Реферат по предмету "Экономико-математическое моделирование"


§®§Я§а§Ш§Ц§г§д§У§Ц§Я§Я§С§с §Ъ §б§а§к§С§Ф§а§У§С§с §в§Ц§Ф§в§Ц§г§г§Ъ§с

§®§Ъ§Я§Ъ§г§д§Ц§в§г§д§У§а §а§Т§в§С§Щ§а§У§С§Я§Ъ§с §Ъ §Я§С§е§Ь§Ъ §І§¶ §¶§Ц§Х§Ц§в§С§Э§о§Я§а§Ц §С§Ф§Ц§Я§д§г§д§У§а §б§а §а§Т§в§С§Щ§а§У§С§Я§Ъ§р §¤§°§µ §Ј§±§° §µ§Э§о§с§Я§а§У§г§Ь§Ъ§Ы §Ф§а§г§е§Х§С§в§г§д§У§Ц§Я§Я§н§Ы §д§Ц§з§Я§Ъ§й§Ц§г§Ь§Ъ§Ы §е§Я§Ъ§У§Ц§в§г§Ъ§д§Ц§д §¬§С§ж§Ц§Х§в§С §б§в§Ъ§Ь§Э§С§Х§Я§а§Ы §Ю§С§д§Ц§Ю§С§д§Ъ§Ь§Ъ §Ъ §Ъ§Я§ж§а§в§Ю§С§д§Ъ§Ь§Ъ §ґ§Ъ§б§а§У§а§Ы §в§С§г§й§Ц§д §®§Я§а§Ш§Ц§г§д§У§Ц§Я§Я§С§с §Ъ §б§а§к§С§Ф§а§У§С§с §в§Ц§Ф§в§Ц§г§г§Ъ§с §Ј§С§в§Ъ§С§Я§д n=5 §Ј§н§б§а§Э§Я§Ъ§Э: §г§д§е§Х§Ц§Я§д §Ф§в§е§б§б§н §¶§Ь§Х§е-11 §Ј§С§г§Ц§й§Ь§Ъ§Я §Ј.§і. §µ§Э§о§с§Я§а§У§г§Ь 2007


§і§а§Х§Ц§в§Ш§С§Я§Ъ§Ц 1. §©§С§Х§С§Я§Ъ§ЦЎ­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ 3 2. §ґ§С§Т§Э§Ъ§и§С §п§Ь§г§б§Ц§в§Ъ§Ю§Ц§Я§д§С§Э§о§Я§н§з §Х§С§Я§Я§н§зЎ­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ 3 3. §І§Ц§Щ§е§Э§о§д§С§д§нЎ­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ 3 3.1. §®§Я§а§Ш§Ц§г§д§У§Ц§Я§Я§С§с §в§Ц§Ф§в§Ц§г§г§Ъ§сЎ­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ Ў­Ў­Ў­Ў­Ў­Ў­Ў­.4 3.1.1. §І§Ц§Щ§е§Э§о§д§С§д§нЎ­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­4 3.1.2. §°§и§Ц§Я§Ь§С §Ь§С§й§Ц§г§д§У§СЎ­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­


Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ 5 3.1.3. §Ґ§Ъ§С§Ф§Я§а§г§д§Ъ§Ь§С §г§а§Т§Э§р§Х§Ц§Я§Ъ§с §І§Ў-§®§Ї§¬Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ 5 3.2. §±§а§к§С§Ф§а§У§С§с §в§Ц§Ф§в§Ц§г§г§Ъ§сЎ­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ 6 3.2.1. §І§Ц§Щ§е§Э§о§д§С§д§нЎ­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­6 3.2.2. §°§и§Ц§Я§Ь§С §Ь§С§й§Ц§г§д§У§СЎ­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ 8 3.2.3. §Ґ§Ъ§С§Ф§Я§а§г§д§Ъ§Ь§С §г§а§Т§Э§р§Х§Ц§Я§Ъ§с §І§Ў-§®§Ї§¬Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ 8


§Ј§н§У§а§Х§нЎ­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ 9 §¤§в§С§ж§Ъ§Ь§ЪЎ­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­10 §і§б§Ъ§г§а§Ь §Ъ§г§б§а§Э§о§Щ§е§Ц§Ю§а§Ы §Э§Ъ§д§Ц§в§С§д§е§в§нЎ­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­Ў­ Ў­Ў­Ў­Ў­Ў­Ў­16 1. §©§С§Х§С§Я§Ъ§Ц 1.§±§в§Ъ§Ю§Ц§Я§Ъ§д§о §б§в§а§и§Ц§Х§е§в§н MR §Ъ §±§І §г ¦В0. 2.§°§и§Ц§Я§Ъ§д§о §Ь§С§й§Ц§г§д§У§а §б§а§г§д§е§Э§Ъ§в§е§Ц§Ю§а§Ы (MR) §Ъ §а§б§д§Ъ§Ю§С§Э§о§Я§а§Ы (§±§І) §Ю§а§Х§Ц§Э§Ц§Ы §б§а F- §Ъ R- §Ь§в§Ъ§д§Ц§в§Ъ§с§Ю.


3.§±§в§а§У§Ц§в§Ъ§д§о §г§а§Т§Э§р§Х§Ц§Я§Ъ§Ц §е§г§Э§а§У§Ъ§Ы §І§Ў-§®§Ї§¬ §Х§Э§с §б§а§г§д§е§Э§Ъ§в§е§Ц§Ю§а§Ы §Ъ §а§б§д§Ъ§Ю§С§Э§о§Я§а§Ы §Ю§а§Х§Ц§Э§Ъ. 4.§і§Х§Ц§Э§С§д§о §а§Т§л§Ъ§Ц §У§н§У§а§Х§н §б§а §С§Я§С§Э§Ъ§Щ§е. 2. §ґ§С§Т§Э§Ъ§и§С §п§Ь§г§б§Ц§в§Ъ§Ю§Ц§Я§д§С§Э§о§Я§н§з §Х§С§Я§Я§н§з (§ґ§ї§Ґ) §Є§Ю§Ц§р§д§г§с §Х§С§Я§Я§н§Ц §а §Х§Ц§с§д§Ц§Э§о§Я§а§г§д§Ъ §Ь§в§е§б§Я§Ц§Ы§к§Ъ§з §Ь§а§Ю§б§С§Я§Ъ§Ы §і§є§Ў §У 1996 §Ф. Ўн §б/§б §№§Ъ§г§д§н§Ы §Х§а§з§а§Х, §Ю§Э§в§Х. §Х§а§Э§Э. §і§є§Ў, §е §°§Т§а§в§а§д §Ь§С§б§Ъ§д§С§Э§С, §Ю§Э§в§Х.


