Реферат по предмету "География"


Концепция создания дополнительных геофизических модулей для контроля технологических параметров

--PAGE_BREAK--Модуль геонавигации.

Модуль геонавигации предназначен для оперативного управления проводкой скважин по геофизическим данным, получаемым по электромагнитному каналу связи, и позволяет повысить точность проводки стволов по продуктивному пласту, уменьшить количество, а в некоторых случаях исключить промежуточные каротажи, исключить ошибки в проводке горизонтальных скважин не по продуктивному пласту. Необходимость точной привязки местоположения забоя связана с тем, что продуктивный интервал имеет толщину порядка нескольких метров, ниже которых находится вода.

Гамма-каротаж (ГК) основан на том, что горные породы обладают некоторой, хотя и небольшой радиоактивностью. Гамма-каротаж состоит в измерении интенсивности естественного γ-излучения по стволу скважины. Для этого пользуются скважинным прибором, содержащим индикатор γ-излучения. В результате измерений получают кривую изменения γ-излучения по стволу скважины в масштабе глубины, называемую кривой гамма-каротажа (ГК).

Кривая ГК характеризует γ-активность пород, пересеченных скважиной, и в той или иной степени содержание в них радиоактивных элементов. Применение гамма-каротажа для изучения литологического разреза скважины основано на том, что породы различаются по содержанию в них радиоактивных веществ.

Характер связи между γ-активностью пород и их литологическими свойствами устанавливается для данного района на основе сопоставления кривых ГК с литологическим разрезом ранее пробуренных скважин и сопоставления измерений γ-активности керна с результатами его анализа. Как правило, содержание в породе радиоактивного вещества тем больше, чем больше в ней глинистого материала. В соответствии с этим глинистые пласты будут отмечаться на кривой ГК максимумами, а песчаные и чисто карбонатные – минимумами.

Ввиду того, что γ-излучение обладает большой проникающей способностью и, в частности, проходит через обсадные трубы с не очень большим поглощением, гамма-каротаж можно проводить как в необсаженных, так и в обсаженных скважинах. Это свойство создает гамма-каротажу большие оперативные преимущества по сравнению с другими методами промыслово-геофизических исследований.



Рис.3.4.Профиль горизонтальной скважины.

Модуль инклинометрических преобразователей (МИП) предназначен для измерения в процессе бурения и в статике, без циркуляции промывочной жидкости и передачи на модуль управления и связи зенитного угла, азимута и угла установки отклонителя.

Инклинометрические измерения в скважинах обычно проводятся аппаратурой, спускаемой на каротажном кабеле после бурения. Такая аппаратура не испытывает таких вибраций и ударов, как телесистемы в процессе бурения, поэтому требования к датчикам такого применения значительно ниже, а использовать их в процессе бурения не представляется возможным из-за невысокой надежности их работы в условиях бурения.

Определение параметров траектории ствола скважины опирается на информацию об углах положения оси скважинного прибора относительно плоскости горизонта (зенитный угол) и плоскости меридиана (азимут), а также знание протяженности скважины (по длине колонны труб или геофизического кабеля). Важным параметром для управления буровым агрегатом является угол отклонителя, т.е. поворот скважинного прибора вокруг оси скважины.

Если рассматривать задачу ориентации скважинного снаряда с теоретических позиций, то для ее решения необходимо задать положение (ориентацию) двух неколлинеарных векторов, ориентация которых, с одной стороны, априорно известна в опорной (базовой) системе координат, а с другой — может быть определена относительно скважинного снаряда. Задание лишь одного вектора не позволит определить ориентацию скважинного снаряда вокруг этого вектора. Таким образом, для определения ориентации скважинного снаряда необходимо измерение или моделирование некоторых векторных величин, которые в принципе могут иметь самую различную физическую природу. Учитывая объект ориентации, в настоящее время возможно использование комбинаций из четырех векторов: вектора силы тяжести, вектора напряженности магнитного поля Земли, вектора угловой скорости суточного вращения Земли и вектора некоторого реперного направления, заданного у устья скважины.

Определение угла наклона скважинного прибора осуществляется по измерениям проекций ускорения свободного падения g на три взаимно перпендикулярные пространственные оси, можно выделить основной принцип построения инклинометрических систем: определение азимута скважины с помощью трёхосного магнитометра, который по аналогии с акселерометром измеряет проекции напряженности магнитного поля Земли на три взаимно перпендикулярные пространственные оси.

На основании этих данных и измеренных проекций g после соответствующих вычислений получают значение азимута, угла наклона и угла положения отклонителя в любой точке ствола скважины и его пространственную траекторию. Очевидно, что таким способом траектория строится в магнитных координатах, поскольку азимут скважины отсчитывается от направления на магнитный полюс Земли.

