--PAGE_BREAK--2.2.11 Относительная адресация
Когда потребность в увеличении объемов основной памяти стала очевидной, архитектуры компьютеров были модифицированы для работы с очень большим диапазоном адресов. Машина, рассчитанная на работу с памятью емкостью 16 Мбайт (1 Мбайт — это 1 048 576 байт), должна иметь 24-разрядные адреса. Включение столь длинных адресов в формат каждой команды даже для машины с одноадресными командами стоило бы очень дорого, не говоря уже о машинах с многоадресными командами. Поэтому для обеспечения работы с очень большими адресными пространствами в машинах начали применять адресацию типа база + смещение, или относительную адресацию, при которой все адреса программы суммируются с содержимым базового регистра. Подобное решение имеет то дополнительное преимущество, что программы становятся перемещаемыми, или позиционно-независимыми; это свойство программ имеет особенно важное значение для многоабонентских систем, в которых одну и ту же программу может оказаться необходимым размещать в различных местах основной памяти при каждой загрузке.
2.2.12 Режим задачи, режим супервизора, привилегированные команды
В вычислительных машинах, как правило, предусматривается несколько различных режимов работы. Динамический выбор режима позволяет лучше организовать защиту программ и данных. В обычном случае, когда машина находится в конкретном режиме, работающая программа может выполнять только некоторое подмножество команд. В частности, если говорить о программах пользователя, то подмножество команд, которые пользователь может употреблять в режиме задачи, не позволяет, например, непосредственно производить операции ввода-вывода; если программе пользователя разрешить выполнение любых операций ввода-вывода, она могла бы вывести главный список паролей системы, распечатать информацию любого другого пользователя или вообще испортить операционную систему. Операционной системе обычно присваивается статус самого полномочного пользователя и работает она в режиме супервизора; она имеет доступ ко всем командам, предусмотренным в машине. Для большинства современных вычислительных машин подобного разделения на два режима — задачи и супервизора — вполне достаточно. Однако в случае машин с высокими требованиями по защите от несанкционированного доступа желательно иметь более двух режимов. Благодаря этому можно обеспечить более высокую степень детализации защиты. Благодаря этому можно также предоставлять доступ по принципу минимума привилегий: .каждому конкретному пользователю следует предоставлять минимально возможный приоритет и право доступа только к тем ресурсам,, которые ему действительно необходимы для выполнения предусмотренных задач.
Интересно отметить, что в процессе развития компьютерных архитектур выявилась тенденция к увеличению количества привилегированных команд, т. е. команд, которые не могут выполняться в режиме задачи. Это служит свидетельством определенной тенденции к реализации большего числа функций операционных систем аппаратными средствами. Некоторые микропроцессоры уже имеют целые операционные системы, реализованные микропрограммно; во многих случаях значительная часть функций операционной системы реализуется в аппаратуре.
2.2.13 Виртуальная память
Системы виртуальной памяти дают возможность указывать в программах адреса, которым не обязательно соответствуют физические адреса основной памяти. Виртуальные адреса, выдаваемые работающими программами, при помощи аппаратных средств динамически (т. е. во время выполнения программы) преобразуются в адреса команд и данных, хранящихся в основной памяти. Системы виртуальной памяти позволяют программам работать с адресными пространствами гораздо большего размера, чем адресное пространство основной памяти. Они дают пользователям возможность создавать программы, независимые (большей частью) от ограничений основной памяти, и позволяют обеспечить работу многоабонентских t систем с общими ресурсами.
В системах виртуальной памяти применяются такие методы, как страничная организация (предусматривающая обмен между основной и внешней памятью блоками данных фиксированного размера) и сегментация (которая предусматривает разделение программ и данных на логические компоненты, называемые сегментами, что упрощает управление доступом и коллективное использование). Эти методы иногда реализуются порознь, а иногда в комбинации. Системы виртуальной памяти рассматриваются в гл. 8 и 9.
