Реферат по предмету "Информатика"


Интеграция разнородных сетей

--PAGE_BREAK--Для реализации метода инкапсуляции пограничные маршрутизаторы должны быть соответствующим образом сконфигурированы. Они должны знать, во-первых, IP‑адреса друг друга, во-вторых – NetBIOS‑имена узлов объединяемых сетей. Имея такую информацию, они могут принять решение о том, какие NetBIOS‑пакеты нужно переправить через транзитную сеть, какой IP‑адрес указать в пакете, передаваемом через транзитную сеть и каким образом доставить NetBIOS‑пакет узлу назначения в конечной сети.
Инкапсуляция может быть использована для транспортных протоколов любого уровня. Например, протокол сетевого уровня Х.25 может быть инкапсулирован в протокол транспортного уровня TCP, или же протокол сетевого уровня IP может быть инкапсулирован в протокол сетевого уровня Х.25. Для согласования сетей на сетевом уровне могут быть использованы многопротокольные и инкапсулирующие маршрутизаторы, а также программные и аппаратные шлюзы[9].
Обычно инкапсуляция приводит к более простым и быстрым решениям по сравнению с трансляцией, так как решает более частную задачу, не обеспечивая взаимодействия с узлами транзитной сети.
Сравнение трансляции и мультиплексирования.
Использование техники трансляции связано со следующими достоинствами:
Не требуется устанавливать дополнительное программное обеспечение на рабочих станциях.
Сохраняется привычная среда пользователей и приложений, транслятор полностью прозрачен для них.
Все проблемы межсетевого взаимодействия локализованы, следовательно, упрощается администрирование, поиск неисправностей, обеспечение безопасности.
Недостатки согласования протоколов путем трансляции состоят в том, что:
Транслятор замедляет работу из-за относительно больших временных затрат на сложную процедуру трансляции, а также из-за ожидания запросов в очередях к единственному элементу, через который проходит весь межсетевой трафик.
Централизация обслуживания запросов к «чужой» сети снижает надежность. Однако можно предусмотреть резервирование – использовать несколько трансляторов.
При увеличении числа пользователей и интенсивности обращений к ресурсам другой сети резко снижается производительность – плохая масштабируемость [10].
Достоинства мультиплексирования по сравнению с трансляцией протоколов заключаются в следующем:
Запросы выполняются быстрее, за счет отсутствия очередей к единственному межсетевому устройству и использования более простой, чем трансляция, процедуры переключения на нужный протокол.
Более надежный способ – при отказе стека на одном из компьютеров доступ к ресурсам другой сети возможен посредством протоколов, установленных на других компьютерах.
Недостатки данного подхода.
Сложнее осуществляется администрирование и контроль доступа.
Высокая избыточность требует дополнительных ресурсов от рабочих станций, особенно если требуется установить несколько стеков для доступа к нескольким сетям [11].
Менее удобен для пользователей по сравнению с транслятором, так как требует навыков работы с транспортными протоколами «чужих» сетей.
1.3 Сетевое оборудование
Сетевое оборудование – устройства, необходимые для работы компьютерной сети, например: маршрутизатор, коммутатор и др. Обычно выделяют активное и пассивное сетевое оборудование.
Под активным подразумевается оборудование, за которым следует некоторая «интеллектуальная» особенность. То есть маршрутизатор, коммутатор (свитч) и т.д. являются активным сетевым оборудованием. Напротив – повторитель (репитер) и концентратор (хаб) не являются АСО, так как просто повторяют электрический сигнал для увеличения расстояния соединения или топологического разветвления и ничего «интеллектуального» собой не представляют. Но управляемые свитчи относятся к активному сетевому оборудованию, так как могут быть наделены некоей «интеллектуальной особенностью». Ниже приведен краткий обзор.
Маршрутизатор.
Маршрутизатор или рутер (от англ. Router) – сетевое устройство, на основании информации о топологии сети и определённых правил, принимающее решения о пересылке пакетов сетевого уровня (уровень 3 модели OSI) между различными сегментами сети.