§Х§а§Э§Э. §і§є§Ў, §з1 §Є§г§б§а§Э§о§Щ§а§У§С§Я§Я§н§Ы §Ь§С§б§Ъ§д§С§Э, §Ю§Э§в§Х. §Х§а§Э§Э. §і§є§Ў, §з2 §№§Ъ§г§Э§Ц§Я§Я§а§г§д§о §г§Э§е§Ш§С§л§Ъ§з, §д§н§г. §й§Ц§Э §з3 §І§н§Я§а§й§Я§С§с §Ь§С§б§Ъ§д§С§Э§Ъ§Щ§С§и§Ъ§с §Ь§а§Ю§б§С§Я§Ъ§Ъ, §Ю§Э§в§Х. §Х§а§Э§Э. §і§є§Ў, §з4 1 0,95 31,35 18,95 43,05 40,95 2 1,75 13,45 13,75 64,75 40,55 3 0,75 4,55 18,55 24,05 38,95 4 1,75 10,05 4,85 50,25 38,55 5 2,65 20,05 21,85 106,05 37,35 6 1,35 15,05 5,85 96,65 26,55 7 4,15 137,15 99,05 347,05 37,05 8 1,65 17,95 20,15 85,65 36,85 9 6,95 165,45 60,62 745,05 36,35 10 0,45 2,05 1,45 4,15 35,35 11 1,35 6,85 8,05 26,85 35,35 12 1,95 27,15 18,95 42,75 35,05 13 1,95 13,45 13,25 61,85 26,25 14 1,45 9,85 12,65 212,05 33,15 15 0,45 19,55 12,25 105,05 32,75 16 0,85 6,85 3,25 33,55 32,15 17 1,85 27,05 13,05 142,05 30,55 18 0,95 12,45 6,95 96,05 29,85 19 1,15 17,75 15,05 140,05 25,45 20 1,95 12,75 11,95 59,35 29,35 21 - 0,85 21,45 1,65 131,05 29,25 22 1,35 13,55 8,65 70,75 29,25 23 2,05 13,45 11,55 65,45 29,15 24 0,65 4,25 1,95 23,15 27,95 25 0,72 15,55 5,85 80,85 27,25 3.§І§Ц§Щ§е§Э§о§д§С§д§н §І§Ц§к§Ц§Я§Ъ§Ц §Х§С§Я§Я§а§Ф§а §д§Ъ§б§а§У§а§Ф§а §в§С§г§й§Ц§д§С §а§г§е§л§Ц§г§д§У§Э§с§Э§а§г§о §г §Ъ§г§б§а§Э§о§Щ§а§У§С§Я§Ъ§Ц§Ю


ContinueЎ­ and serial correlation of residuals Durbin- Watson d Serial Corr. Estimate 1.717223 160081 3.1.2. §°§и§Ц§Я§Ь§С §Ь§С§й§Ц§г§д§У§С §ґ§С§Ь §Ь§С§Ь §ж§С§Ь§д§Ъ§й§Ц§г§Ь§а§Ц §Щ§Я§С§й§Ц§Я§Ъ§Ц §Ь§в§Ъ§д§Ц§в§Ъ§с §¶§Ъ§к§Ц§в§С §Т§а§Э§о§к§Ц, §й§Ц§Ю §д§С§Т§Э§Ъ§й§Я§а§Ц, §д§а §Я§Ц§а§Т§з§а§Х§Ъ§Ю§а §г§Х§Ц§Э§С§д§о §У§н§У§а§Х §а §Щ§Я§С§й§Ъ§Ю§а§г§д§Ъ §Ю§а§Х§Ц§Э§Ъ §е§в§С§У§Я§Ц§Я§Ъ§с §в§Ц§Ф§в§Ц§г§г§Ъ§Ъ, §Ъ§г§г§Э§Ц§Х§е§Ю§С§с §Щ§С§У§Ъ§г§Ъ§Ю§С§с §б§Ц§в§Ц§Ю§Ц§Я§Я§С§с §з§а§в§а§к§а §а§б§Ъ§г§н§У§С§Ц§д§г§с §б§Ц§в§Ц§Ю§Ц§Я§Я§н§Ю§Ъ


X1 X2 X3 X4. 3.1.3. §Ґ§Ъ§С§Ф§Я§а§г§д§Ъ§Ь§С §г§а§Т§Э§р§Х§Ц§Я§Ъ§с §І§Ў-§®§Ї§¬ §±§в§а§У§Ц§в§Ъ§Ю §г§а§Т§Э§р§Х§Ц§Я§Ъ§Ц §а§г§Я§а§У§Я§н§з §б§в§Ц§Х§б§а§Э§а§Ш§Ц§Я§Ъ§Ы §ІA <2.1> - <5.2>. §і§а§Т§Э§р§Х§Ц§Я§Ъ§Ц §б§в§Ц§Х§б§а§Э§а§Ш§Ц§Я§Ъ§Ы <1.1> - <1.4> §п§Ь§г§б§Ц§в§Ъ§Ю§Ц§Я§д§С§д§а§в §г§д§С§в§С§Ц§д§г§с §а§Т§Ц§г§б§Ц§й§Ъ§д§о §б§в§Ъ §а§в§Ф§С§Я§Ъ§Щ§С§и§Ъ§Ъ §п§Ь§г§б§Ц§в§Ъ§Ю§Ц§Я§д§С. <2.1> §Ј §г§Э§е§й§С§Ц §г ¦В0 §Ю§а§Х§Ц§Э§о §Ъ§Щ§Т§н§д§а§й§Я§С, §д.§Ь. §Х§Э§с §в§Ц§Ф§в§Ц§г§г§а§в§а§У X1, X2, X3, X4, p-