2.2.14 Мультипроцессорная обработка
В мультипроцессорных машинах несколько процессоров работают с общей основной памятью и одной операционной системой. При мультипроцессорной работе возникает опасность конфликтных ситуаций определенных типов, которых не бывает в однопроцессорных машинах. Здесь необходимо обеспечить координированный упорядоченный доступ к каждой общей ячейке памяти, с тем чтобы два процессора не могли изменять ее содержимое одновременно — и в результате, быть может, портить его. Подобная координация необходима также и в случае, когда один процессор пытается изменить содержимое ячейки, которую хочет прочитать другой процессор. Более подробно эти проблемы обсуждаются в гл. И. В гл.21 при описании операционной системы MVS, выбранной в качестве одного из примеров для иллюстрации, объясняется, каким образом реализуется мультипроцессорный режим в крупных машинах фирмы IBM. Упорядочение доступа необходимо также и для однопроцессорных машин. Подробно эта проблема рассматривается в гл. 3, 4 и 5.
2.2.15 Прямой доступ к памяти
Одним из способов достижения высокой производительности вычислительных машин является минимизация количества прерываний, происходящих в процессе выполнения программы. Разработанный для этого способ прямого доступа к памяти (ПДП) требует лишь одного прерывания на каждый блок символов, передаваемых во время операции ввода-вывода. Благодаря этому обмен данными производится значительно быстрее, чем в случае, когда процессор прерывается при передаче каждого символа.
После начала операции ввода-вывода символы передаются в основную память по принципу захвата цикла — канал захватывает шину связи процессора с основной памятью на короткое время передачи одного символа, после чего процессор продолжает работу.
Когда внешнее устройство оказывается готовым к передаче очередного символа блока, оно «прерывает» процессор. Однако в случае ПДП состояние процессора запоминать не требуется, поскольку передача одного символа означает для процессора скорее задержку, или приостановку, чем обычное прерывание. Символ передается в основную память под управлением специальных аппаратных средств, а после завершения передачи процессор возобновляет работу.
ПДП—это способ повышения производительности, особенно необходимый для систем, в которых выполняются очень большие объемы операций ввода-вывода. Аппаратные средства, обеспечивающие захват циклов памяти и управление устройствами ввода-вывода в режиме ПДП, называются каналом прямого доступа к памяти.
2.2.16 Конвейеризация
Конвейеризация — это аппаратный способ, применяемый в высокопроизводительных вычислительных машинах с целью использования определенных типов параллелизма для повышения эффективности обработки команд. Упрощенно структуру конвейерного процессора можно представить очень похожей на технологическую линию производственного предприятия; на конвейере процессора на различных стадиях выполнения одновременно могут находиться
несколько команд. Такое совмещение требует несколько большего объема аппаратуры, однако позволяет существенно сократить общее время выполнения последовательности команд.
2.2.17 Иерархия памяти
Современные вычислительные машины содержат несколько видов памяти, в том числе основную (первичную, оперативную), внешнюю (вторичную, массовую) и кэш-память. В основной памяти должны размещаться команды и данные, к которым будет обращаться работающая программа. Внешняя память — это магнитные ленты, диски, карты и другие носители, предназначенные для хранения информации, которая со временем будет записана в основную память. Кэш-память — это буферная память очень высокого быстродействия, предназначенная для повышения скорости выполнения работающих программ; для программ пользователя эта память, как правило, «прозрачна». В вычислительных машинах, оснащенных кэш-памятью, текущая часть программы помещается в кэшпамять, что позволяет выполнять ее гораздо быстрее, чем если бы она находилась в основной памяти. Все эти виды памяти создают единую иерархию памяти; переход по уровням этой иерархии от кэш-памяти к основной и затем к внешней памяти сопровождается уменьшением стоимости и скорости и увеличением емкости памяти. Память, как правило, разделяется на байты (символы) или слова (состоящие из постоянного количества байтов). Каждая ячейка памяти имеет свой адрес; множество адресов, доступных программе, называется адресным пространством.
2.3 Программное обеспечение
Программное обеспечение — это программы, которые содержат команды и данные и определяют для аппаратных средств алгоритмы решения задач. Существует очень много различных языков программирования.
2.3.1 Программирование на машинном языке
Машинный язык — это язык программирования, непосредственно воспринимаемый компьютером. Каждая команда машинного языка интерпретируется аппаратурой, выполняющей указанные функции. Команды машинного языка в принципе являются довольно примитивными. Только соответствующее объединение этих команд в программы на машинном языке дает возможность описывать достаточно серьезные алгоритмы. Наборы команд машинного языка современных компьютеров зачастую включают некоторые очень эффективные возможности (см, например, описание миникомпьютеров VAX в гл. 19).