Работает на более высоком уровне, нежели коммутатор и сетевой мост.
Принцип работы.
Обычно маршрутизатор использует адрес получателя, указанный в пакетах данных, и определяет по таблице маршрутизации путь, по которому следует передать данные. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.
Существуют и другие способы определения маршрута пересылки пакетов, когда, например, используется адрес отправителя, используемые протоколы верхних уровней и другая информация, содержащаяся в заголовках пакетов сетевого уровня. Нередко маршрутизаторы могут осуществлять трансляцию адресов отправителя и получателя, фильтрацию транзитного потока данных на основе определённых правил с целью ограничения доступа, шифрование / дешифрование передаваемых данных и т.д.
Таблица маршрутизации содержит информацию, на основе которой маршрутизатор принимает решение о дальнейшей пересылке пакетов. Таблица состоит из некоторого числа записей – маршрутов, в каждой из которых содержится адрес сети получателя, адрес следующего узла, которому следует передавать пакеты и некоторый вес записи – метрика. Метрики записей в таблице играют роль в вычислении кратчайших маршрутов к различным получателям. В зависимости от модели маршрутизатора и используемых протоколов маршрутизации, в таблице может содержаться некоторая дополнительная служебная информация.
Таблица маршрутизации может составляться двумя способами.
Статическая маршрутизация – когда записи в таблице вводятся и изменяются вручную. Такой способ требует вмешательства администратора каждый раз, когда происходят изменения в топологии сети. С другой стороны, он является наиболее стабильным и требующим минимума аппаратных ресурсов маршрутизатора для обслуживания таблицы.
Динамическая маршрутизация – когда записи в таблице обновляются автоматически при помощи одного или нескольких протоколов маршрутизации – RIP, OSPF, EIGRP, IS-IS, BGP, и др. Кроме того, маршрутизатор строит таблицу оптимальных путей к сетям назначения на основе различных критериев – количества промежуточных узлов, пропускной способности каналов, задержки передачи данных и т.п. Критерии вычисления оптимальных маршрутов чаще всего зависят от протокола маршрутизации, а также задаются конфигурацией маршрутизатора. Такой способ построения таблицы позволяет автоматически держать таблицу маршрутизации в актуальном состоянии и вычислять оптимальные маршруты на основе текущей топологии сети. Однако динамическая маршрутизация оказывает дополнительную нагрузку на устройства, а высокая нестабильность сети может приводить к ситуациям, когда маршрутизаторы не успевают синхронизировать свои таблицы, что приводит к противоречивым сведениям о топологии сети в различных её частях и потере передаваемых данных. Зачастую для построения таблиц маршрутизации используют теорию графов.
Применение.
Маршрутизаторы помогают уменьшить загрузку сети, благодаря её разделению на домены коллизий и широковещательные домены, а также благодаря фильтрации пакетов. В основном их применяют для объединения сетей разных типов, зачастую несовместимых по архитектуре и протоколам, например для объединения локальных сетей Ethernet и WAN‑соединений, использующих протоколы xDSL, PPP, ATM, Frame relay и т.д. Нередко маршрутизатор используется для обеспечения доступа из локальной сети в глобальную сеть Интернет, осуществляя функции трансляции адресов и межсетевого экрана.
В качестве маршрутизатора может выступать как специализированное (аппаратное) устройство (характерный представитель Juniper), так и обычный компьютер, выполняющий функции маршрутизатора. Существует несколько пакетов программного обеспечения (в основном на основе ядра Linux) с помощью которого можно превратить ПК в высокопроизводительный и многофункциональный маршрутизатор, например GNU Zebra[12].
Сетевой коммутатор.
Сетевой коммутатор или свитч (жарг. от англ. switch – переключатель) – устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передает данные только непосредственно получателю. Это повышает производительность и безопасность сети, избавляя остальные сегменты сети от необходимости (и возможности) обрабатывать данные, которые им не предназначались.
Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC‑адресам. Для соединения нескольких сетей на основе сетевого уровня служат маршрутизаторы.
Принцип работы коммутатора.
Коммутатор хранит в памяти таблицу, в которой указывается соответствие MAC‑адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры и, определив MAC‑адрес хоста-отправителя, заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC‑адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC‑адрес хоста-получателя еще не известен, то кадр будет продублирован на все интерфейсы. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется.
Режимы коммутации.
Существует три способа коммутации. Каждый из них – это комбинация таких параметров, как время ожидания и надежность передачи.
С промежуточным хранением (Store and Forward). Коммутатор читает всю информацию во фрейме, проверяет его на отсутствие ошибок, выбирает порт коммутации и после этого посылает в него фрейм.
Сквозной (cut-through). Коммутатор считывает во фрейме только адрес назначения и после выполняет коммутацию. Этот режим уменьшает задержки при передаче, но в нем нет метода обнаружения ошибок.
Бесфрагментный (fragment – free) или гибридный. Этот режим является модификацией сквозного режима. Передача осуществляется после фильтрации фрагментов коллизий (фреймы размером 64 байта обрабатываются по технологии store-and-forward, остальные по технологии cut-through).
Возможности и разновидности коммутаторов.
Коммутаторы подразделяются на управляемые и неуправляемые (наиболее простые). Более сложные коммутаторы позволяют управлять коммутацией на канальном (втором) и сетевом (третьем) уровне модели OSI. Обычно их именуют соответственно, например Layer 2 Switch или просто, сокращенно L2. Управление коммутатором может осуществляться посредством протокола Web‑интерфейса, SNMP, RMON (протокол, разработанный Cisco) и т.п. Многие управляемые коммутаторы позволяют выполнять дополнительные функции: VLAN, QoS, агрегирование, зеркалирование. Сложные коммутаторы можно объединять в одно логическое устройство – стек, с целью увеличения числа портов (например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 96 портами).
Под пассивным сетевым оборудованием подразумевается оборудование, не наделенное «интеллектуальными» особенностями. Ниже приведен краткий обзор [13].
Повторитель.
Повторитель (жарг. – репитер; англ. repeater) – сетевое оборудование.
Предназначен для увеличения расстояния сетевого соединения путём повторения электрического сигнала «один в один». Бывают однопортовые повторители и многопортовые. В терминах модели OSI работает на физическом уровне. Одной из первых задач, которая стоит перед любой технологией транспортировки данных, является возможность их передачи на максимально большое расстояние.
Физическая среда накладывает на этот процесс своё ограничение – рано или поздно мощность сигнала падает, и приём становится невозможным. При этом не имеет значения абсолютное значение амплитуды – для распознавания важно соотношение сигнал/шум.
Привычное для аналоговых систем усиление не годится для высокочастотных цифровых сигналов. Разумеется, при его использовании какой-то небольшой эффект может быть достигнут, но с увеличением расстояния искажения быстро нарушат целостность данных.
Проблема не нова, и в таких ситуациях применяют не усиление, а повторение сигнала. При этом устройство на входе должно принимать сигнал, далее распознавать его первоначальный вид, и генерировать на выходе его точную копию. Такая схема в теории может передавать данные на сколь угодно большие расстояния (если не учитывать особенности разделения физической среды в Ethernet).
Первоначально в Ethernet использовался коаксиальный кабель с топологией «шина», и нужно было соединять между собой всего несколько протяжённых сегментов. Для этого обычно использовались повторители (repeater), имевшие два порта. Несколько позже появились многопортовые устройства, называемые концентраторами (concentrator). Их физический смысл был точно такой же, но восстановленный сигнал транслировался на все активные порты, кроме того, с которого пришёл сигнал.