Level §б§в§Ц§У§н§к§С§Ц§д §е§в§а§У§Ц§Я§о §Щ§Я§С§й§Ъ§Ю§а§г§д§Ъ=0,05. §ў§Ц§г§б§а§в§с§Х§а§й§Я§н§Ы §з§С§в§С§Ь§д§Ц§в §Ф§в§С§ж§Ъ§Ь§а§У §е§Ь§С§Щ§н§У§С§Ц§д §а§д§г§е§д§г§д§У§Ъ§Ц §У §Ю§а§Х§Ц§Э§с§з §Щ§Я§С§й§Ъ§Ю§а§Ф§а §ж§С§Ь§д§а§в§С. §ґ§С§Ь§а§Ы §з§С§в§С§Ь§д§Ц§в §в§С§г§б§а§Э§а§Ш§Ц§Я§Ъ§с §д§а§й§Ц§Ь §а§Щ§Я§С§й§С§Ц§д, §й§д§а §д§С§Ь§Ъ§Ц §Ю§а§Х§Я§Э§Ъ §У§в§с§Х §Э§Ъ §Ю§а§Ш§Я§а §е§Э§е§й§к§Ъ§д§о. <2.2> §і§б§Ц§и§Ъ§С§Э§о§Я§н§з §б§в§Ъ§Щ§Я§С§Ь§а§У §Я§С§в§е§к§Ц§Я§Ъ§с <2.2> §Я§Ц §г§е§л§Ц§г§д§У§е§Ц§д. §¬§а§г§У§Ц§Я§Я§н§Ю§Ъ §б§в§Ъ§Щ§Я§С§Ь§С§Ю§Ъ


§Ю§а§Ф§е§д §Т§н§д§о §б§в§Ъ§Щ§Я§С§Ь§Ъ §Я§С§в§е§к§Ц§Я§Ъ§с §б§в§Ц§Х§б§а§Э§а§Ш§Ц§Я§Ъ§с <3.1>, §С §Ъ§Ю§Ц§Я§Я§а, §Щ§Я§С§й§Ъ§Ю§н§Ц §Ь§а§п§ж§ж§Ъ§и§Ъ§Ц§Я§д§н §б§С§в§Я§а§Ы §Ь§а§в§в§Ц§Э§с§и§Ъ§Ъ. <3.1> §Ї§С§в§е§к§Ц§Я§Ъ§Ц §п§д§а§Ф§а §б§в§Ц§Х§б§а§Э§а§Ш§Ц§Я§Ъ§с §д§в§С§Ь§д§е§Ц§д§г§с §Ь§С§Ь §с§У§Э§Ц§Я§Ъ§Ц §Ю§е§Э§о§д§Ъ§Ь§а§Э§Э§Ъ§Я§Ц§С§в§Я§а§г§д§Ъ . §Ї§С§Ъ§Т§а§Э§Ц§Ц §й§С§г§д§а §Ю§е§Э§о§д§Ъ§Ь§а§Э§Э§Ъ§Я§Ц§С§в§Я§а§г§д§о §а§Т§г§Э§е§Ш§Ъ§У§С§Ц§д§г§с §б§а §Ь§а§п§ж§ж§Ъ§и§Ъ§Ц§Я§д§С§Ю §б§С§в§Я§а§Ы §Ь§а§в§в§Ц§Э§с§и§Ъ§Ъ rij §Ю§С§д§в§Ъ§и§н


R. ContinueЎ­ X1 X2 X3 X4 Y X1 1.00 .90 .91 .25 .85 X2 .90 1.00 .71 .35 .76 X3 .91 .71 1.00 .12 .83 X4 .25 .35 .12 1.00 .27 Y .85 .76 .83 .27 1.00 §¬§а§п§ж§ж§Ъ§и§Ъ§Ц§Я§д§н rx1x2, rx1x3 §г§е§л§Ц§г§д§У§Ц§Я§Я§а §а§д§Э§Ъ§й§Я§н §а§д 0, §г§Э§Ц§Х§а§У§С§д§Ц§Э§о§Я§а, §Ю§е§Э§о§д§Ъ§Ь§а§Э§Э§Ъ§Я§Ц§С§в§Я§а§г§д§о §Щ§Я§С§й§Ъ§Ю§С. <3.2> §° §Я§С§в§е§к§Ц§Я§Ъ§Ъ §е§г§Э§а§У§Ъ§с §Я§Ц§г§Э§е§й§С§Ы§Я§а§г§д§Ъ rij §Ю§а§Ш§Я§а §г§е§Х§Ъ§д§о §б§а §Ь§а§г§г§У§Ц§Я§Я§а§Ю§е


§б§в§Ъ§Щ§Я§С§Ь§е ЁC §в§Ц§Щ§Ь§а§Ю§е §Я§С§Э§Ъ§й§Ъ§р §У§Я§е§д§в§Ц§Я§Я§Ц§Ы §Ъ §У§Я§Ц§к§Я§Ц§Ы §д§а§й§Я§а§г§д§о§р §б§в§а§Ф§Я§а§Щ§С. <4.1> §°§Т§н§й§Я§а §Я§С§в§е§к§Ц§Я§Ъ§Ц §б§в§Ц§Х§б§а§Э§а§Ш§Ц§Я§Ъ§с §а§Т §С§Х§Х§Ъ§д§Ъ§У§Я§а§г§д§Ъ ¦Е §б§в§а§Ъ§г§з§а§Х§Ъ§д §б§в§Ъ §б§Ц§в§Ц§з§а§Х§Ц §а§д §Я§Ц§Э§Ъ§Я§Ц§Ы§Я§а§Ы §б§а ¦В §Ю§а§Х§Ц§Э§Ъ (§У§Я§е§д§в§Ц§Я§Я§Ц §Э§Ъ§Я§Ц§Ы§Я§а§Ы) §Ь §Э§Ъ§Я§Ц§Ы§Я§а§Ы. §Ј §Х§С§Я§Я§а§Ю §б§в§Ъ§Ю§Ц§в§Ц §Ю§н §Ъ§Ю§Ц§Ц§Ю §Х§Ц§Э§а §г §Э§Ъ§Я§Ц§Ы§Я§а§Ы §Ю§а§Х§Ц§Э§о§р. <4.3> §µ§г§Э§а§У§Ъ§Ц §®[¦Е]=0, §Я§Ц §д§в§Ц§Т§е§Ц§д §а§г§а§Т§а§Ф§а §У§Я§Ъ§Ю§С§Я§Ъ§с