Подавляющее большинство инклинометров, применяемых в необсаженных скважинах, построено на этом принципе. Эти приборы, не содержат подвижных элементов, отличаются достаточной вибро- и ударостойкостью и работают в широком диапазоне изменения температур. По точности выработки информации о направлении меридиана они вполне бы устраивали практически любого потребителя (поскольку производится ряд моделей с погрешностью около 0,2 град). Однако погрешность таких «магнитных» навигационных систем сильно зависит от наличия вблизи магнитометров магнитных масс, например, бурильных труб, обсадных колонн и т.п., и в ряде случаев может быть недопустимой. При зарезке боковых стволов из обсаженных скважин или при кустовом бурении с морских платформ оперативное управление траекторией ствола скважин при помощи таких «магнитных» систем нежелательно, хотя и возможно при некотором удалении от больших магнитных масс.

Исследования, анализ, лабораторные и стендовые испытания некоторых конструкций, близких по техническим требованиям и условиям эксплуатации, забойных телесистем при их длительной непрерывной работе (магнитомодуляционные, двухкоординатные на горизонтируемой платформе, трехкоординатные, неподвижно закрепленные, хемотронные и акселерометрические) показал, что система трехкоординатных, магнитомодуляционных и акселерометрических датчиков обеспечивает достаточную точность и надежность в работе в условиях бурения.

Имея набор отклонений показаний датчика изменения азимута при разных зенитных углах и углах разворота, внесенных в таблицу, можно программно учитывать и вносить поправки в результаты вычислений. На участках, где значения угла зенита и угла разворота не соответствуют точкам замеров при калибровке, используется линейная интерполяция.

В течение десяти лет стендовых и скважинных испытаний в условиях забоя разработанные датчики показали высокую надежность и стабильность характеристик.

Применение жестко закрепленных и ортогонально расположенных акселерометров АТ 1104 и феррозондов ТМК-18 по разработанной нами оригинальной методике внесения компьютерных температурных поправок и поправок за неортогональность установки датчиков при калибровке аппаратуры позволили получить следующие результаты в условиях повышенных вибраций при рабочих температурах в диапазоне 20-120°С.:

¨ зенитный угол—0-180°±0,1°;

¨ угол положения отклонителя—0-360°±0,1°;

¨ азимутальный угол—0-360°±0,25°.



Рис.3.5.

Предлагаемый геонавигационный модуль для системы MWD (инклинометрия в процессе бурения) позволяет рассматривать ее как систему LWD (каротаж в процессе бурения). Геонавигационный модуль ГНМ состоит из аппаратурно-программного и программно-методического модулей.

Предлагаемый аппаратурно-программный модуль обеспечивает измерение параметров разбуриваемых пород. Для этого используются все компоненты телесистемы и выполненный отдельным конструктивным модулем модуль гамма-каротажа, подключаемый к телесистеме. Возможна регистрация следующих параметров:

ГК – естественная гамма активность разбуриваемых пород;

КС – кажущееся удельное сопротивление разбуриваемых пород, определяемое по напряжению и току диполя электромагнитного канала связи;

ВК – измерение интегрального уровня продольных вибраций буровой колонны акселерометром инклинометрического датчика (виброкаротаж);

Кроме ГК, нет специально организованных зондов, все параметры получаются как производные.

Программно-методический модуль обеспечивает обработку результатов измерений аппаратурно-программного модуля и включает в себя программное обеспечение (программа «GEONAG») и портативный компьютер (Notebook) – может использоваться Notebook, входящий в комплект телесистемы с которой используется модуль, или отдельный.

Модуль гамма-каротажа выполнен на основе сцинтилляционного блока. На рисунке 3.6. приведена его структурная схема, на рисунке 3.7 показан общий вид модуля.

Сцинтилляционный счетчик состоит из фотоэлектронного умножителя, перед фотокатодом которого установлен сцинтиллятор; фотоэлектронный умножитель подключен к измерительной схеме с регистрирующим прибором на ее выходе.

Индикатором гамма–излучения является прозрачный кристалл йодистого натрия,

активированного таллием — NaJ(Tl), молекулы которого обладают свойством сцинтилляции – испускания фотонов света при воздействии гамма – квантов. Фотоны отмечаются фотоумножителем и вызывают поток электронов к аноду (ток).

Большим преимуществом сцинтиллятора является высокая эффективность счета (регистрируется до 50 – 60% гамма–квантов, проходящих через кристалл) по сравнению с другими типами счетчиков, эффективность которых 1 – 5%. Это позволяет уменьшить длину счетчиков с 90 до 10 см, улучшить вертикальное расчленение и обеспечить малую статическую флуктуацию.