С появлением протокола 10baseT (витой пары) для избегания терминологической путаницы многопортовые повторители для витой пары стали называться сетевыми концентраторами (хабами), а коаксиальные – повторителями (репитерами), по крайней мере, в русскоязычной литературе. Эти названия хорошо прижились, и используются в настоящее время очень широко.
Сетевой концентратор.
Сетевой концентратор или Хаб (жарг. от англ. hub – центр деятельности) – сетевое устройство, предназначенное для объединения нескольких устройств Ethernet в общий сегмент сети. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна.
В настоящее время почти не выпускаются – им на смену пришли сетевые коммутаторы (свитчи), выделяющие каждое подключенное устройство в отдельный сегмент. Сетевые коммутаторы ошибочно называют «интеллектуальными концентраторами».
Принцип работы.
Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются. Таким образом, все подключенные к концентратору устройства находятся в одном домене коллизий. Концентраторы всегда работают в режиме полудуплекса, все подключенные устройства Ethernet разделяют между собой предоставляемую полосу доступа.
Многие модели концентраторов имеют простейшую защиту от излишнего количества коллизий, возникающих по причине одного из подключенных устройств. В этом случае они могут изолировать порт от общей среды передачи. По этой причине, сетевые сегменты, основанные на витой паре гораздо стабильнее в работе сегментов на коаксиальном кабеле, поскольку в первом случае каждое устройство может быть изолировано концентратором от общей среды, а во втором случае несколько устройств подключаются при помощи одного сегмента кабеля, и, в случае большого количества коллизий, концентратор может изолировать лишь весь сегмент [14].
В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы – устройства, работающие на канальном уровне модели OSI и повышающие производительность сети путём логического выделения каждого подключенного устройства в отдельный сегмент, домен коллизии.
Характеристики сетевых концентраторов.
Количество портов – разъёмов для подключения сетевых линий, обычно выпускаются концентраторы с 4, 5, 6, 8, 16, 24 и 48 портами (наиболее популярны с 4, 8 и 16). Концентраторы с большим количеством портов значительно дороже. Однако концентраторы можно соединять каскадно друг к другу, наращивая количество портов сегмента сети. В некоторых для этого предусмотрены специальные порты.
Скорость передачи данных – измеряется в Мбит/с, выпускаются концентраторы со скоростью 10, 100 и 1000. Кроме того, в основном распространены концентраторы с возможностью изменения скорости, обозначаются как 10/100/1000 Мбит/с. Скорость может переключаться как автоматически, так и с помощью перемычек или переключателей. Обычно, если хотя бы одно устройство присоединено к концентратору на скорости нижнего диапазона, он будет передавать данные на все порты с этой скоростью.
Тип сетевого носителя – обычно это витая пара или оптоволокно, но существуют концентраторы и для других носителей, а также смешанные, например для витой пары и коаксиального кабеля [15].
    продолжение
--PAGE_BREAK--Оптоволокно.
Оптоволокно – это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения. Из-за физических свойств оптоволокна необходимы специальные методы для их соединения с оборудованием. Оптоволокна являются базой для различных типов кабелей, в зависимости от того, где они будут использоваться.
Принцип передачи света внутри оптоволокна был впервые продемонстрирован во времена королевы Виктории (1837–1901 гг.), но развитие современных оптоволокон началось в 1950‑х годах. Они стали использоваться в связи несколько позже, в 1970‑х; с этого момента технический прогресс значительно увеличил диапазон применения и скорость распространения оптоволокон, а также уменьшил стоимость систем оптоволоконной связи.
Коаксиальный кабель.