§б§в§Ъ §Я§С§Э§Ъ§й§Ъ§Ъ ¦В0 §У §Ю§а§Х§Ц§Э§Ъ. <4.4> §¬§С§Ь §У§Ъ§Х§Я§а §Ъ§Щ §Ф§в§С§ж§Ъ§Ь§а§У, §е§г§Э§а§У§Ъ§Ц §а§Х§Я§а§в§а§Х§Я§а§г§д§Ъ §Я§С§Т§Э§р§Х§Ц§Я§Ъ§Ы §Я§С§в§е§к§С§Ц§д§г§с. <4.5> §Ў§У§д§а§в§Ц§Ф§в§Ц§г§г§Ъ§с §б§а§Э§а§Ш§Ъ§д§Ц§Э§о§Я§С, §д.§Ь. D §Я§С§з§а§Х§Ъ§д§г§с §У §Ъ§Я§д§Ц§в§У§С§Э§Ц 0-2 (§Х§Э§с §Ю§а§Х§Ц§Э§Ъ §г ¦В0): ContinueЎ­ and serial correlation of residuals Durbin- Watson d Serial Corr. Estimate 1.717223 160081 <5.1> §°§г§Я§а§У§Я§н§Ю §б§в§Ъ§Щ§Я§С§Ь§а§Ю


§Я§С§в§е§к§Ц§Я§Ъ§с §е§г§Э§а§У§Ъ§с §а §д§а§й§Я§а§Ы §Ъ§Х§Ц§Я§д§Ъ§ж§Ъ§Ь§С§и§Ъ§Ъ §с§У§Э§с§Ц§д§г§с §Я§Ц§г§а§Т§Э§р§Х§Ц§Я§Ъ§Ц §е§г§Э§а§У§Ъ§с <3.1>. §¶§а§в§Ю§С§Э§о§Я§н§Ю §б§в§Ъ§Щ§Я§С§Ь§а§Ю §с§У§Э§с§Ц§д§г§с §б§в§Ъ§Ю§Ц§Я§Ц§Я§Ъ§Ц §Я§Ц§б§а§Э§Я§а§Ф§а §Ю§Ц§д§а§Х§С §б§Ц§в§Ц§Т§а§в§С. <5.2> §Ґ§Э§с §Ю§Я§а§Ф§а§а§д§Ь§Э§Ъ§Ь§а§У§а§Ы §Щ§С§Х§С§й§Ъ §б§в§С§У§а§Ю§Ц§в§Я§а §б§в§Ъ§Ю§Ц§Я§Ц§Я§Ъ§Ц §®§Ї§¬ §Ь §Ь§С§Ш§Х§а§Ы §Ъ§Щ §в§Ц§Ф§в§Ц§г§г§Ъ§Ы §У §а§д§Х§Ц§Э§о§Я§а§г§д§Ъ. §Ј §Х§С§Я§Я§а§Ю §г§Э§е§й§С§Ц §Ю§а§Х§Ц§Э§Ъ §а§Х§Я§а§а§д§Ь§Э§Ъ§Ь§а§У§н§Ц.


3.2. §±§а§к§С§Ф§а§У§С§с §в§Ц§Ф§в§Ц§г§г§Ъ§с 3.2.1. §І§Ц§Щ§е§Э§о§д§С§д§н §©§С§Х§С§Х§Ъ§Ю §Щ§С§У§Ъ§г§Ъ§Ю§е§р §б§Ц§в§Ц§Ю§Ц§Я§Я§е§р Y §Ъ §Я§Ц§Щ§С§У§Ъ§г§Ъ§Ю§н§Ц X1 X2 X3 X4. §Є§д§а§Ф§Ъ §С§Я§С§Э§Ъ§Щ§С §г §Ъ§г§б§а§Э§о§Щ§а§У§С§Я§Ъ§Ц§Ю §б§С§Ь§Ц§д§С §С§Я§С§Э§Ъ§Щ§С STATISTICA. §°§Т§м§Ц§Ю §У§н§Т§а§в§Ь§Ъ, §г§в§Ц§Х§Я§Ц§Ц §г§д§С§Я§Х§С§в§д§Я§а§Ц §а§д§Ь§Э§а§Я§Ц§Я§Ъ§Ц: ContinueЎ­ mean St. dev. N X1 25.5320 38.7453 25 X2 16.3760 20.7695 25


X3 114.2720 149.3857 25 X4 32.8200 4.7355 25 Y 1.5800 1.4393 25 §®§С§д§в§Ъ§и§С §Ь§а§в§в§Ц§Э§с§и§Ъ§Ъ §Ъ§Ю§Ц§Ц§д §У§Ъ§Х: ContinueЎ­ X1 X2 X3 X4 Y X1 1.00 .90 .91 .25 .85 X2 .90 1.00 .71 .35 .76 X3 .91 .71 1.00 .12 .83 X4 .25 .35 .12 1.00 .27 Y .85 .76 .83 .27 1.00 1 §к§С§Ф: §Ї§С§Ы§Х§Ц§Ю §Ь§а§п§ж§ж§Ъ§и§Ъ§Ц§Я§д §Х§Ц§д§Ц§в§Ю§Ъ§Я§С§и§Ъ§Ъ R2 §Ъ §б§в§а§У§Ц§в§Ъ§Ю §Щ§Я§С§й§Ъ§Ю§а§г§д§о §е§в§а§У§Я§с §в§Ц§Ф§в§Ц§г§г§Ъ§Ъ §б§в§Ъ §б§а§Ю§а§л§Ъ §Ь§в§Ъ§д§Ц§в§Ъ§с


