Реферат по предмету "БЖД"


Основы электробезопасности 2

Электробезопасность
1. Причины электротравм, действие электричества на человека
Широкое использование электрической энергии во всех отраслях промышленности и быта обуславливает значительную опасность поражения человека электрическим током. Анализ показывает, что количество электротравм в промышленности составляет 0,5-1%, однако, очень высокий процент летального исхода — 15-20%, причем, до 80-85% электротравм со смертельным исходом происходит в сетях с напряжением до 1 000 В.
Анализ основных причин электротравматизма в Украине показывает, что 40-45% электротравм связаны с ненадлежащим уровнем эксплуатации оборудования, приводящим к снижению сопротивления изоляции, появлению напряжения на нетоковедущих его частях. Значительное количество электротравм (25-30%) вызывается неудовлетворительной организацией рабочего места и недостаточным инструктированием лиц, работающих на электроустановках, 30-35% электротравм обусловлено неудовлетворительной конструкцией и монтажом оборудования: наличием открытых токоведущих частей, недостаточным расстоянием между токоведущими частями и металлическими конструкциями оборудования, отсутствием сигнализации, блокировки и т.д.
В строительстве большое количество машин и механизмов приводится в действие с помощью электрической энергии. Электричество применяется для прогрева замороженного грунта, бетона, при электросварке, для освещения.
Основными причинами, приводящими к травматизму являются:
неожиданное появление напряжения там, где его в нормальных условиях не должно быть (корпуса электрического оборудования, щиты и пульты управления и т.д.), что случается в результате пробоя или нарушения изоляции проводов, обмоток;
прикосновение человека к неизолированным токоведущим частям;
недопустимое приближение к частям тоководов, находящихся под напряжением; при этом через тело человека при пробое изоляции, проходит электрический ток;
попадание человека в зону короткого замыкания фазы на землю. При этом по поверхности земли происходит образование электрических потенциалов, что создает предпосылки возникновения шагового напряжения.
Прочие причины: несогласованность и ошибочные действия обслуживающего персонала, отсутствие надзора и т.д.
Статистика показывает, что примерно 50% смертельных случаев при поражении электрическим током происходит в результате прикосновения человека непосредственно к токоведущим частям, находящимся под напряжением.
2. Влияние электрического тока на организм человека
Механизм поражения человека электрическим током чрезвычайно сложен и связан с нарушением биологических, физических, химических процессов в организме человека. При этом возможны необратимые нарушения функциональной деятельности жизненно важных органов человека.
По вызываемым последствиям электротравмы условно делят на местные повреждения органов (повреждение кожи, тканей, связок, костей) и общие (электрические удары), приводящие к нарушению функционирования всего организма. Около 55% травм — совокупность местных электротравм с электроударом.
Местные электротравмы (явно выраженные): электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия, механические повреждения, электрические ожоги (60-65%), различают тепловой контакт и дуговой.
По степени тяжести различают 4 степени электроожогов:
1-я степень — покраснение кожи;
2-я степень — образование пузырей;
3-я степень — обугливание кожи;
4-я степень — обугливание подкожной клетчатки, мышц, сосудов, нервов, костей.
Характерным для электроожога является воздействие кратковременного высокого напряжения или тока большой силы с разрывом цепи (одернув руку).
Электрические знаки (метки) возникают в местах контакта человека с токоведущими частями (затвердевшие пятна ткани, круглой или элипсообразной формы, серого или бело-желтого цвета) в результате механического или химического воздействия тока на ткани. Ощущения боли вначале нет, оно появляется позже.
Электрометаллизация кожи — проникновение в кожу мельчайших частиц металла за счет оплавления металла в электрической дуге (цвет тканей в результате химического воздействия на кровь зеленый или сине-зеленый). Ощущение, как и при ожоге.
Электроофтальмия — воспаление наружных оболочек глаз вследствие излучения электрической дуги (покраснение, боли, возможна слепота)
Механические повреждения — возникают вследствие резких непроизвольных сокращений мышц и нервных окончаний под воздействием электротока. В результате могут происходить разрывы мышечных тканей, кровеносных сосудов, нервных тканей, и даже переломы костей.