Говорят, что машинный язык является машинно-зависимым: программа, написанная на машинном языке компьютера одного типа, как правило, не может выполняться на компьютере другого типа, если его машинный язык не идентичен машинному языку первого компьютера (или не является расширением по отношению к этому языку). Еще одним признаком машинной, или аппаратной, зависимости является характер самих команд: в командах машинного языка указываются наименования конкретных регистров компьютера и предусматривается обработка данных в той физической форме, в которой они существуют в этом компьютере. Большинство первых компьютеров программировались непосредственно на машинном языке, а в настоящее время на машинном языке пишется лишь очень небольшое число программ.
2.3.2 Ассемблеры и макропроцессоры
Программирование на машинном языке требует очень много времени и чревато ошибками. Поэтому были разработаны языки ассемблерного типа, позволяющие повысить скорость процесса программирования и уменьшить количество ошибок кодирования. Вместо чисел, используемых при написании программ на машинных языках, в языках ассемблерного типа применяются содержательные мнемонические сокращения и слова естественного языка. Однако компьютеры не могут непосредственно воспринять программу на языке ассемблера, поэтому ее необходимо вначале перевести на машинный язык. Такой перевод осуществляется при помощи программы-транслятора, называемой ассемблером.
Языки ассемблерного типа также являются машинно-зависимыми. Их команды прямо и однозначно соответствуют командам программы на машинном языке. Чтобы ускорить процесс кодирования программы на языке ассемблера, были разработаны и включены в ассемблеры так называемые макропроцессоры. Программист пишет макрокоманду как указание необходимости выполнить действие, описываемое несколькими командами на языке ассемблера. Когда макропроцессор во время трансляции программы читает макрокоманду, он производит макрорасширение — т. е. генерирует ряд команд языка ассемблера, соответствующих данной макрокоманде, Таким образом, процесс программирования значительно ускоряется, поскольку программисту приходится писать меньшее число команд для определения того же самого алгоритма.
2.3.3 Компиляторы
Тенденция к повышению вычислительной мощности команд привела к разработке некоторых очень эффективных макропроцессоров и макроязыков, упрощающих программирование на языке ассемблера. Однако развитие ассемблеров путем введения макропроцессоров не решает проблемы машинной зависимости. В связи с этим были разработаны языки высокого уровня.
Языки высокого уровня открывают возможность машинно-независимого программирования. Большинству пользователей компьютер нужен только как средство реализации прикладных систем. Языки высокого уровня позволяют пользователям заниматься преимущественно задачами, специфичными для их конкретных прикладных областей, не вникая в особенности применяемых ими машин. Благодаря этому существенно повышается скорость процесса программирования, обеспечивается обмен программами между машинами различных типов, и у людей появляется возможность разрабатывать эффективные прикладные системы, не затрачивая времени и сил на полное изучение внутренней структуры машины.
Перевод с языков высокого уровня на машинный язык осуществляется при помощи программ, называемых компиляторами. Компиляторы и ассемблеры имеют общее название «.трансляторы». Написанная пользователем программа, которая в процессе трансляции поступает на вход транслятора, называется исходной программой; программа на машинном языке, генерируемая транслятором, называется объектной программой, или выходной (целевой) программой.
2.3.4 Система управления вводом-выводом (IOCS)
Подробные канальные программы, необходимые для управления вводом-выводом, и различные подпрограммы для координации работы каналов и процессоров являются достаточно сложными. Создание супервизорной программы, учитывающей все сложности выполнения операций ввода-вывода, освобождает прикладного программиста от необходимости самому писать подобные программы. Такая супервизорная программа носит название системы управления вводом-выводом (IOCS).
В 50-х годах пользователи обычно включали исходный код IOCS в свои программы на языке ассемблера. Пакет IOCS, уже написанный и отлаженный, фактически ассемблировался каждый раз заново как часть каждой индивидуальной программы, что приводило к значительному увеличению времени трансляции. Поэтому на многих машинах, как правило, использовались готовые, заранее ассемблированные программы IOCS. Программист, работающий на языке ассемблера, писал операторы со ссылками на места расположения ключевых программ в готовом коде IOCS.
