Реферат по предмету "БЖД"


Радиационно опасные объекты и защита от них

Содержание
Введение
Особенности ионизирующего излучения при действии на живой организм
Радиация от источников, созданых человеком
Радиационно- опасные объекты
Радиационная безопасность населения
Список использованной литературы
Введение
Ионизирующая радиация — это особый вид энергии, которая образуется в результате различных превращений в атомах. Отличают эту радиацию от других видов энергии (механической, тепловой, электрической и другой) две особенности. Во-первых, ионизирующее излучение проникает в тело человека и в любые другие ткани на разную глубину в зависимости от вида и энергии этого излучения, а также плотности вещества или тканей, на которые оно воздействует. Отсюда и термин «проникающее излучение» как синоним термина «радиация». Во-вторых, все виды этой радиации не просто проходят сквозь ткани, а взаимодействуют с веществом, молекулами тканей, вызывая появления в них на короткое время электрически заряженных частиц — ионов. Отсюда термин «ионизирующее излучение». В отличие от него видимый свет и ультрафиолетовые лучи не являются ни проникающими, ни тем более ионизирующими .
По своей природе ионизирующее излучение делят на 2 вида:
1 коротковолновое электромагнитное излучение — рентгеновское и гамма-излучение;
2 корпускулярное излучение, представляющее собой потоки частиц — альфа-частиц, бета-частиц (электронов), протонов, нейтронов, тяжёлых ионов и других.
Наиболее важными для человека видами излучений, с которыми он сталкивается в условиях повседневной жизни, профессиональной деятельности и в случаях возникновения радиационных аварий, являются рентгеновское и гамма-излучения, нейтроны, альфа- и бета-лучи. Ионизирующие излучения являются мутагенным фактором, поэтому вопросы их влияния на все проявления жизни занимают важное место среди проблем современного естествознания.
1 Особенности ионизирующего излучения при действии на живой организм
При изучении действия излучения на организм были определены следующие особенности:
1. Высокая эффективность поглощенной энергии. Малые количества поглощенной энергии излучения могут вызвать глубокие биологические изменения в организме.
2. Наличие скрытого, или инкубационного, периода проявления действия ионизирующего излучения. Этот период часто называют периодом мнимого благополучия. Продолжительность его сокращается при облучении в больших дозах.
3. Действие от малых доз может суммироваться или накапливаться. Этот эффект называется кумуляцией.
4. Излучение воздействует не только на данный живой организм, но и на его потомство. Это так называемый генетический эффект.
5. Различные органы живого организма имеют свою чувствительность к облучению. При ежедневном воздействии дозы 0.02-0.05 Р уже наступают изменения в крови.
6. Не каждый организм в целом одинаково реагирует на облучение.
7. Облучение зависит от частоты. Одноразовое облучение в большой дозе вызывает более глубокие последствия, чем фракционированное.
Энергия, излучаемая РВ, поглощается окружающей средой. В результате воздействия ионизирующего излучения на организм человека в тканях происходят сложные физические, химические и биохимические процессы.
Поглощенная энергия от ионизирующих излучений различных видов вызывает ионизацию атомов и молекул веществ, в результате чего молекулы и клетки ткани разрушаются. Ионизация является одним из основных звеньев в биологическом действии излучения.
Известно, что 2/3 общего состава ткани человека составляют вода и углерод; вода под действием излучения расщепляется на водород H и гидроксильную группу OH, которые либо непосредственно, либо через цепь вторичных превращений образуют продукты с высокой химической активностью: гидратный окисел HO2 и перекись водорода H2O2. Эти соединения взаимодействуют с молекулами органического вещества ткани, окисляя и разрушая ее.
В результате воздействия ионизирующего излучения нарушается нормальное течение биохимических процессов и обмен вещества в организме. В зависимости от величины поглощенной дозы излучения и от индивидуальных особенностей организма вызванные изменения могут быть обратимыми или необратимыми. При небольших дозах пораженная ткань восстанавливает свою функциональную деятельность. Большие дозы при длительном воздействии могут вызвать необратимое поражение отдельных органов или всего организма.
Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем облучении (источник находиться вне организма), так и при внутреннем облучении (РВ попадают внутрь организма, например пероральным или ингаляционным путем).
Важным фактором при воздействии ионизирующего излучения на организм является время облучения. С увеличением мощности дозы поражающее действие излучения возрастает. Чем более дробно излучение по времени, тем меньше его поражающее действие.