Наиболее опасным повреждением является — электрический удар. Он приводит к возникновению шока, параличу мышц двигательной системы, мышц желудка, грудной клетки. Это ведет к нарушению или прекращению деятельности всего организма.
Тело человека состоит из клеток, в которых протекают жизненно важные процессы. При воздействии электрического тока биотоки в организме перестают нормально функционировать либо совсем парализуются, что приводит к летальному исходу. При действии тока одним из опаснейших явлений является фибрилляция сердца — разновременные и разрозненные сокращения отдельных волокон сердечных мышц, в результате чего наступает смерть (число сокращений достигает сотен в минуту).
3. Основные факторы, определяющие степень воздействия электрического тока на человека
Возможные последствия поражения зависят от многих факторов:
параметров электрической цепи (напряжения, сопротивления человеческого тела);
величины, частоты и рода тока;
времени воздействия тока на тело человека;
пути прохождения тока через тело человека;
окружающих условий среды (температура, влажность, атмосферное давление, материал полов и др.);
индивидуальных особенностей человека (рис.3.4 1)
Влияние основных параметров электротока на степень поражения человека
Рассмотрим влияние основных параметров на степень поражения человека. Значение напряжения существенно влияет на величину тока поражения. Однако между этими величинами нет пропорциональной зависимости. Это объясняется нелинейностью электрического сопротивления тела человека. Главным элементом, имеющим наибольшее сопротивление организма человека току, является верхний роговой слой кожи. Его сопротивление колеблется от 600 до 200 000 Ом/см2 при сухом и неповрежденном состоянии. Сопротивление потной кожи резко снижается — в отдельных случаях до 1000 Ом и ниже.
Теория объясняет прохождение тока в подкожную область тела через пот и потовые железы в обход рогового слоя, или уменьшением сопротивления контакта между кожей и электродом. Протекание тока через кожу вызывает ее потение, что со временем приводит к возрастанию тока до опасных пределов.
Сопротивление кожи человека уменьшается с увеличением приложенного напряжения. При напряжении 36В пробой рогового слоя происходит медленно, а при напряжении 380В пробой наступает мгновенно. Увеличение площади соприкосновения существенно уменьшает переходное сопротивление и увеличивает проходимость.
При снятом верхнем слое сопротивление кожи человека снижается до 1000 Ом/см2. Внутренние органы имеют сопротивление в среднем 1000 Ом/см2. Учитывая, что это значение наиболее стабильно, за расчетное сопротивление принимается 1000 Ом/см2, равное внутреннему сопротивлению тела человека.
Влияет и род тока. Так, при частоте переменного тока 60Гц максимально выдерживаемый человеком ток, при котором можно преодолеть сокращение мышц рук, равен 10 мА (0,01 А), в то время как человек сохраняет ту же способность при постоянном токе 50...80 мА (0,05...0,08 А). Постоянный ток напряжением до 250В менее опасен, чем равный ему переменный. Однако с повышением напряжения постоянный ток становится более опасным. Частота тока оказывает влияние на степень поражения человека. Наиболее опасен переменный ток промышленной частоты 50...60 Гц.
Одинаковое воздействие на человека оказывают токи 50… 200 Гц-до 10 мА, 1000 Гц — до 20 мА, 7000 Гц-до 35 мА. Чем дольше человек находится под воздействием тока, тем сильнее последствия поражения.
Международные комиссии предлагали ограничить время действия токовой защиты до 0,03 с для токов до 300 мА и принять следующие численные значения:
Время, с 1 0,7 0,5 0,2
Ток, мА 65 75 100 250
На основе исследований и практического опыта можно принять допустимый интервал времени прохождения электрической цепи через тело человека от 0,01 до 2 с.
По последствиям действия на организм человека токи подразделяются на пороговые, отпускающие и удерживающие.
Значения пороговых токов зависят от человека, места соприкосновения с телом человека, напряжения и находятся в пределах от 0,6 до 5 мА (0,005 А), когда человек начинает ощущать протекание тока.
Отпускающими токами считаются такие, при которых человек еще может сам прервать электроцепь, проходящую через его тело. Значение отпускающего переменного тока составляет менее 0,01 А, а постоянного — 0,05...0,07 А.