Еще одна проблема использования концепции IOCS была связана с тем, что полный пакет программ IOCS зачастую занимал значительную долю основной памяти, оставляя мало места для кода прикладных программ пользователя. Поэтому некоторые пользователи занимали в памяти место не нужных им модулей пакета IOCS своими программами. Другие пользователи разрабатывали свои собственные, более компактные пакеты. Однако в конце концов пользователи поняли, что самое рациональное — это предоставить системе IOCS возможность выполнять все функции по управлению вводом-выводом, и были просто вынуждены увеличивать объемы (дорогостоящей) основной памяти своих вычислительных машин. Такой подход стал по сути стандартным — и операционные системы начали включать все больше и больше машинно-ориентированных программ, так что разработчики прикладных систем смогли сконцентрировать свои усилия на создании программ прикладного характера. Это привело к тому, что операционным системам потребовались большие емкости основной памяти. К счастью, стоимость устройств основной памяти постоянно снижается.
2.3.5 Спулинг
При спулинге (вводе-выводе с буферизацией) посредником между работающей программой и низкоскоростным устройством, осуществляющим ввод-вывод данных для этой программы, становится высокоскоростное устройство, например дисковый накопитель. Вместо вывода строк данных непосредственно, скажем, на построчно печатающее устройство программа записывает их на диск. Благодаря этому текущая программа может быстрее завершиться, с тем чтобы другие программы могли быстрее начать работать. А записанные на диск строки данных можно, распечатать позже, когда освободится принтер. Для этой процедуры название «спулинг» весьма подходит, поскольку она напоминает намотку нитки на катушку, с тем чтобы ее можно было при необходимости размотать.
2.3.6 Процедурно-ориентированные и проблемно-ориентированные языки
Языки высокого уровня бывают либо процедурно-ориентированными, либо проблемно-ориентированными. Процедурно-ориентированные языки высокого уровня — это универсальные языки программирования, которые можно использовать для решения самых разнообразных задач. Проблемно-ориентированные языки предназначаются специально для решения задач конкретных типов. Такие языки, как Паскаль, Кобол, Фортран, Бейсик и ПЛ/1 обычно считаются процедурно-ориентированными, а такие языки, как GPSS (язык моделирования) и SPSS (язык для выполнения статистических вычислений),— проблемно-ориентированными. 1)
продолжение
--PAGE_BREAK--2.3.7 Быстрые компиляторы без оптимизации и оптимизирующие компиляторы
Когда программы разрабатываются и отлаживаются, компиляции производятся часто, а выполняются программы обычно недолго — пока не обнаружится очередная ошибка. В этих условиях вполне приемлемы быстрые компиляторы без оптимизации. Они позволяют быстро получить объектную программу, однако ее код может оказаться совершенно неэффективным с точки зрения как занимаемой памяти, так и скорости выполнения. После того как программа отлажена и готова для производственной эксплуатации, при помощи оптимизирующего компилятора для нее генерируется эффективный машинный код. Оптимизирующий компилятор работает гораздо медленнее, однако обеспечивает получение объектного кода очень высокого качества.
В 70-х годах господствовало мнение о том, что хороший программист, работающий на языке ассемблера, может создать гораздо лучший код программы, чем оптимизирующий компилятор, В настоящее время оптимизирующие компиляторы настолько эффективны, что генерируемый ими код по качеству не уступает или даже превосходит код, созданный высококвалифицированным программистом на языке ассемблера. Благодаря этому программы, которые должны быть исключительно эффективными (например, операционные системы), больше не приходится писать на языке ассемблера. Сегодня крупные операционные системы в большинстве случаев пишутся на языках высокого уровня и при помощи оптимизирующих компиляторов очень высокого качества транслируются в эффективный машинный код.
2.3.8 Интерпретаторы
Существует один интересный и распространенный вид трансляторов, интерпретаторы, которые не генерируют объектную программу, а фактически обеспечивают непосредственное выполнение исходной программы. Интерпретаторы особенно распространены в системах проектирования программ, где программы идут, как правило, лишь небольшое время до момента обнаружения очередной ошибки. Интерпретаторы распространены также в сфере персональных компьютеров. Они свободны от накладных затрат, свойственных ассемблированию или компиляции. Однако выполнение программы в режиме интерпретации идет медленно по сравнению с компилированным кодом, поскольку интерпретаторам надо транслировать каждую команду при каждом ее выполнении.
