача построения имитационной модели статической линейной системы, имеющей три входа и один выход. Предполагается, что на систему действуют случайные возмущения, результатом которых являются случайные составляющие с нормальным разделением.
Построение математической модели системы
В контрольной работе решается задача построения имитационной модели статической решеткой системы, имеющей 3 входа и 1 выход.
Предполагается, что на систему действует случайное вращение, результатом которого является случайное составление с нормальным распределением.
Формирование матриц Х и Yпо исходным данным (обучающая выборка – первые 20 строк матрицы):
/>/>
Найдем вектор исходных параметров:
1) Транспонируем матрицу Х.
/>
2)
/>/>
3)
/>
Получаем вектор исходных параметров:
/> />
Сформируем матрицы X1 и Y1, полученные из контрольной выборки (следующие 20 чисел):
/>/>
Для оценки случайности значений временного ряда ошибки необходимо сформировать матрицу Е по контрольной выборке.
Для того, чтобы сформировать матрицу Е нужно:
— найти скалярную величину У2(матрицу Х1 умножить на вектор случайных параметров Р) />
/>
— найдем саму матрицу по формуле: />
Получим:
/>
Сравним значения в матрице Е (значение сравнивается с предыдущим):
/>
Длина серий получилась равно двум (/>).
Число серий получилось равное двенадцати(/>).
По формуле должно быть: n> n1 и τ
Найдем n1 по формуле:
/>
Найдем τ1 по формуле:
/>
Получаем: 15 > 9.476 и 2
Следовательно: n> n1 и τ
Гипотеза об адекватности не отвергается.
Для оценки взаимной зависимости значений ременного ряда, необходимо найти d. Чтобы его найти нужно выполнить следующие действия:
— сформировать матрицы Е1 и Е2
Для того, чтобы получить матрицу Е1 нужно скопировать значения из матрицы Е с 1 по 19; для получения матрицы Е2 мы скопируем значения из матрицы Е, начиная с 0 и заканчивая 18 значением, при этом получим:
/>
Затем по формуле найдем матрицу Е3:
/>
Теперь транспонируем Е3, получим:
/>
Транспонируем матрицу Е, получим:
/>
Затем по формулам находим d:
/>--PAGE_BREAK--
/>
d=0..2, этом говорит о том, что имеется отрицательная взаимозависимость между ошибками. Гипотеза об адекватности модели не отвергается.
Проверка распределения случайной величины Е на нормальность заключается в оценке двух статистик: асимметрии и эксцесса.
Для того, чтобы найти асимметрию необходимо знать S, она является среднеквадратичной. Среднеквадратичная вычисляется по формуле:
/>
Из этой формулы нам известно Е4.Для того, чтобы найти выполним следующие действия:
/>
/>
/>
/>
Теперь транспонируем полученную матрицу Е4, получим:
/>
Теперь мы можем найти S:
/>
/>
Мы нашли S, теперь можем найти асимметрию (А), подставив Е4 в формулу:
/>
/>
Далее находим эксцесс по формуле, подставляя S. Эксцесс обозначим буквой В.
Получим:
/>
/>
Чем ближе эксцесс к 0, то считается это нормально.
/>
/>
/>
/>
/>/>/>
/>
Если выполняется следующее условие />/>
То гипотеза об адекватности не отвергается. Следовательно, гипотеза, об адекватности модели отвергается.
Заключение
В контрольной работе решалась задача построения имитационной модели статической системы, имеющей 3 входа и 1 выход.
Предполагалось, что на систему действует случайное возмещение, результатом которого является случайное составление с нормальным распределением.
В контрольной работе производилась проверка адекватности модели системы. Проверка состояла из трёх этапов:
1. Оценки случайности значений временного ряда ошибки (здесь были выполнены оба неравенства n > n1 и τ
2. Оценка взаимной зависимости значений временного ряда (d=0..2(2.011) — -это означает, что имеется отрицательная взаимозависимость между ошибками).
3. Проверка распределения случайной величины на нормальность (условие, при котором гипотеза об адекватности не отвергается, не выполняется).