§¶§Ъ§к§Ц§в§С. §Є§д§а§Ф§Ъ §С§Я§С§Э§Ъ§Щ§С §Я§С §б§Ц§в§У§а§Ю §к§С§Ф§Ц §г §Ъ§г§б§а§Э§о§Щ§а§У§С§Я§Ъ§Ц§Ю §б§С§Ь§Ц§д§С §С§Я§С§Э§Ъ§Щ§С STATISTICA. Multiple Regression results (Step 1) Dep. Var. : Y Multiple R : .86951977 F = 21.69613 RI : .75606464 df = 3,21 No of cases : 25 adjusted RI: .72121673 p = .01 Standart error of estimate: .754025957 Intercept:.37562 Std.Error: 1.151655 t(21)= 3261 p<.7476


X2 beta=.298 X3 beta=.606 X4 beta=.095 (significant betaЎЇs are highlighted) §µ§в§С§У§Я§Ц§Я§Ъ§Ц §в§Ц§Ф§в§Ц§г§г§Ъ§Ъ §Щ§Я§С§й§Ъ§Ю§а, §д.§Ь. Ft=3,21

Dep. Var. : Y Multiple R : .86511671 F = 32.72487 RI : .74842693 df = 2,22 No of cases : 25 adjusted RI: .72555665 p = .0 Standart error of estimate: .754025957 Intercept:.544074889 Std.Error: .1986340 t(22)=-2.7391 p<.0120 X2 beta=.350 X3 beta=.580 (significant betaЎЇs are highlighted) §µ§в§С§У§Я§Ц§Я§Ъ§Ц §в§Ц§Ф§в§Ц§г§г§Ъ§Ъ §Щ§Я§С§й§Ъ§Ю§а, §д.§Ь. Ft=2,22

Multiple Regression results (Step 3, final solution) no other F to remove 1s less than specified limit Dep. Var. : Y Multiple R : .82956794 F = 50.76120 RI : .68818297 df = 1,23 No of cases : 25 adjusted RI: .67462571 p = .0 Standart error of estimate: .821015883 Intercept:.666638659 Std.Error: .1986340 t(23)=3.2001 p<.0040


X3 beta=.830 (significant betaЎЇs are highlighted) §Ї§С §д§в§Ц§д§о§Ц§Ю §п§д§С§б§Ц §Я§С§Ю§Ъ §б§а§Э§е§й§Ц§Я§С §а§б§д§Ъ§Ю§С§Э§о§Я§С§с §Ъ§г§Ь§а§Ю§С§с §Ю§а§Х§Ц§Э§о: Y=0,666638659+0,830X3 §і§д§С§д§Ъ§г§д§Ъ§Ь§С §Ґ§С§в§Т§Ъ§Я§С-§µ§а§д§г§а§Я§С ContinueЎ­ and serial correlation of residuals Durbin- Watson d Serial Corr. Estimate 1.953311 035796 3.2.2. §°§и§Ц§Я§Ь§С §Ь§С§й§Ц§г§д§У§С §ґ§С§Ь §Ь§С§Ь §ж§С§Ь§д§Ъ§й§Ц§г§Ь§а§Ц


§Щ§Я§С§й§Ц§Я§Ъ§Ц §Ь§в§Ъ§д§Ц§в§Ъ§с §¶§Ъ§к§Ц§в§С §Т§а§Э§о§к§Ц, §й§Ц§Ю §д§С§Т§Э§Ъ§й§Я§а§Ц, §д§а §Я§Ц§а§Т§з§а§Х§Ъ§Ю§а §г§Х§Ц§Э§С§д§о §У§н§У§а§Х §а §Щ§Я§С§й§Ъ§Ю§а§г§д§Ъ §Ю§а§Х§Ц§Э§Ъ §е§в§С§У§Я§Ц§Я§Ъ§с §в§Ц§Ф§в§Ц§г§г§Ъ§Ъ, §Ъ§г§г§Э§Ц§Х§е§Ц§Ю§С§с §Щ§С§У§Ъ§г§Ъ§Ю§С§с §б§Ц§в§Ц§Ю§Ц§Я§Я§С§с §з§а§в§а§к§а §а§б§Ъ§г§н§У§С§Ц§д§г§с §б§Ц§в§Ц§Ю§Ц§Я§Я§а§Ы §·3. 3.2.3. §Ґ§Ъ§С§Ф§Я§а§г§д§Ъ§Ь§С §г§а§Т§Э§р§Х§Ц§Я§Ъ§с §е§г§Э§а§У§Ъ§с §І§Ў-§®§Ї§¬ §±§в§а§У§Ц§в§Ъ§Ю §г§а§Т§Э§р§Х§Ц§Я§Ъ§Ц §а§г§Я§а§У§Я§н§з §б§в§Ц§Х§б§а§Э§а§Ш§Ц§Я§Ъ§Ы §ІA <2.1> -