2.3.9 Абсолютные и перемещающие загрузчики
Программы для выполнения должны размещаться в основной памяти. Распределение команд и элементов данных по конкретным ячейкам основной памяти является исключительно важной задачей. Решение этой задачи иногда осуществляет сам пользователь, иногда транслятор, иногда системная программа, называемая загрузчиком, а иногда — операционная система. Сопоставление команд и элементов данных с конкретными ячейками памяти называется привязкой к памяти. При программировании на машинном языке привязка к памяти производится в момент кодирования. Уже давно наблюдается тенденция откладывать привязку программы к памяти на как можно более поздний срок, и в современных системах виртуальной памяти привязка осуществляется динамически в процессе выполнения программы. Отсрочка привязки программы к памяти обеспечивает увеличение гибкости как для пользователя, так и для системы, однако это связано с существенным повышением сложности трансляторов, загрузчиков, аппаратных средств и операционных систем.
Загрузчик — это системная программа, которая размещает команды и данные программы в ячейках основной памяти. Абсолютный загрузчик размещает эти элементы именно в те ячейки, адреса которых указаны в программе на машинном языке. Перемещающий загрузчик может загружать программу в различные места основной памяти в зависимости, например, от наличия свободного участка основной памяти в момент загрузки (называемое временем загрузки).
2.3.10 Связывающие загрузчики и редакторы связей
В первых вычислительных машинах программист писал на машинном языке программу, которая содержала все команды, необходимые для решения конкретной задачи. Даже сложные и в определенном смысле опасные процедуры управления вводом-выводом в каждой программе на машинном языке приходилось кодировать вручную.
В настоящее время программы пользователя зачастую содержат лишь незначительную часть команд и данных, необходимых для решения поставленной задачи. В составе системного программного обеспечения поставляются большие библиотеки подпрограмм, так что программист, которому необходимо выполнять определенные стандартные операции, может воспользоваться для этого готовыми подпрограммами. В частности, операции ввода-вывода обычно выполняются подпрограммами, находящимися вне программы пользователя. Поэтому программу на машинном языке, полученную в результате трансляции, приходится, как правило, комбинировать с другими программами на машинном языке, чтобы сформировать необходимый выполняемый модуль. Эту процедуру объединения программ выполняют связывающие загрузчики и редакторы связей до начала выполнения программы.
Связывающий загрузчик во время загрузки объединяет необходимые программы и загружает их непосредственно в основную память. Редактор связей также осуществляет подобное объединение программ, однако он создает загрузочный модуль, который записывается во внешнюю память для будущего использования. Редактор связей играет особенно важную роль для производственных систем; когда программу необходимо выполнять, ее загрузочный модуль, сформированный при помощи редактора связей, может быть загружен немедленно — без накладных затрат времени (часто весьма больших) на повторное объединение отдельных частей программы.
2.4 Микропрограммы
Принято считать, что автором концепции микропрограммирования является профессор Морис Уилкс. В своей статье в 1951 г. (Wi 51) он предложил принципы, которые легли в основу современных методов микропрограммирования. Однако начало реального внедрения микропрограммирования связано с появлением System/360 в середине 60-х годов. В течение 60-х годов изготовители компьютеров применяли микропрограммирование для реализации наборов команд машинного языка (Ни 70).
В конце 60-х — начале 70-х годов появилось динамическое микропрограммирование, предусматривающее возможность легкой загрузки новых микропрограммных модулей в управляющую память, служащую для выполнения микропрограмм. Благодаря этому стало возможным динамично и часто менять наборы команд вычислительной машины. И сейчас уже никого не удивит, если в мультипрограммных системах новых поколений будут предусматриваться возможности предоставления различных наборов команд различным пользователям, с тем чтобы в процессе переключения процессора с программы на программу можно было также осуществлять переход с одного набора машинных команд на другой, необходимый следующему пользователю.
Микропрограммирование вводит дополнительный уровень средств программирования, нижележащий по отношению к машинному языку компьютера, и тем самым оно позволяет определять конкретные команды машинного языка. Подобные возможности являются неотъемлемой частью архитектуры современных компьютеров и имеют громадное значение с точки зрения обеспечения высоких скоростных характеристик и защиты операционных систем.