Удерживающими токами считаются такие, при которых человек не может без помощи извне освободиться, то есть прервать цепь. Здесь мы встречаемся с несоответствием скорости влияния тока и скорости условных рефлексов, когда человек понимает, что он погибает, но понимает это слишком поздно, так как мышцы тела уже парализованы. Значения переменного удерживающего тока находятся в пределах 0,01А, постоянного тока — более 0,07 А.
Поражение человека не происходит при напряжении 12...16В и силе тока менее 0,01А при благоприятных окружающих условиях, а ток напряжением 36В, который некоторые исследователи считают безопасным, может оказаться смертельным.
Пример. Человек попал под напряжение 36В. Сопротивление человека может быть 400, 800, 1000 Ом.
/>; />; />
Как видно, при напряжении 36В при определенных условиях может произойти несчастный случай со смертельным исходом.
Следует помнить, что на теле человека есть уязвимые участки с пониженным сопротивлением тканей.
И если провод касается уязвимых участков тела, то смерть может наступить при малых напряжениях и токе 10...70 мкА (0,000010-0,000070 А).
Известны случаи со смертельным исходом при напряжении 15-20В. В одном случае обнаружены метки на тыльной стороне кисти и большого пальца.
Западногерманский ученый Ульрих предлагает определить смертельную величину тока с учетом опасных точек расчетным путем:
/>
где І — переменный ток с частотой 50 Гц, протекающий через тело человека, мА:
Кн — коэффициент, учитывающий изменение величины тока в зависимости от возможных прикосновений тела человека к сети тока.
Значения коэффициента Кн приведены на схеме (рис.3.4 1) для различных комбинаций мест приложения напряжения через поврежденную кожу (в скобках даны значения величины Кн при прикосновении двумя руками к местам, находящимся под напряжением).
Если при прикосновении двумя руками к установке, находящейся под напряжением 220В, 50Гц Кн=0,4 то смертельная величина тока, согласно /3.1/, равна 200 мА (рис. 2).
4. Условия поражения электрическим током
Электродвигатели строительных машин и механизмов и других различных электроустановок питаются трехфазным током, напряжением 380/200В, а осветительные приборы — однофазным током с напряжением 220/127В.
Ток может подаваться:
по четырехпроводной сети с изолированной нейтралью;
по четырехпроводной сети с глухозаземленной нейтралью;
по трехпроводной сети с изолированной нейтралью;
по трехпроводной сети с глухозаземленной нейтралью.
Изолированной нейтралью называется нейтраль трансформатора или генератора, не присоединенная к заземляющему устройству или присоединенная через большое сопротивление, соизмеримое с сопротивлением изоляции фазных проводов.
/>--PAGE_BREAK--
/>/>
/>
/>
Рис. 1. Основные факторы, определяющие степень поражения человека электрическим током
/>
/>
Рис. 2. Схема расположения опасных точек на теле человека.
Сети с изолированной нейтралью применяют в тех случаях, когда имеется возможность контролировать и поддерживать высокий уровень изоляции проводов и когда емкость сети относительно земли незначительна (мало разветвленные сети не подверженные воздействию агрессивной среды, находящихся под постоянным надзором квалифицированного персонала — сети небольших предприятий, передвижных электроустановок и т.д.).
Глухозаземленной нейтралью называется нейтраль трансформатора или генератора, присоединенная непосредственно к заземляющему устройству или через малое сопротивление.
Сети с глухозаземленной нетралью применяются при значительной протяженности и разветвленности, когда невозможно обеспечить высокий уровень изоляции (высокая влажность, агрессивность среды и т.д.), невозможно контролировать и поддерживать высокий уровень изоляции, либо когда емкостные токи из-за высокой разветвленности достигают опасных значений для человека (сети крупных промышленных предприятий).
Фазные провода А, В, С называются линейными проводами, напряжение между любыми двумя из них 380В.
Степень опасности и возможность поражения электротоком зависят от условий включения в сеть. (рис. 1).
1. Самым опасным является прикосновение человека к двум различным фазам, находящимся под напряжением. Человек оказывается включенным на полное линейное напряжение в сети и сила тока, проходящего через человека,
/>
где Uл-линейное напряжение сети, В;
Rr-сопротивление тела человека, Ом.