<5.2>. §і§а§Т§Э§р§Х§Ц§Я§Ъ§Ц §б§в§Ц§Х§б§а§Э§а§Ш§Ц§Я§Ъ§Ы <1.1> - <1.4> §п§Ь§г§б§Ц§в§Ъ§Ю§Ц§Я§д§С§д§а§в §г§д§С§в§С§Ц§д§г§с §а§Т§Ц§г§б§Ц§й§Ъ§д§о §б§в§Ъ §а§в§Ф§С§Я§Ъ§Щ§С§и§Ъ§Ъ §п§Ь§г§б§Ц§в§Ъ§Ю§Ц§Я§д§С. <2.1> §Ј §г§Э§е§й§С§Ц §г §б§а§к§С§Ф§а§У§а§Ы §в§Ц§Ф§в§Ц§г§г§Ъ§Ц§Ы §Ю§а§Х§Ц§Э§о §Я§Ц§Ъ§Щ§Т§н§д§а§й§Я§С §Х§Э§с §в§Ц§Ф§в§Ц§г§г§а§в§С §·3 §Ъ §Ъ§Щ§Т§н§д§а§й§Я§С §Х§Э§с §а§г§д§С§Э§о§Я§н§з §в§Ц§Ф§в§Ц§г§г§а§в§а§У, §д.§Ь. §Х§Э§с §·1, §·2, §·4 p-level §б§в§Ц§У§н§к§С§Ц§д §е§в§а§У§Ц§Я§о §Щ§Я§С§й§Ъ§Ю§а§г§д§Ъ =0,05. §ў§Ц§г§б§а§в§с§Х§а§й§Я§н§Ы


§з§С§в§С§Ь§д§Ц§в §в§С§г§б§а§Э§а§Ш§Ц§Я§Ъ§с §д§а§й§Ц§Ь §а§Щ§Я§С§й§С§Ц§д, §й§д§а §д§С§Ь§Ъ§Ц §Ю§а§Х§Ц§Э§Ъ §У§в§с§Х §Э§Ъ §Ю§а§Ш§Я§а §е§Э§е§й§к§Ъ§д§о. <2.2> §і§б§Ц§и§Ъ§С§Э§о§Я§н§з §б§в§Ъ§Щ§Я§С§Ь§а§У §Я§С§в§е§к§Ц§Я§Ъ§с <2.2> §Я§Ц §г§е§л§Ц§г§д§У§е§Ц§д. §¬§а§г§У§Ц§Я§Я§н§Ю§Ъ §б§в§Ъ§Щ§Я§С§Ь§С§Ю§Ъ §Ю§а§Ф§е§д §Т§н§д§о §б§в§Ъ§Щ§Я§С§Ь§Ъ §Я§С§в§е§к§Ц§Я§Ъ§с §б§в§Ц§Х§б§а§Э§а§Ш§Ц§Я§Ъ§с <3.1>, §С §Ъ§Ю§Ц§Я§Я§а, §Щ§Я§С§й§Ъ§Ю§н§Ц §Ь§а§п§ж§ж§Ъ§и§Ъ§Ц§Я§д§н §б§С§в§Я§а§Ы §Ь§а§в§в§Ц§Э§с§и§Ъ§Ъ. <2.3> §° §Я§Ц§а§Т§з§а§Х§Ъ§Ю§а§г§д§Ъ


§е§г§д§в§С§Я§Ц§Я§Ъ§с ¦В0 §г§е§Х§с§д §Ъ§Щ §г§е§л§Ц§г§д§У§С §б§в§а§и§Ц§г§г§С §Ъ§Э§Ъ §Ъ§Щ §в§Ц§Щ§е§Э§о§д§С§д§а§У §г§в§С§У§Я§Ц§Я§Ъ§с §г §б§в§Ъ§Ю§Ц§Я§Ц§Я§Ъ§Ц§Ю §У§Я§Ц§к§Я§Ъ§з §Ь§в§Ъ§д§Ц§в§Ъ§Ц§У §Ь§С§й§Ц§г§д§У§С. <3.1> §Ї§С§Ъ§Т§а§Э§Ц§Ц §й§С§г§д§а §Ю§е§Э§о§д§Ъ§Ь§а§Э§Э§Ъ§Я§Ц§С§в§Я§а§г§д§о §а§Т§Я§С§в§е§Ш§Ъ§У§С§Ц§д§г§с §б§а §Ь§а§п§ж§ж§Ъ§и§Ъ§Ц§Я§д§С§Ю §б§С§в§Я§а§Ы §Ь§а§в§в§Ц§Э§с§и§Ъ§Ъ rij §Ю§С§д§в§Ъ§и§н R. ContinueЎ­ X1 X2 X3 X4 Y X1 1.00 .90 .91 .25 .85


X2 .90 1.00 .71 .35 .76 X3 .91 .71 1.00 .12 .83 X4 .25 .35 .12 1.00 .27 Y .85 .76 .83 .27 1.00 §¬§а§п§ж§ж§Ъ§и§Ъ§Ц§Я§д§н §б§С§в§Я§а§Ы §Ь§а§в§в§Ц§Э§с§и§Ъ§Ъ rij §Ю§С§д§в§Ъ§и§н R §г§е§л§Ц§г§д§У§Ц§Я§Я§а §а§д§Э§Ъ§й§С§р§д§г§с §а§д 0, §г§Э§Ц§Х§а§У§С§д§Ц§Э§о§Я§а §Ю§е§Э§о§д§Ъ§Ь§а§Э§Э§Ъ§Я§Ц§С§в§Я§а§г§д§о §Щ§Я§С§й§Ъ§Ю§С. <3.2> §°§Т§н§й§Я§а §Я§С§в§е§к§Ц§Я§Ъ§Ц §е§г§Э§а§У§Ъ§с §г§Э§е§й§С§Ы§Я§а§г§д§Ъ rij §Ю§а§Ш§Я§а §г§е§Х§Ъ§д§о §б§а §Ь§а§г§У§Ц§Я§Я§а§Ю§е §б§в§Ъ§Щ§Я§С§Ь§е