Микропрограммы размещаются в специальной управляющей памяти очень высокого быстродействия. Они состоят из индивидуальных микрокоманд, которые гораздо более элементарны по своей природе и более рассредоточены по функциям, чем обычные команды машинного языка. В компьютерах, где набор команд машинного языка реализуется при помощи микропрограммирования, каждой команде машинного языка соответствует целая и,.быть может, большая микропрограмма,/Тем самым сразу же становится очевидным, что микропрограммирование окажется эффективным только в том случае, если управляющая память будет обладать гораздо большим быстродействием; чем основная.
2.4.1 Горизонтальный и вертикальный микрокод
Команды микрокода можно разделить на горизонтальные и вертикальные. Выполнение вертикальных микрокоманд очень похоже на выполнение обычных команд машинного языка. Типичная вертикальная микрокоманда задает пересылку одного или нескольких элементов данных между регистрами.
Горизонтальный микрокод действует совсем по-другому. Каждая его команда содержит гораздо большее число бит, поскольку может задавать параллельную операцию пересылки данных для многих или даже всех регистров данных устройства управления. Горизонтальные микрокоманды являются более мощными, чем вертикальные, однако может оказаться, что соответствующие микропрограммы гораздо сложнее кодировать и отлаживать.
2.4.2 Выбор функций для микропрограммной реализации
Для разработчика очень важно правильно решить, какие именно функции вычислительной машины реализовать при помощи микрокода. Микрокод предоставляет реальную возможность повысить быстродействие вычислительной машины. Реализуя часто используемые последовательности команд микропрограммно, а не обычным программным способом, разработчики добиваются существенного повышения показателей быстродействия. Читателям, которые будут знакомиться с функциями операционных систем по мере проработки настоящей книги, рекомендуется тщательно анализировать, для реализации каких из этих функций может быть эффективно использован микрокод.
2.4.3 Эмуляция
Эмуляция — метод, позволяющий сделать одну вычислительную машину функциональным эквивалентом другой. Набор команд машинного языка эмулируемого компьютера микропрограммируется на эмулирующем компьютере — и благодаря этому программы, представленные на машинном языке первого компьютера, могут непосредственно выполняться на втором. Фирмы-разработчики компьютеров широко применяют эмуляцию при внедрении новых машин, и пользователи, привязанные к старым компьютерам, получают, например, возможность без всяких изменений выполнять свои ранее отлаженные программы на новых машинах. Тем самым процесс перехода с машины на машину становится менее сложным и болезненным.
2.4.4 Микродиагностика
Микропрограммы значительно теснее связаны с аппаратурой, чем программы, написанные на машинном языке. Благодаря этому появляется возможность в гораздо более широких масштабах осуществлять контроль и исправление ошибок, причем выполнять эти операции с большей степенью детализации. В некоторые машины вводятся средства микродиагностики, «переплетающиеся» с командами программ на машинном языке. Это позволяет избежать многих потенциальных проблем и повысить надежность работы машины.
2.4.5 Специализированные компьютеры
Поскольку разработка, производство и организация сбыта вычислительной машины обходится дорого, фирмы-изготовители сосредотачивают свои усилия обычно на выпуске машин общего назначения. Громадные капитальные вложения, без которых невозможно создание новой машины, требуют больших объемов сбыта, поскольку только в этом случае можно будет возместить затраты и получить необходимые прибыли. Поэтому промышленные фирмы обычно стараются не изготавливать специализированных, единственных в своем роде машин; этим занимаются университеты, в которых подобные машины создаются главным образом для выполнения научных исследований.
В связи с этим пользователям компьютеров приходится решать проблему специализации своих машин применительно к собственным конкретным требованиям; такая специализация традиционно осуществляется при помощи соответствующего программного обеспечения. Аппаратура машины представляет собой некую универсальную среду для выполнения системных программ, при помощи которых машина приспосабливается к конкретным требованиям пользователей.
В некоторых машинах подобную специализацию пользователи могут осуществлять при помощи микрокода. При этом они могут либо применить микрокод, поставляемый фирмой-изготовителем, либо написать собственный микрокод; сейчас широко распространены оба этих подхода.
2.4.6 Микропрограммная поддержка
Фирмы-изготовители зачастую по отдельному заказу поставляют факультативные микрокодовые средства, обеспечивающие повышение производительности вычислительных машин. Фирме IBM удалось довольно успешно сделать это для своих компьютеров семейства System/370 в рамках операционной системы VM (см. гл. 22). Как будет показано при описании этой операционной системы в гл. 22, она реализует концепцию многих виртуальных машин благодаря эффективному использованию механизма прерываний. Для этого ряд наиболее часто используемых программ обработки прерываний реализуется микрокодом; такая микропрограммная поддержка позволяет достигнуть существенного повышения скоростных характеристик.