Степень поражения организма зависит от размера облучаемой поверхности. С уменьшением облучаемой поверхности уменьшается и биологический эффект.
Индивидуальные особенности организма человека проявляются лишь при небольших поглощенных дозах. Чем моложе человек, тем выше его чувствительность к облучению, особенно высока она у детей. Взрослый человек в возрасте 25 лет и старше наиболее устойчив к облучению.
При попадании РВ внутрь организма поражающее действие оказывают в основном α – источники, а затем β– и γ -источники. Альфа — частицы, имеющие небольшую плотность ионизации, разрушают слизистую оболочку, которая является слабой защитой внутренних органов по сравнению с наружным кожным покровом.
РВ могут попасть внутрь организма при вдыхании воздуха, зараженного радиоактивными элементами, с зараженной пищей или водой и, наконец, через кожу, а также при заражении открытых ран.
Попадание твердых частиц в дыхательные органы зависит от степени дисперсности частиц. Из проводившихся над животными опытов установлено, что частицы пыли размером менее 0.1 мкм ведут себя так же, как и молекулы газа, т. е. при вдохе они попадают вместе с воздухом в легкие, а при выдохе вместе с воздухом удаляются. В легких может оставаться только самая незначительная часть твердых частиц. Крупные частицы размером более 5 мкм почти все задерживаются носовой полостью.
Основные особенности биологического действия ионизирующих излучений следующее:
1. Действие ионизирующих излучений на организм не ощутимы человеком. У людей отсутствует орган чувств, который воспринимал бы ионизирующее излучение. Поэтому человек может проглотить, вдохнуть радиоактивное вещество без всяких первичных ощущений. Дозиметрические приборы являются как бы дополнительным органом чувств, предназначенным для восприятия ионизирующего излучения.
2. Видимые поражения кожного покрова, недомогание, характерные для лучевого заболевания, появляются не сразу, а спустя некоторое время.
3. Суммирование доз происходит скрыто. Если в организм человека систематически будут попадать РВ, то со временем дозы суммируются, что неизбежно приводит к лучевым заболеваниям.
Действие ионизирующего излучения на любое вещество, в том числе и на живую ткань, сопровождается образованием ионов и возбужденных атомов.
Процесс образования ионов длится всего около 10-13 с, после чего наступают физико-химические изменения ткани.
Большой интерес представляет решение вопроса о том, возникают ли физико-химические изменения в живой ткани (например, в белках) в результате ионизации молекул этого вещества. Последующие физико-химические изменения происходят сначала в среде, в которой находятся белковые вещества, а уже продукты разложения раствора (воды) действуют на белки, вызывая соответствующие изменения в них.
Вероятность попадания ионизированной частицы в молекулу воды в 104 раз больше, чем в молекулу белка, так как в отдельных тканях организма содержится до 80% воды.
До недавнего времени преобладала теория, утверждавшая, что излучение действует непосредственно на белковое вещество клетки, на так называемую мишень. Мишенью называется вычисленный из сопоставления дозы облучения и биологического эффекта чувствительный объем, действие на который ведет к его поражению.
Но теория мишени оказалась неудовлетворительной для объяснения биологического действия излучения на сложные соединения, на которые влияют не только доза излучения, но и физиологическое состояние объекта, изменение температуры и водной среды и т.д. Поэтому имеется мнение, что излучение действует косвенным путем, через продукты разложения воды.
2 Радиация от источников, созданных человеком
В результате деятельности человека во внешней среде появились искусственные радионуклиды и источники излучения. В природную среду стали поступать в больших количествах естественные радионуклиды, извлекаемые из недр Земли вместе с углем, газом, нефтью, минеральными удобрениями, строительными материалами.
За последние несколько десятилетий человек создал несколько тысяч радионуклидов и начал использовать их в научных исследованиях, в технике, медицинских целях и др. Это приводит к увеличению дозы облучения, получаемой как отдельными людьми, так и населением в целом. Иногда облучение за счет источников, созданных человеком, оказывается в тысячи раз интенсивнее, чем от природных источников.