В этом случае при всех напряжениях в сети сила тока Ir>0,01 А, значительно больше удерживающего тока.
При этом в считанные доли, происходит пробой кожного покрова и по телу человека замыкается электрическая цепь. Особо опасно прохождение тока рядом с жизненно важными органами: сердце, грудная клетка, печень и так далее, что может вызвать фибрилляцию сердца, потерю сознания и привести к летальному исходу.
При двухфазном прикосновении ток, проходящий через человека, практически не зависит от режима нейтрали сети. Следовательно, двухфазное прикосновение является одинаково опасным как в сети с изолированной, так и с заземленной нейтралью (при равенстве линейных напряжений этих сетей).
2. При одновременном соприкосновении человека с линейным и нулевым проводом имеет место однофазное включение. Опасность поражения током в этом случае, по сравнению с линейным, в 1,73 меньше и определяется уравнением
/>
Первый и второй случаи еще очень опасны и потому, что ток проходит по кратчайшему пути через руки и жизненно важные органы человека, парализуя их работу. Следует отметить, что прикосновение человека двумя руками к разным проводам происходит редко, чаще одной рукой, т.е. при однофазном включении.
/>
Рис. 3. Схема двухфазного включения: а-сети постоянного и однофазного тока; б-сети трехфазного тока.
3. При однополюсном прикосновении к двухпроводной сети величина тока, проходящего через человека,
/>
где, Rn — сопротивление изоляции пола, Ом;
Rоб— сопротивление изоляции обуви, Ом.
4. При однофазном (однополюсном) прикосновении в сети с глухозаземленной нейтралью через тело человека пройдет ток.
/>
где, Rо — сопротивление заземления нейтрали, Ом
/>
Рис. 4. Схема однофазного включения при нормальном режиме роботы:
а-трехфазные сети с глухозаземленой нейтралью; б-трехфазные сети с изолированной нейтралью.
Сопротивление заземления нейтрали ничтожно мало и им можно пренебречь Rо = 0, поэтому,
/> (3.4 6)
т.к. Uф меньше Uл в />, то величина тока поражения будет значительно меньше, чем при двухфазном включении и зависит от величины сопротивления пола и обуви.
5. При однофазном включении человека в трехфазную сеть с изолированной нейтралью величина тока, проходящего через человека, будет меньше, чем при аналогичном включении в сети с глухозаземленной нейтралью (при исправной сети). Это связано с тем, что добавляется сопротивление изоляции (RA; RB; RC) и емкости (СA; СB; СC) фаз.
Если пренебречь емкостным сопротивлением, т.е. СA = СB = СC = 0, то
/>
где, Ru — сопротивление изоляции одной фазы, Ом, RU= RA= RB= RC
а при Rn= Rоб= 0
/>
В случае заземления нейтрали через человека пройдет меньший ток, т.к сила тока существенно зависит от состояния изоляции, подбора полов в помещениях, где установлена электроаппаратура, спецобуви и так далее. Например, сухие полы имеют сопротивление до 1 *106 Омм.
Неучтение влияния сопротивления пола помещения и обуви может привести к несчастному случаю.
Из сравнения приведенных выше формул видно, что ток, проходящий через человека, при условиях, соответствующих формулам (3.4.3 и (3.4 4), будет меньше, так как при однофазном включении ток не проходит через жизненно важные органы.
Выше рассмотрены условия поражения человека при нормальной работе электросети. В случае аварийных режимов (замыкания корпуса или одной из фаз на землю) ток, которой проходит через тело человека при соприкосновении с исправной фазой определяется
/>
где, Rк — сопротивление короткого замыкания, Ом
Rк — весьма мало и им можно пренебречь, тогда ток поражения
/>
т.е. ток поражения равен, практически току поражения при двухфазном включении в электрическую цепь, что очень опасно для человека.
В сетях с глухозаземленной нейтралью срабатывает защита при возникновении короткого замыкания.