ЁC §в§Ц§Щ§Ь§а§Ю§е §в§С§Щ§Э§Ъ§й§Ъ§р §Ю§Ц§Ш§Х§е §У§Я§е§д§в§Ц§Я§Я§Ц§Ы §Ъ §У§Я§Ц§к§Я§Ц§Ы §д§а§й§Я§а§г§д§о §б§в§а§Ф§Я§а§Щ§С. <4.1> §°§Т§н§й§Я§а §Я§С§в§е§к§Ц§Я§Ъ§Ц §б§в§Ц§Х§б§а§Э§а§Ш§Ц§Я§Ъ§с §а§Т §С§Х§Х§Ъ§д§Ъ§У§Я§а§г§д§Ъ ¦О §б§в§а§Ъ§г§з§а§Х§Ъ§д §б§в§Ъ §б§Ц§в§Ц§з§а§Х§Ц §а§д §Я§Ц§Э§Ъ§Я§Ц§Ы§Я§а§Ы §б§а ¦В §Ю§а§Х§Ц§Э§Ъ (§У§Я§е§д§в§Ц§Я§Я§Ц §Э§Ъ§Я§Ц§Ы§Я§а§Ы). §Ј §Х§С§Я§Я§а§Ю §б§в§Ъ§Ю§Ц§в§Ц §Ю§н §Ъ§Ю§Ц§Ц§Ю §Х§Ц§Э§а §г §Э§Ъ§Я§Ц§Ы§Я§а§Ы §Ю§а§Х§Ц§Э§о§р. <4.3> §±§в§Ц§Х§б§а§Э§а§Ш§Ц§Я§Ъ§Ц §а §д§а§Ю, §й§д§а §® ¦О=0, §Я§Ц §д§в§Ц§Т§е§Ц§д §а§г§а§Т§а§Ф§а


§У§Я§Ъ§Ю§С§Я§Ъ§с, §б§а§г§Ь§а§Э§о§Ь§е §б§а§г§д§а§с§Я§Я§С§с §г§Ъ§г§д§Ц§Ю§С§д§Ъ§й§Ц§г§Ь§С§с §а§к§Ъ§Т§Ь§С §У§з§а§Х§Ъ§д §У §Ь§а§п§ж§ж§Ъ§и§Ъ§Ц§Я§д ¦В0. <4.4> §¬§С§Ь §У§Ъ§Х§Я§а §Ъ§Щ §Ф§в§С§ж§Ъ§Ь§а§У §е§г§Э§а§У§Ъ§Ц §а§Х§Я§а§в§а§Х§Я§а§г§д§Ъ §Я§С§Т§Э§р§Х§Ц§Я§Ъ§Ы §Я§С§в§е§к§С§Ц§д§г§с. <4.5> §Ў§У§д§а§в§Ц§Ф§в§Ц§г§г§Ъ§с §Я§Ц§б§а§Э§а§Ш§Ъ§д§Ц§Э§о§Я§С, §д.§Ь. D §Я§Ц §Я§С§з§а§Х§Ъ§д§г§с §У §Ъ§Я§д§Ц§в§У§С§Э§Ц 0-2: ContinueЎ­ and serial correlation of residuals Durbin-


Watson d Serial Corr. Estimate 1.953311 035796 <5.1> §°§г§Я§а§У§Я§н§Ю §б§в§Ъ§Щ§Я§С§Ь§а§Ю §Я§С§в§е§к§Ц§Я§Ъ§с §е§г§Э§а§У§Ъ§с §а §д§а§й§Я§а§Ы §Ъ§Х§Ц§Я§д§Ъ§ж§Ъ§Ь§С§и§Ъ§Ъ §с§У§Э§с§Ц§д§г§с §Я§Ц§г§а§Т§Э§р§Х§Ц§Я§Ъ§Ц §е§г§Э§а§У§Ъ§с <3.1>. §¶§а§в§Ю§С§Э§о§Я§н§Ю §б§в§Ъ§Щ§Я§С§Ь§а§Ю §с§У§Э§с§Ц§д§г§с §б§в§Ъ§Ю§Ц§Я§Ц§Я§Ъ§Ц §Я§Ц§б§а§Э§Я§а§Ф§а §Ю§Ц§д§а§Х§С §б§Ц§в§Ц§Т§а§в§С. <5.2> §Ґ§Э§с §Ю§Я§а§Ф§а§а§д§Ь§Э§Ъ§Ь§а§У§а§Ы §Щ§С§Х§С§й§Ъ §б§в§С§У§а§Ю§Ц§в§Я§а §б§в§Ъ§Ю§Ц§Я§Ц§Я§Ъ§Ц §®§Ї§¬ §Ь §Ь§С§Ш§Х§а§Ы §Ъ§Щ §в§Ц§Ф§в§Ц§г§г§Ъ§Ы


§У §а§д§Х§Ц§Э§о§Я§а§г§д§Ъ. §Ј §Х§С§Я§Я§а§Ю §г§Э§е§й§С§Ц §Ю§а§Х§Ц§Э§Ъ §а§Х§Я§а§а§д§Ь§Э§Ъ§Ь§а§У§н§Ц. §Ј§н§У§а§Х§н §Ј §б§Ц§в§У§а§Ю §г§Э§е§й§С§Ц §в§Ц§Ф§в§Ц§г§г§а§в§н §·1, §·2, §·3, §·4 §а§Ь§С§Щ§С§Э§Ъ§г§о §Я§Ц§Щ§Я§С§й§Ъ§Ю§н§Ю§Ъ, §д.§Ц. §·1-§а§Т§а§в§а§д §Ь§С§б§Ъ§д§С§Э§С, §Ю§Э§в§Х. §Х§а§Э§Э. §і§є§Ў, §·2-§Ъ§г§б§а§Э§о§Щ§а§У§С§Я§Я§н§Ы §Ь§С§б§Ъ§д§С§Э, §Ю§Э§в§Х. §Х§а§Э§Э. §і§є§Ў, §·3-§й§Ъ§г§Э§Ц§Я§Я§а§г§д§о §г§Э§е§Ш§С§л§Ъ§з, §д§н§г. §й§Ц§Э §·4-§в§н§Я§а§й§Я§С§с §Ь§С§б§Ъ§д§С§Э§Ъ§Щ§С§и§Ъ§с §Ь§а§Ю§б§С§Я§Ъ§Ъ, §Ю§Э§в§Х. §Х§а§Э§Э. §і§є§Ў §Я§Ц §а§Ь§С§Щ§н§У§С§р§д