Рис.3.6. Структурная схема модуля гамма-каротажа



1 – Кожух; 2 – Шасси; 3 – Сцинтиляционный блок; 4 – Амортизатор; 5 – Крышка

Рис. 3.7. Общий вид модуля гамма-каротажа.

Модуль гамма каротажа состоит из кожуха 1 (см. рис.3.7.), изготовленного из титанового сплава, внутри которого фиксировано, относительно кожуха, закреплены шасси 2 с электронными платами и сцинтилляционным блоком 3. Шасси установлено на резиновых амортизаторах 4.

Электрическая связь модуля гамма-каротажа с соединительной штангой осуществляется посредством электрических разъемов РСГС 10, которыми снабжены концевые части прибора. С тем чтобы исключить изменения ориентированного расположения деталей модуля гамма каротажа и соединительных штанг, имеются установочные и фиксирующие штыри, которые при сборке входят в соответствующие отверстия гибкой соединительной штанги.

При работе с телесистемой LWD используется программное обеспечение аналогичное используемому при работе с телесистемой MWD. Данное программное обеспечение помимо инклинометрических параметров обеспечивает приём, оцифровку, фильтрацию и дешифрацию геофизических параметров передаваемых телесистемой LWD. Им же осуществляется регистрация, расчёт КС и преобразование геофизической информации в соответствии с тарировочными данными. Вся технологическая и геофизическая информация построчно записывается в текстовый файл. При частоте передаваемого сигнала: 10 Гц строки записываются через 20 сек.;5 Гц строки записываются через 40 сек.; 2,5 Гц строки записываются через 100 сек.

На рисунке 3.9. представлена структурная схема забойной телеметрической системы LWD с добавлением блок-схемы структурных элементов, относящихся к геонавигационному модулю.



Рис.3.9. Структурная схема забойной телеметрической системы LWD

Основные технические данные



Наименование параметра



 Диапазон измерений:



 интенсивности естественного гамма- излучения (ГК), мкР/ч

0 — 100

 кажущегося удельного сопротивления пород (КС, на диполе), Омм.

0 — 100

 потенциала спонтанной поляризации (ПС, на диполе), В´10

0 — 500

 интегрального уровня вибраций (ВК), м/с2

0 — 100

 механической скорости бурения (МК), м/ч

0 — 120

 Допускаемая основная погрешность при измерении:

 

 интенсивности естественного гамма- излучения, мкР/ч

± 10 %

 кажущегося удельного сопротивления пород, Омм.

±10 %

 потенциала спонтанной поляризации, В´10

± 10 %

 интегрального уровня вибраций, м/с2

± 10 %

 механической скорости бурения, м/ч.

± 5 %

 амплитуды сигнала, В.

± 5 %

 фазового сдвига, с´10

± 5 %

 Максимальная рабочая температура, °С.

120

 Максимальное гидростатическое давление, МПа

60

 Габаритные размеры, мм.



 диаметр модуля

42

 длина модуля

600

 Масса модуля, кг.

3

Результаты использования наддолотного модуля

Задачи скважинных измерений телесистемами можно разбить на три основные группы:

1) оперативный технологический контроль за режимом бурения скважин с целью его оптимизации;

2) контроль направления бурения скважин с целью управления процессом направленного бурения по заданной траектории;

3) литологическое расчленение геологического разреза скважины, исследование параметров пластов, не искаженных проникновением фильтрата промывочной жидкости в пласт, выделение пластов-коллекторов, прогнозирование зон аномальных пластовых давлений

На эффективность процесса разрушения породы (в данном случае на механическую скорость бурения или продолжительность бурения) влияет множество технологических и геологических факторов. Чтобы добиться более высокой эффективности разрушения, необходимо регулировать технологические параметры процесса бурения, а чтобы получить какую-либо геологическую информацию, необходимо учитывать влияние этих же параметров на скорость бурения. Возникает двойная необходимость регистрации технологических параметров – для оптимизации бурения и для решения геологических задач.

Назначение наддолотного модуля, устройство и работа модуля

Модуль (рис.3.10.) предназначен для измерения технологических и геофизических параметров непосредственно около долота, в процессе бурения гидравлическими забойными двигателями и передачи информации материнской телесистеме, с использованием короткого скоростного беспроводного электромагнитного канала связи.

Для оптимизации процесса бурения, как было показано выше, необходимо измерять следующие забойные параметры: частоту вращения вала турбобура, осевую нагрузку на долото, направление бурения ствола скважины, уровень вибраций и естественную гамма-активность.