2.4.7 Микропрограммирование и операционные системы
К числу наиболее часто выполняемых последовательностей команд в большинстве вычислительных машин относятся определенные части операционной системы. Например, в системе с диалоговой обработкой транзакций имеется механизм диспетчирования, обеспечивающий выбор очередной единицы работы, которую должен будет выполнять процессор; поскольку подобный механизм диспетчирования может действовать сотни раз в секунду, он должен работать очень эффективно, и одним из способов сделать его более высокоскоростным и эффективным является именно микрокодовая реализация.
К числу функций, чаще всего реализуемых при помощи микрокода, относятся следующие:
· обработка прерываний;
· управление различными типами структур данных;
· примитивы синхронизации, координирующие доступ к общим данным и другим ресурсам;
· операции обработки частей слова, позволяющие эффективно выполнять манипуляции с битами;
· переключения контекста, т. е. быстрые переключения процессора с программы на программу в многоабонентской системе;
· последовательности вызова процедур и возврата.
Реализация функций операционных систем при помощи микрокода позволяет повысить эффективность и скоростные характеристики, снизить затраты на разработку программ и обеспечить более надежную защиту систем (см. гл. 17).
Читателям, желающим более подробно познакомиться с применением микропрограммирования в операционных системах, рекомендуется обратиться к работам (Br77), (Bu81) и (So75).
2.4.8 Пример микропрограммирования
В настоящем разделе рассматривается небольшая гипотетическая микропрограммируемая вычислительная машина. Наша цель заключается в том, чтобы попытаться передать определенные нюансы микропрограммирования и, в частности, показать, каким образом оно может использоваться для реализации набора команд машинного языка компьютера. В основу настоящего раздела положен пример, который представили Роше и Адаме в своей отличной статье для изучающих микропрограммирование (Ra80).
Простой гипотетический небольшой компьютер ITSIAC имеет набор команд машинного языка, показанный на рис. 2.1.
Компьютер ITSIAC имеет накапливающий регистр-аккумулятор АКК, который участвует в выполнении всех арифметических операций. Каждая команда машинного языка содержит два поля
Команда
Описание
ADD (Сложить)
АКК ( АКК + (А)
SUB (Вычесть)
АКК ( АКК — (А)
LOAD (Загрузить)
АКК ( (А)
STORE (Записать)
(А) ( АКК
BRANCH (Переход)
Переход на А
COND BRANCH (Условный переход)
Если АКК=0, то переход на А
по 8 бит — код операции (КОП) и адрес памяти А. В состав процессора входит арифметико-логическое устройство (АЛУ) для выполнения некоторых арифметических действий. Регистры компьютера ITSIAC и их функции показаны на рис. 2.2.
Регистр
Функция
АКК
Аккумулятор. Этот накапливающий регистр участвует в выполнении всех арифметических операций. При выполнении каждой арифметической операции один из операндов должен находиться в аккумуляторе, а другой — в основной памяти.
РАКОП
Регистр адреса команды основной памяти. Этот регистр указывает ячейку основной памяти, где находится следующая команда машинного языка, подлежащая выполнению.
РАП
Регистр адреса памяти. Этот регистр участвует во всех обращениях к основной памяти. Он содержит адрес ячейки памяти, к которой производится обращение для чтения или записи.
РДП
Регистр данных памяти. Этот регистр также участвует во всех обращениях к основной памяти. Он содержит данные, которые записываются, или принимает данные, которые считываются из ячейки основной памяти, указанной в РАП.
РР
Рабочий регистр. Этот регистр используется для выделения поля адреса (8 бит справа) машинной команды, хранящейся в регистре РДП, чтобы его можно было поместить в РАП (в машине прямая пересылка данных из РДП в РАП невозможна).
РАКУП
Регистр адреса команд управляющей памяти. Этот регистр указывает адрес следующей микрокоманды (в управляющей памяти), подлежащей выполнению.
РМК
Регистр микрокоманды. Этот регистр содержит текущую выполняемую микрокоманду.
продолжение
--PAGE_BREAK--