В настоящее время основной вклад в дозу от источников, созданных человеком, вносит внешнее радиактивное облучение при диагностике и лечении. В развитых странах на каждую тысячу населения приходятся от 300 до 900 таких обследований в год не считая массовой флюорографии и рентгенологических обследований зубов.--PAGE_BREAK--
Для исследования различных процессов, протекающих в организме и для диагностики опухолей используются также радиоизотопы, вводимые в организм человека. В промышленно развитых странах ориентировочно проводится 10 — 40 обследований на 1 млн. жителей в год. Коллективные эффективные эквивалентные дозы составляют 20 чел-Зв на 1 млн. жителей в Австралии и 150 чел-Зв в США.
Средняя эффективная эквивалентная доза, получаемая от всех источников облучения в медицине, в промышленно развитых странах составляет 1 мЗв в год на каждого жителя, т.е. примерно половину средней дозы от естественных источников.
3 Радиационно-опасные объекты
В настоящее время практически в любой отрасли народного хозяйства и науки во все более возрастающих масштабах используются радиоактивные вещества и источники ионизирующих излучений. Особенно высокими темпами развивается ядерная энергетика. Атомная наука и техника таят в себе огромные возможности, но вместе с тем и большую опасность для людей и окружающей среды.
Ядерные материалы приходится возить, хранить, перерабатывать, что создает дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира.
Радиационно-опасный объект (РОО) – предприятие, на котором при авариях могут произойти массовые радиационные поражения.
Среди техногенных источников ЧС наибольшую опасность по тяжести поражения, масштабам и долговременности действия поражающих факторов представляют радиационные катастрофы. В обычных условиях радиационная обстановка в стране определяется, во-первых, природной радиоактивностью, включая космические излучения; во-вторых, радиоактивным фоном обусловленным проведенными с 1945 по 1989 г. не менее 1820 испытаниями ядерного оружия; в-третьих, наличием территорий, загрязненных радиоактивными веществами вследствие произошедших в предыдущие годы аварий на предприятиях атомной промышленности и энергетики; в-четвертых, эксплуатацией ядерно- и радиационно — опасных объектов.
Количество отработанного ядерного топлива в РФ составляет более 10 000 тонн. Объемы его постоянно растут, а мощности по переработке остаются прежними, в итоге на АЭС отработанного топлива хранится в среднем в 1,5-2 раза больше, чем в активных зонах, а на Белоярской, Билибинской, Ленинградской и Курской АЭС – в 3 раза.
Схожее положение с радиоактивными отходам. Основные источники их образования – добыча, обогащение урановой руды и производство тепловыделяющих элементов (ТВЭЛов), эксплуатация АЭС, регенерация отработавшего топлива, использование радиоизотопов. Общий объем таких отходов достиг 500 млн кубических метров.
Во всем мире стремительно растут энергозатраты. Производство электроэнергии удваивается за 10-15 лет. Мировые запасы нефти и газа могут быть исчерпаны за 50-80 лет. Запасы твердых топлив также не безграничны. После нефтяного кризиса 60-х годов, когда цена на нефть подскочила в 15 раз, начался интенсивный поиск альтернативных источников энергии. Но пока использование энергии ветра, волн и солнца дает неутешительные результаты.
Единственный путь, который может отвести угрозу энергетического кризиса в настоящее время, это использование энергии атомного ядра.
ТЭС, вырабатывая энергию, сжигает уголь, остается шлак и зола. Много золы. Экибастузская ГРЭС-1, например, за один год только в воздух выбрасывает 1 млн. 281 тыс. тонн золы, 177 тыс. тонн сернистого ангидрида, 48 тыс. тонн окислов азота. Леса, луга, вода, почва вокруг оказались загрязненными на площади 5 тыс. квадратных километров. Трава хрустит на зубах. Она как рашпиль стачивает зубы у коров и овец за 2-3 года. Подсчитано, что работа подобной ГРЭС наносит ущерб природе на такую же сумму, сколько стоит топливо, а иногда и больше. 70 млн. тонн пыли и ядовитых газов выбрасывается ежегодно в небо страны тепловыми электростанциями.
АЭС в этом отношении чисты: ни золы, ни газов. Да, выработка тепла на АЭС сопровождается выделением опасных радиоактивных веществ, ионизирующих излучений, есть проблемы захоронения отходов топлива. Но станция будет безопасна, если в любом случае, при любой аварии радиоактивность не выйдет за пределы защитных сооружений. Атомная энергия единственно реальная замена ископаемому топливу.