Несмотря на разнообразие измерительных датчиков, позволяющих решать перечисленные задачи, требования получения достаточной точности измерений, обеспечивающей надежное управление технологическим процессом, эксплуатационная надежность и удобство в работе в условиях скважины являются основными при выборе тех или иных конструкций.



Рис.3.10. Общий вид наддолотного модуля.



Рис.3.11. Детали наддолотного модуля.

Информация, измеренная наддолотным модулем 6 (см. рисунок 3.12.), передается по короткому скоростному беспроводному электромагнитному каналу связи 5 на приемно-обрабатывающий блок 4 материнской телесистемы 3. Телесистема наряду с данными, измеренными ею самой, передает на поверхность по беспроводному электромагнитному каналу связи 2 также и данные, полученные наддолотным модулем, в виде дополнительных каналов. На поверхности информация принимается и обрабатывается наземным приемно-обрабатывающим комплексом 1, программное обеспечение которого модифицируется с учетом дополнительных каналов наддолотного модуля.



Рис.3.12. Структурная схема телесистемы с наддолотным модулем.



Рис.3.13. Структурная схема наддолотного модуля.



Рис.3.14. Компоновка наддолотного модуля в составе бурильной колонны.

Датчик дифференциального давления

Для регистрации данного параметра используют тензометрические датчики избыточного давления. Тензопреобразователи предназначены для пропорционального непрерывного преобразования давления в электрический выходной сигнал.

Принцип действия основан на использовании тензоэффекта в полупроводниках. Чувствительным элементом служит сапфировая мембрана с кремниевыми тензорезисторами. Сапфирная мембрана по всей плоскости жестко соединена с металлической мембраной, образуя с ней двухслойную мембрану. Двухслойная мембрана жестко закреплена в корпусе тензопреобразователя. Во внутреннюю полость корпуса подается измеряемое давление. Под действием измеряемого давления двухслойная мембрана деформируется, вызывая изменение сопротивления тензорезисторов, собранных в мостовую схему.

Измерение дифференциального давления требуется при турбинном бурении для контроля давления в трубах и затрубье и при измерении расхода бурового раствора методом переменного перепада давления с использованием сужающих устройств.

Датчик оборотов вала забойного двигателя

Датчик оборотов предназначен для непрерывного контроля частоты вращения вала турбобура в процессе бурения скважин.

При использовании беспроводного канала для измерения частоты вращения вала турбобура применяют бесконтактные преобразователи. Связь вала турбобура с чувствительным элементом датчика частоты вращения индуктивная или магнитная.

При использовании проводного или беспроводного канала в качестве датчиков частоты вращения вала турбобура широко применяют конструкции электромашин генераторов переменного тока.

Статор с обмотками закрепляется неподвижно, а ротор с постоянными полюсными магнитами соединяется с валом турбобура. Частота вращения долота определяется как N=nf/30, где f—частота вырабатываемого генератором тока; п—число пар полюсов.

Недостаток таких датчиков — механическое сочленение вала генератора с валом турбобура, а также относительная сложность конструкции генератора, что снижает надежность датчика при работе в условиях сильных вибраций.

Более перспективен датчик частоты вращения с бесконтактной связью элемента вращения с чувствительным элементом. Как правило, датчик работает следующим образом. На конце вала турбобура жестко закрепляется немагнитный стакан, в стенку которого заформовываются симметрично расположенные якоря. В стакан свободно вставляется монолитный стержень из резины, внутри которого размещается ферромагнитный сердечник с катушкой с герметичными выводами схемы измерений.

Более совершенным является датчик оборотов долота, основанный на следующем принципе. На вал турбобура напрессовывается немагнитный стакан с встроенным постоянным магнитом. Аппаратурный контейнер из немагнитного материала с герконом или магнитомодуляционным датчиком, располагаемый на расстоянии до 3×10-2 м, надежно срабатывает при прохождении магнита, обеспечивая формирование импульсов, частота следования которых прямо пропорциональна частоте вращения долота.

Наличие на скважинах указателей оборотов турбобура используемых в (НДМ) дает возможность бурильщикам непрерывно непосредственно корректировать режим турбинного бурения скважин, добиваясь при этом оптимальных нагрузок турбобуров, и соответственно, повышать технико-экономические показатели турбинного бурения.

По предварительным данным применение НДМ дает заметное увеличение механической скорости бурения и проходки на долото, что соответственно сокращает расход долот, талевого каната и времени, затрачиваемого на бурение скважин.

Для измерения частоты вращения вала турбобура используют бесконтактный преобразователь, состоящий из феррозонда и магнита, закрепленного на валу турбобура.

    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.