§г§е§л§Ц§г§д§У§Ц§Я§Я§а§Ф§а §У§Э§Ъ§с§Я§Ъ§с §Я§С Y-§й§Ъ§г§д§н§Ы §Х§а§з§а§Х, §Ю§Э§в§Х. §Х§а§Э§Э. §і§є§Ў. §Ј§а §У§д§а§в§а§Ю §г§Э§е§й§С§Ц, §Ь§а§Ф§Х§С §Ю§н §Ъ§г§б§а§Э§о§Щ§е§Ц§Ю §б§а§к§С§Ф§а§У§е§р §в§Ц§Ф§в§Ц§г§г§Ъ§р, §д§С§Ь§а§Ы §в§Ц§Ф§в§Ц§г§г§а§в, §·3-§й§Ъ§г§Э§Ц§Я§Я§а§г§д§о §г§Э§е§Ш§С§л§Ъ§з, §д§н§г. §й§Ц§Э. §с§У§Э§с§Ц§д§г§с §Щ§Я§С§й§Ъ§Ю§н§Ю. §ґ§С§Ь§Ъ§Ц §в§Ц§Ф§в§Ц§г§г§а§в§н, §Ь§С§Ь §·1-§а§Т§а§в§а§д §Ь§С§б§Ъ§д§С§Э§С, §Ю§Э§в§Х. §Х§а§Э§Э. §і§є§Ў, §·2-§Ъ§г§б§а§Э§о§Щ§а§У§С§Я§Я§н§Ы §Ь§С§б§Ъ§д§С§Э, §Ю§Э§в§Х. §Х§а§Э§Э. §і§є§Ў §Ъ §·4-§в§н§Я§а§й§Я§С§с


§Ь§С§б§Ъ§д§С§Э§Ъ§Щ§С§и§Ъ§с §Ь§а§Ю§б§С§Я§Ъ§Ъ, §Ю§Э§в§Х. §Х§а§Э§Э. §і§є§Ў §а§Ь§С§Щ§С§Э§Ъ§г§о §Я§Ц§Щ§Я§С§й§Ъ§Ю§н§Ю§Ъ. §°§б§д§Ъ§Ю§С§Э§о§Я§С§с §Ъ§г§Ь§а§Ю§С§с §Ю§а§Х§Ц§Э§о: Y=0,666638659+0,830X3 §®§а§Х§Ц§Э§Ъ §Я§Ц §с§У§Э§с§р§д§г§с §а§б§д§Ъ§Ю§С§Э§о§Я§н§Ю§Ъ, §д§С§Ь §Ь§С§Ь §Я§С§Т§Э§р§Х§С§Ц§д§г§с §Я§С§в§е§к§Ц§Я§Ъ§Ц §д§С§Ь§Ъ§з §е§г§Э§а§У§Ъ§Ы §І§Ў-§®§Ї§¬, §Ь§С§Ь <3.1> §Ъ <2.1>. §¤§в§С§ж§Ъ§Ь§Ъ §®§Я§а§Ш§Ц§г§д§У§Ц§Я§Я§С§с §в§Ц§Ф§в§Ц§г§г§Ъ§с §±§а§к§С§Ф§а§У§С§с §в§Ц§Ф§в§Ц§г§г§Ъ§с §­§Ъ§д§Ц§в§С§д§е§в§С 1.§Ј§С§Э§Ц§Ц§У


§і. §¤. §І§Ц§Ф§в§Ц§г§г§Ъ§а§Я§Я§а§Ц §Ю§а§Х§Ц§Э§Ъ§в§а§У§С§Я§Ъ§Ц §б§в§Ъ §а§Т§в§С§Т§а§д§Ь§Ц §Х§С§Я§Я§н§з. ЁC §¬§С§Щ§С§Я§о: §¶§ї§Ї, 2001, 296 §г. 2.§±§в§С§Ь§д§Ъ§Ь§е§Ю §б§а §п§Ь§а§Я§а§Ю§Ц§д§в§Ъ§Ь§Ц: §µ§й§Ц§Т. §б§а§г§а§Т§Ъ§Ц / §Є.§Є. §¦§Э§Ъ§г§Ц§Ц§У§С, §і.§Ј. §¬§е§в§н§к§Ц§У§С, §Ї.§®. §¤§а§в§Х§Ц§Ц§Я§Ь§а §Ъ §Х§в.; §±§а§Х §в§Ц§Х. §Є.§Є. §¦§Э§Ъ§г§Ц§Ц§У§а§Ы. ЁC §®.: §¶§Ъ§Я§С§Я§г§н §Ъ §г§д§С§д§Ъ§г§д§Ъ§Ь§С, 2003, 192 §г. 3.§ї§Ь§а§Я§а§Ю§Ц§д§в§Ъ§Ь§С: §µ§й§Ц§Т§Я§Ъ§Ь / §±§а§Х §в§Ц§Х. §Є.§Є. §¦§Э§Ъ§г§Ц§Ц§У§а§Ы.


ЁC §®.: §¶§Ъ§Я§С§Я§г§н §Ъ §г§д§С§д§Ъ§г§д§Ъ§Ь§С, 2002, 344 §г.



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Организационно-правовые формы предпринимательской деятельности и их эффективность на примере предприятий Вашего региона
Реферат Развитие греческой цивилизации
Реферат Острий апендицит
Реферат Произаодственно-хозяйственная деятельность
Реферат Изобразительное искусство Древней Греции
Реферат Модели инвестиционных портфелей
Реферат А. Ф. Лосев и традиции «веховской» социально-философской публицистики. К 100-летию сборника «Вехи»: 1909-2009 77
Реферат Викладання економічних дисциплін в школі на прикладі теми Фінансові установи та їх функції
Реферат Расчет загрязнения водного объекта и атмосферного воздуха. Взрывоопасность технологического объекта
Реферат Конституційний Суд України політико-правова природа склад компетенція
Реферат Производство топленых животных жиров
Реферат Myspace
Реферат По страницам романа М. Шолохова “Поднятая целина”
Реферат Заработная плата как часть национального дохода
Реферат No Tolerance Essay Research Paper What if