В СССР на начало 1989 г. в эксплуатации находилось 15 станций с 49 работающими ядерными реакторами. В США в это же время было 137 реакторов а в настоящее время около 150.В РФ сейчас 9 станций с 29 работающими ядерными реакторами, из них: 16 РБМК и 13 ВВЭР. Они вырабатывают 10-12% электроэнергии, ГЭС- 20%, остальную тепловые станции.
АЭС расположены:
1. Балаковская ( г. Балаково Саратовской обл.).
2. Белоярская (пос. Заречный Свердловской обл.).
3. Билибинская (пос. Билибино Магаданской обл.).
4. Калининская ( г. Удомля Тверской обл.).
5. Кольская ( г.Полярные зори Мурманской олбл.).
6. Курская (г. Курчатов Курской обл.).
7. Нововоронежская (г. Нововоронеж Ворнежской обл.).
8. Смоленская (г. Десногорск Смоленской обл.).
9. Ленинградская ( г. Сосновый Бор Ленинградской обл.).
В РФ также имеются 9 атомных судов с 15 реакторами. В ВМФ и Минтрансе РФ всего около 250 судов с ядерными энергетическими установками. В пунктах отстоя в ожидании утилизации находятся 183 атомных подводных лодок, причем, 120 из них с более 200 ядерными реакторами стоят с не выгруженным ядерным топливом. ( Данные по состоянию на момент гибели АПЛ «КУРСК» осень 2000 года). Кроме того, 70% АПЛ стратегического назначения нуждаются в ремонте,50% технически и морально устарели, будут выведены из строя к 2005 году. Из оставшихся 75% будут потеряны из-за окончания гарантийного срока корабельных комплексов.
4 Радиационная безопасность населения
5 декабря 1995 г. Государственной Думой принят Федеральный закон « О радиационной безопасности населения», который устанавливает государственное нормирование в сфере обеспечения радиационной безопасности. Статья 9 определяет пределы дозовых нагрузок для населения и персонала, причем более жесткие, чем ранее действующие. Эти нормы введены в действие с 1 января 2000 года.
Устанавливаются следующие основные гигиенические нормативы (допустимые пределы доз) облучения на территории России:
Для населения средняя годовая эффективная доза равна 0.001 зиверта ( 1мЗв) или эффективная доза за период жизни (70 лет) – 0.07 зиверта (70 мЗв);
Для работников РОО средняя годовая эффективная доза равна 0.02 зиверта (20 мЗв) или эффективная доза за период трудовой деятельности (50 лет) – 1 зиверту (1 000 мЗв). Допустимо облучение в годовой эффективной дозе до 0.05 зиверта, но при условии, что она, исчисленная за пять последовательных лет, не превысит 0.02 зиверта.
Регламентируемые значения основных пределов доз облучения не включают в себя дозы, создаваемые естественным и искусственным радиационным фоном, а также дозы, получаемые гражданами при проведении медицинских рентгенорадиологических процедур и лечения.
В случае радиационных аварий допускается облучение, превышающее установленные нормы, в течение определенного промежутка времени и в пределах, определенных для таких чрезвычайных ситуаций.
Примерно до 50% от общего облучения, которое получает человек в повседневной жизни, ему дает радиоактивный радон. Именно поэтому в ст. 15 сказано: «Облучение населения и работников, обусловленное радоном, продуктами его распада, а также другими долгоживущими природными радионуклидами, в жилых и производственных помещениях не должны превышать установленные нормативы».
Поэтому теперь, в целях обеспечения защиты населения, необходимо: тщательно подбирать участки для строительства зданий и сооружений, учитывая уровни выделения радона из почвы; проводить проектирование и строительство так, чтобы не допустить поступление этого газа в помещения вместе с воздухом; контролировать уровень содержания радона в помещениях в процессе их эксплуатации.
И еще одно требование, которого раньше никогда не было. Звучит оно довольно жестко: «Запрещается использовать строительные материалы и изделия, не отвечающие требованиям к обеспечению радиационной безопасности».
Вот почему на предприятиях, выпускающих кирпич, керамзит, облицовочную плитку, железобетонные изделия, должен производиться тщательный радиационный контроль как поступающего сырья, так и готовой продукции.
Обращено внимание и на медицинские рентгенорадиологические процедуры. Например, по требованию гражданина ему предоставляется полная информация об ожидаемой или получаемой им дозе облучения и о возможных последствиях в результате таких процедур или исследований. Человек имеет право отказаться от них, за исключением профилактических исследований, проводимых для выявления заболеваний, опасных в эпидемиологическом отношении.