Коаксиальный кабель (от лат. co – совместно и axis – ось, то есть «соосный») – вид электрического кабеля. Состоит из двух цилиндрических проводников, соосно вставленных один в другой. Чаще всего используется центральный медный проводник, покрытый пластиковым изолирующим материалом, поверх которого идёт второй проводник – медная оплётка или алюминиевая фольга с оплёткой из медных лужёных проволок. Современный телевизионный коаксиальный кабель имеет внутренний проводник из омеднённой стали, внутренний диэлектрик из вспененного полиэтилена и экранирование фольгой и стальной оплёткой. Некоторые кабели имеют два слоя фольги, между которыми находится стальная оплётка. Благодаря совпадению центров обоих проводников потери на излучение практически отсутствуют; одновременно обеспечивается хорошая защита от внешних электромагнитных помех. Поэтому такой кабель обеспечивает передачу данных на большие расстояния и использовался при построении компьютерных сетей (пока не был вытеснен витой парой). Используется в сетях кабельного телевидения и во многих других областях. Основной характеристикой кабеля является волновое сопротивление. В зависимости от этой величины и толщины коаксиальный кабель делится на несколько категорий. Компьютерные сети на основе этого кабеля обычно требуют наличия терминаторов (согласованных нагрузок) на оконечных точках.
Витая пара.
Витая пара (англ. twisted pair) – вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой (с небольшим числом витков на единицу длины), покрытых пластиковой оболочкой. Свивание проводников производится с целью повышения связи проводников одной пары (электромагнитная помеха одинаково влияет на оба провода пары) и последующего уменьшения электромагнитных помех от внешних источников, а также взаимных наводок при передаче дифференциальных сигналов. Для снижения связи отдельных пар кабеля (периодического сближения проводников различных пар) в кабелях UTP категории 5 и выше провода пары свиваются с различным шагом. Витая пара – один из компонентов современных структурированных кабельных систем. Используется в телекоммуникациях и в компьютерных сетях в качестве сетевого носителя во многих технологиях, таких как Ethernet, Arcnet и Token ring. В настоящее время, благодаря своей дешевизне и лёгкости в монтаже, является самым распространённым решением для построения локальных сетей [16].
Трансляция – достоинство сохраняет в неизменном виде программное обеспечение на клиентских компьютерах. Недостаток, как у любого централизованного средства, большие временные задержки в случае интенсивного поступления запросов.
Мультиплексирование – достоинство состоит в быстродействии. Недостаток избыточность и усложнение администрирования.
Инкапсуляция – достоинство приводит к более простым решениям. Недостаток не обеспечивает взаимодействия с узлами транзитной сети.

2. Технология АТМ
2.1 Базовые принципы технологии ATM
Базовые принципы, лежащие в основе технологии ATM, могут быть выражены в трех утверждениях:
сети ATM – это сети с трансляцией ячеек (cell-relay);
сети ATM – это сети с установлением соединения (connection-oriented);
сети ATM – это коммутируемые сети.
Сети с трансляцией ячеек.
Идея сети с трансляцией ячеек проста: данные передаются по сети небольшими пакетами фиксированного размера, называемыми ячейками (cells). В сети Ethernet передача данных осуществляется большими пакетами переменной длины, которые называют кадрами (frames). Ячейки имеют два важных преимущества перед кадрами. Во-первых, поскольку кадры имеют переменную длину, каждый поступающий кадр должен буферизоваться (т.е. сохраняться в памяти), что гарантирует его целостность до начала передачи. Поскольку ячейки всегда имеют одну и ту же длину, они требуют меньшей буферизации. Во-вторых, все ячейки имеют одинаковую длину, поэтому они предсказуемы: их заголовки всегда находятся на одном и том же месте. В результате коммутатор автоматически обнаруживает заголовки ячеек и их обработка происходит быстрее [17].
В сети с трансляцией ячеек размер каждой из них должен быть достаточно мал, чтобы сократить время ожидания, но достаточно велик, чтобы минимизировать издержки. Время ожидания (latency) – это интервал между тем моментом, когда устройство запросило доступ к среде передачи (кабелю), и тем, когда оно получило этот доступ. Сеть, по которой передается восприимчивый к задержкам трафик (например, звук или видео), должна обеспечивать минимальное время ожидания.