Поэтому, можно сделать следующие выводы:
в условиях малой протяженности сети и сохранения постоянного высокого сопротивления изоляции, малой вероятности замыкания на землю (при наличии автоматического контроля изоляции на землю) — сети с изолированной нейтралью менее опасны, чем с глухозаземленной;
в условиях разветвленной сети с глухозаземленной нейтралью большой протяженности, когда нет возможности поддерживать постоянно высокий уровень изоляции сети, а при большом количестве потребителей не исключено возникновение замыкания на корпус — сети с глухозаземленной нейтралью имеют преимущество, заключающееся в отсутствии влияния сопротивления сети относительно земли (активного емкостного) на ток поражения и автоматическом отключении участка с поврежденной изоляцией при замыкании на корпус.
5. Опасность при замыкании тоководов на землю
Замыканием на землю называется соприкосновение тоководов или частей электроустановок, которые находятся под напряжением с землей (обрыв тоководов, повреждение изоляции электроустановок и т.д.)
В месте контакта токовода (заземления) происходит растекание тока, по поверхности, что создает на поверхности потенциалы различной плотности. Величина потенциала и характер растекания тока на поверхности земли зависит от формы заземлителя, однородности и электропроводности грунта и силы тока. На рис 3.4 5 показано растекание тока в однофазном изотропном грунте через полусферический одиночный заземлитель. Вследствие однородности грунта, изотропный ток растекается равномерно по поверхности. Плотность тока δв точке А на поверхности грунта на расстоянии х от заземлителя определяется как отношение тока заземления на землю к площади поверхности полусферы радиуса х
/>
Данная поверхность является эквипотенциальной поверхностью.
Потенциал точки А равен суммарному падению напряжения от точки А до земли (бесконечно удаленной точки с нулевым потенциалом)
/>
Согласно закона Ома напряженность электрического поля в точке А равна:
/>
где, /> — удельное сопротивление грунта, Ом. м.
После подстановки данного значения получим:
/>/>
Как видно из зависимости, изменение потенциала точек грунта подчиняется гиперболическому закону.
Человек, попадая в зону растекания тока и соприкасаясь при этом с токопроводящими частями, оказывается под напряжением прикосновения.
При прохождении человека через зону растекания он подвергается воздействию шагового напряжения.
Напряжение прикосновения.
При нахождении человека в зоне растекания (в радиусе 20м, за указанным расстоянием электрический потенциал, практически, равен нулю) и при прикосновении к заземленным корпусам электрооборудования, которые находятся под напряжением, возникает напряжение прикосновения, равное разнице потенциалов точек контакта (между руками /> и ногами/>)
/>
При прикосновении рукой с заземленным корпусом потенциал руки равен потенциалу данного корпуса или напряжению замыкания:
/>
Ноги человека при нахождении в точке А имеют потенциал:
/>
Чем далее удалены ноги человека от места замыкания, тем выше напряжение прикосновения. В общем, виде напряжение прикосновения равно:
/>
где, /> — коэффициент напряжения прикосновения, который зависит от формы заземлителя и расстояния от него (табличные данные)    продолжение
--PAGE_BREAK--
Напряжением шага называется разность потенциалов точек земли, отстоящих друг от друга на расстоянии шага человека. Следовательно, человек, не касаясь каких-либо частей электроустановок, может оказаться под напряжением, и ток при этом идет от одной ноги человека к другой. Это происходит потому, что удаленные на разные расстояния от провода точки почвы касаются одновременно ног человека и имеют разные потенциалы (рис.3.4 5):
/>; />
Тогда напряжение шага
/>
где /> — удельное сопротивление, Ом см; х — расстояние от провода до одной ноги, м; а — шаг человека, м.
/>
Рис 5. Растекание элетрического потенциала на грунте при коротком замыкании токовода на землю.
Шаг человека обычно принимается 0,8 м. Анализ формулы (3.4 18) указывает на то, что с удалением от источника тока напряжение шага падает и на расстоянии 20 м практически равно нулю. При больших токах замыкания напряжение шага может достигать значений, опасных для жизни человека. Уменьшить опасность поражения током можно устройством контурного заземления (выравниванием потенциалов). Приближаться к лежащему на земле проводу в радиусе 8 м от места замыкания запрещается. При попадании под напряжение шага человек должен быстро выйти из опасной зоны мелкими шагами, почти не отрывая ног от земли.