Если на ликвидацию Чернобыльской катастрофы люди ехали как в обычную командировку, да еще в массовом количестве, то теперь такой самостоятельности положен конец. С атомом, да еще радиоактивным, шутить нельзя. Поэтому в ст. 21 сказано: «Облучение граждан, привлекающихся к ликвидации последствий радиационных аварий, не должно превышать более чем в 10 раз среднегодовое значение основных гигиенических нормативов облучения для работников». И такое допускается только один раз в жизни при добровольном согласии.
На основании этого закона были разработаны и постановлением Госкомсанэпиднадзора РФ от 19 апреля 1996 г. №7 введены в действие новые Нормы радиационной безопасности – НРБ-96. Эти нормы распространяются на следующие виды воздействия ионизирующего излучения на человека:
— облучения персонала и населения в условиях нормальной эксплуатации техногенных источников ионизирующего излучения (ИИИ);
— облучение населения и персонала в условиях радиационной аварии;
— облучение работников промышленных предприятий и населения всеми природными ИИИ;
— медицинское облучение населения.
По сравнению с НРБ-76/87 исключены такие термины и определения, как «коэффициент качества излучения», «экспозиционная доза», внесистемные единицы измерения доз (рентген, бэр и их производные), внесистемная единица кюри. Однако на практике все еще приходится пользоваться и старыми, привычными единицами измерения.
В новых Нормах радиационной безопасности изменена классификация облучаемых лиц, в соответствии, с которой приняты две категории:
— персонал – лица, работающие с техногенными источниками (группа А) или находящиеся по условиям работы в сфере их воздействия ( группа Б);
— население – не занятое в сферах производства и обслуживания.
При проектировании зданий следует предусматривать, чтобы объемная активность изотопов радона и торона не превышала 100 Бк/м3, а в эксплуатируемых помещениях радона должно быть не более 200 Бк/м3. Мощность дозы гамма-излучения при этом не может превышать мощность на открытой местности более чем на 0.3 мкЗв/ч (30 мкР/ч). Если объемную активность изотопов радона снизить до 400 Бк/м3 и мощность дозы гамма-излучения менее чем 0.6 мкЗв/ч не удается, то жильцов из этих зданий отселяют.
Территории, где эффективная доза превышает 1 мЗв в год, подразделяются на четыре зоны:
— радиационного контроля – от 1 до 5 мЗв ( 100 –500 мбэр);
— ограниченного проживания населения – от 5 до 20 мЗв (0.5-2 бэр);
— добровольного отселения –от 20 до 50 мЗв (2-5 бэр);
— отселения- более 50 мЗв ( более 5 бэр).
НРБ-96 разработаны с учетом Международных норм безопасности для защиты от ионизирующих излучений, отражают современное состояние и подходы в интересах обеспечения санитарно-эпидемиологического благополучия и радиационной безопасности населения.
Заключение
Не надо бояться радиации, но и не следует ею пренебрегать. В малых дозах она безвредна и легко переносится человеческим организмом, в больших дозах бывает смертельно опасна. В то же время пора понять – с радиацией не шутят, она мстит за это людям.
Мы едим, пьем, дышим, – все это сказывается на дозах, которые получаем от естественных источников. Например, хлебобулочные изделия имеют большую радиоактивность, чем молоко, сметана, масло, кефир, овощи и фрукты. Любимый цветной телевизор это источник рентгеновского излучения. Самым распространенным источником облучения являются часы со светящимся циферблатом. Они дают годовую дозу, в 4 раза превышающую ту, которая обусловлена утечками на АЭС.
Надо понять, что радиация везде и всюду окружает нас, мы зародились, живем в этой среде, и ничего здесь противоестественного нет. Только знание основ природы ионизирующих излучений, их влияние на человека и степень опасности могут вылечить людей от радиофобии, болезни, к сожалению, еще так распространенной. Радиофобия – это болезнь нашего невежества. Исцеляется только знаниями.
Список использованной литературы
www.eco.nw.ru/lib/data/07/4/070407.htm
razvlekon.h1.ru/Radioaktivnost.htm
nuclphys.sinp.msu.ru/radiation/rad_7.htm
www.sgu.ru/files/nodes/10446/1.html Ссылки (links):
www.eco.nw.ru/lib/data/07/4/070407.htmrazvlekon.h1.ru/Radioaktivnost.htmnuclphys.sinp.msu.ru/radiation/rad_7.htm


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.