Любое устройство, подключенное к сети ATM (рабочая станция, сервер, маршрутизатор или мост), имеет прямой монопольный доступ к коммутатору. Поскольку каждое из них имеет доступ к собственному порту коммутатора, устройства могут посылать коммутатору ячейки одновременно. Время ожидания становится проблемой в том случае, когда несколько потоков трафика достигают коммутатора в один и тот же момент. Чтобы уменьшить время ожидания в коммутаторе, размер ячейки должен быть достаточно маленьким; тогда время, которое занимает передача ячейки, будет незначительно влиять на ячейки, ожидающие передачи.
Уменьшение размера ячейки сокращает время ожидания, но, с другой стороны, чем меньше ячейка, тем большая ее часть приходится на «издержки» (то есть на служебную информацию, содержащуюся в заголовке ячейки), а соответственно, тем меньшая часть отводится реальным передаваемым данным. Если размер ячейки слишком мал, часть полосы пропускания занимается впустую и передача ячеек происходит длительное время, даже если время ожидания мало [18].
Когда Американский национальный институт стандартов (American National Standards Institute – ANSI) и организация, которая сейчас называется Международным телекоммуникационным союзом (International Telecommunications Union – ITU), разрабатывали ATM, им было достаточно трудно найти компромисс между временем ожидания и издержками передачи. Эти организации должны были учесть интересы как телефонной отрасли, так и производителей оборудования для сетей передачи данных. Производителям средств телефонии нужен был небольшой размер ячейки, поскольку голос обычно передается маленькими фрагментами и уменьшение времени ожидания гарантировало бы своевременную доставку этих фрагментов. Производители средств передачи данных, наоборот, требовали увеличить размер ячейки, поскольку файлы данных часто бывают большими и более чувствительны к издержкам трафика, нежели ко времени ожидания. В конце концов эти две фракции договорились о размере ячейки, равном 53 байтам, из которых 48 байт отводится данным и 5 байт – заголовку ячейки [19].
Сети с установлением соединения.
Для передачи пакетов по сетям ATM от источника к месту назначения источник должен сначала установить соединение с получателем. Установление соединения перед передачей пакетов очень напоминает то, как осуществляется телефонный звонок: сначала вы набираете номер, телефон абонента звонит, и кто-то снимает трубку – только после этого вы можете начать говорить.
При использовании других технологий передачи данных, таких как Ethernet и Token Ring, соединение между источником и получателем не устанавливается – пакеты с соответствующей адресной информацией просто помещаются в среду передачи, а концентраторы, коммутаторы или маршрутизаторы находят получателя и доставляют ему пакеты.
Сети с установлением соединения имеют один недостаток – устройства не могут просто передавать пакеты, они обязательно должны сначала установить соединение. Однако такие сети имеют и ряд преимуществ. Поскольку коммутаторы могут резервировать для конкретного соединения полосу пропускания, сети с установлением соединения гарантируют данному соединению определенную часть полосы пропускания. Сети без установления соединения, в которых устройства просто передают пакеты по мере их получения, не могут гарантировать полосу пропускания.
Сети с установлением соединения также могут гарантировать определенное качество сервиса (Quality of Service – QoS), т.е. некоторый уровень сервиса, который сеть может обеспечить. QoS включает в себя такие факторы, как допустимое количество потерянных пакетов и допустимое изменение промежутка между ячейками. В результате сети с установлением соединения могут использоваться для передачи различных видов трафика – звука, видео и данных – через одни и те же коммутаторы. Кроме того, сети с установлением соединения могут лучше управлять сетевым трафиком и предотвращать перегрузку сети («заторы»), поскольку коммутаторы могут просто сбрасывать те соединения, которые они не способны поддерживать [21].
Коммутируемые сети.
В сети ATM все устройства, такие как рабочие станции, серверы, маршрутизаторы и мосты, подсоединены непосредственно к коммутатору. Когда одно устройство запрашивает соединение с другим, коммутаторы, к которым они подключены, устанавливают соединение. При установлении соединения коммутаторы определяют оптимальный маршрут для передачи данных – традиционно эта функция выполняется маршрутизаторами.
Когда соединение установлено, коммутаторы начинают функционировать как мосты, просто пересылая пакеты. Однако такие коммутаторы отличаются от мостов одним важным аспектом: если мосты отправляют пакеты по всем достижимым адресам, то коммутаторы пересылают ячейки только следующему узлу заранее выбранного маршрута.
Коммутация в сети Ethernet может быть сконфигурирована таким образом, что все рабочие станции окажутся подключенными непосредственно к коммутатору. В такой конфигурации коммутация в Ethernet похожа на коммутацию в сети ATM: каждое устройство осуществляет прямой монопольный доступ к порту коммутатора, который не является устройством совместного доступа.
Однако коммутация ATM имеет ряд важных отличий от коммутации Ethernet. Поскольку каждому устройству ATM предоставляется непосредственный монопольный доступ к порту коммутатора, то нет необходимости в сложных схемах арбитража для определения того, какое из этих устройств имеет доступ к коммутатору. В противоположность этому, рабочие станции, соединенные с коммутатором Ethernet, должны участвовать в схемах арбитража даже несмотря на их непосредственный монопольный доступ к порту коммутатора. Сетевые интерфейсные платы Ethernet рассчитаны на использование арбитражного протокола для определения того, имеет ли рабочая станция доступ к устройству [23].
ATM‑коммутация также отличается от коммутации Ethernet тем, что коммутаторы ATM устанавливают соединение между отправителем и получателем, а коммутаторы Ethernet – нет. Кроме того, коммутаторы ATM обычно являются неблокирующими; это означает, что они минимизируют «заторы», передавая ячейки немедленно после их получения. Чтобы получить возможность немедленной пересылки всех поступающих ячеек, неблокирующий коммутатор должен быть оснащен чрезвычайно быстрым механизмом коммутации и иметь достаточно большую пропускную способность выходных портов. Теоретически если у коммутатора есть 10 входных портов на 10 Мбит/с, у него должен также быть один выходной порт на 100 Мбит/с. На практике выходной порт может иметь немного меньшую пропускную способность, не утрачивая при этом способности немедленной пересылки всех поступающих ячеек.
2.2 Архитектура ATM
Такие технологии передачи, как Ethernet и Token Ring, соответствуют семиуровневой модели взаимодействия открытых систем (Open Systems Interconnection – OSI). ATM же имеет собственную модель, разработанную организациями по стандартизации.
Технология ATM была разработана организациями ANSI и ITU как транспортный механизм для широкополосной сети ISDN (Broadband Integrated Services Digital Network – B-ISDN). B-ISDN – это общедоступная территориально-распределенная сеть (WAN), которая может использоваться для объединения нескольких локальных сетей. Впоследствии ATM Forum – консорциум производителей оборудования для сетей ATM – приспособил и расширил стандарты B-ISDN для использования как в общедоступных, так и в частных сетях. Она также может служить транспортной средой для телефонной сети, узкополосной ISDN, связи городских сетей передачи данных (MAN) и др. пример в приложении 3.
Модель ATM, в соответствии с определением ANSI, ITU и ATM Forum, состоит из трех уровней:
физического;
уровня ATM;
уровня адаптации ATM.
Эти три уровня примерно соответствуют по функциям физическому, канальному и сетевому уровню модели OSI. В настоящее время модель ATM не включает в себя никаких дополнительных уровней, т.е. таких, которые соответствуют более высоким уровням модели OSI. Однако самый высокий уровень в модели ATM может связываться непосредственно с физическим, канальным, сетевым или транспортным уровнем модели OSI, а также непосредственно с ATM‑совместимым приложением [24].
В отличие от других протоколов передачи, ATM использует собственную модель, а не модель OSI.
Как в модели ATM, так и в модели OSI стандарты для физического уровня устанавливают, каким образом биты должны проходить через среду передачи. Точнее говоря, стандарты ATM для физического уровня определяют, как получать биты из среды передачи, преобразовывать их в ячейки и посылать эти ячейки уровню ATM.
Стандарты ATM для физического уровня также описывают, какие кабельные системы должны использоваться в сетях ATM и с какими скоростями может работать ATM при каждом типе кабеля. Изначально ATM Forum установил скорость DS3 (45 Мбит/с) и более высокие. Однако реализация ATM со скоростью 45 Мбит/с применяется главным образом провайдерами услуг WAN. Другие же компании чаще всего используют ATM со скоростью 25 или 155 Мбит/с. Хотя ATM Forum первоначально не принял реализацию ATM со скоростью 25 Мбит/с, отдельные производители стали ее сторонниками, поскольку такое оборудование дешевле в производстве и установке, чем работающее на других скоростях. Только 25‑мегабитная ATM может работать на неэкранированной витой паре (UTP) категории 3, а также на UTP более высокой категории и оптоволоконном кабеле. Вследствие того что оборудование для 25‑мегабитной ATM относительно недорого, оно предназначено для подключения к сети ATM настольных компьютеров.
155‑мегабитная ATM работает на кабелях UTP категории 5, экранированной витой паре (STP) типа 1, оптоволоконном кабеле и беспроводных инфракрасных лазерных каналах. 622‑мегабитная ATM работает только на оптоволоконном кабеле и может использоваться в локальных сетях (хотя оборудование, работающее с такой скоростью, реализовано еще недостаточно широко). А для беспроводной связи лаборатория Olivetti Research Labs создает прототип радиосети ATM, работающей со скоростью 10 Мбит/с [25].
2.3 Уровень ATM и виртуальные каналы
В модели OSI стандарты для канального уровня описывают, каким образом устройства могут совместно использовать среду передачи и гарантировать надежное физическое соединение. Стандарты для уровня ATM регламентируют передачу сигналов, управление трафиком и установление соединений в сети ATM. Функции передачи сигналов и управления трафиком уровня ATM подобны функциям канального уровня модели OSI, а функции установления соединения ближе всего к функциям маршрутизации, которые определены стандартами модели OSI для сетевого уровня.
Стандарты для уровня ATM описывают, как получать ячейку, сгенерированную на физическом уровне, добавлять 5‑байтный заголовок и посылать ячейку уровню адаптации ATM. Эти стандарты также определяют, каким образом нужно устанавливать соединение с таким качеством сервиса (QoS), которое запрашивает ATM‑устройство или конечная станция.
Стандарты установления соединения для уровня ATM определяют виртуальные каналы и виртуальные пути. Виртуальный канал ATM – это соединение между двумя конечными станциями ATM, которое устанавливается на время их взаимодействия. Виртуальный канал является двунаправленным; это означает, что после установления соединения каждая конечная станция может как посылать пакеты другой станции, так и получать их от нее.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Государственная политика в отношении насилия в семье
Реферат Книготорговые каталоги МОВольфа
Реферат Назначение наказания при повторности преступлений, не образующих совокупности
Реферат А «трагедии общественных прав»: каждый человек имеет естественные потребности для чрезмерного использования природных ресурсов и мало стимулов для их сохранения
Реферат 21 ноября 2001 г. N 186 об утверждении временного республиканского классификатора основных средств и нормативных сроков их службы
Реферат Творческое воображение подростков
Реферат Разработка технологии возделывания и уборки ячменя в полевом севообороте СПК Коммунар Янаульс
Реферат Категория рода у им н сцществительных
Реферат Природные зоны Северной Америки
Реферат Влияние мышечной деятельности, кальциевых нагрузок и их сочетания на реактивность лейкоцитов крови млекопитающих
Реферат Праздник в детском саду
Реферат Место Китая в мировой экономике
Реферат Вексель и проблемы взысканий по векселю
Реферат «Центральный научно-исследовательский институт организации и информатизации здравоохранения Федерального агентства по здравоохранению и социальному развитию»
Реферат Проблемы иностранного инвестирования и экономическая безопасность