6. Классификация условий работ (помещений) по степени электроопасности
Существует следующая классификация условий работ по степени электробезопасности (ГОСТ 12. — 1.013-78);
1. Условия с повышенной опасностью:
работа в сырых помещениях с влажностью более 75%;
наличие проводящей пыли;
наличие токопроводящих оснований (металлических, земляных, железобетонных, кирпичных);
наличие повышенной температуры (длительно 35° С, кратковременно 40° С).
не исключено включение человека в электрическую цепь за счет одновременного соприкосновения с электрооборудованием и металлическими корпусами зданий и сооружений
2. Особо опасные условия:
работа на улице и в очень сырых помещениях с постоянной относительной влажностью, близкой к 100%, со стенами, покрытыми конденсатом;
наличие агрессивной коррозионной среды (паров и вредных газов);
наличие одновременно двух или более условий повышенной опасности.
3. Условия без повышенной опасности:
это работа в сухих помещениях с относительной влажностью не более 75%
температурой воздуха 5-35° С
с полами, обладающими большим сопротивлением
без токопроводящей пыли.
7. Меры профилактики электротравматизма
Безопасная эксплуатация электрооборудования достигается целым комплексом мер профилактики электротравматизма, которые можно свести к следующим группам: организационные, технические, индивидуальные средства защиты.
Организационные меры электробезопасности.
Безопасная эксплуатация электроустановок включает систему мер безопасности (план мероприятий по выполнению работ, план профилактики при эксплуатации электроустановок).
Предусматривается: назначение лиц, ответственных за безопасное ведение работ; подбор, расстановка и обучение персонала; подготовка оборудования и документации на рабочих местах; проведение инструктажа персонала перед началом работ; выдача наряда-допуска; выполнение организационно-технических мероприятий; соблюдение технологической дисциплины; надзор за выполнением работ; периодический инструктаж на рабочем месте и анализ состояния электробезопасности.
Лица, которые принимаются на работу по обслуживанию электрического оборудования, подлежат медицинскому осмотру, согласно постановления Министерства здравоохранения Украины. Очередность медицинских осмотров — раз в 24 месяца. К работе допускаются лица не моложе 18 лет, которые имеют квалификационную группу соответственно выполняемой работы.
Занятие по технической подготовке с персоналом проводится по специальной программе. Задачей технической подготовки является изучение персоналом теоретических основ и процессов, работы оборудования, освоение приемов и методов безопасной работы на электроустановках. Проводятся тренировки по отработке практических навыков при возникновении аварийных ситуаций.
Электробезопасность работ в основном зависит от качества обучения, правильной организации рабочего места и своевременного контроля правильности ведения работ.
Обучение электробезопасности работающих старше 18 лет заканчивается присвоением им квалификационной группы.
Установлено пять квалификационных групп по технике безопасности.
I квалификационная группа присваивается неэлектротехническому персоналу, не прошедшему специальную проверку знаний по действующим Правилам: обслуживающему передвижные машины и механизмы с электроприводом, работающему с электроинструментом; водителям автомашин, кранов и уборщикам помещений электроустановок. Стаж работы с электроустановками лиц, имеющих I группу, не нормируется. Они обязаны иметь представление об опасности электрического тока, о мерах безопасности, уметь практически оказать первую помощь пострадавшему.
II квалификационная группа присваивается практикам-электрикам (со стажем работы не менее 6 мес.), электромонтерам, электрослесарям, связистам, мотористам электродвигателей, машинистам кранов, электросварщикам (со стажем не менее 1 мес.); практикантам институтов, технических и ремесленных училищ. Персонал, которому присвоена II группа, должен иметь элементарное представление об электроустановках; отчетливо представлять опасность электрического тока при приближении к токоведущим частям, знать основные меры безопасности при работе с электроустановками, уметь практически применять правила оказания первой помощи.
III квалификационная группа присваивается элетромонтерам, электрослесарям, связистам, оперативному персоналу подстанций; оперативно-ремонтному персоналу электроустановок (со стажем работы 3-6 мес), практикантам институтов, техникумов, начинающим инженерам и техникам (со стажем работы не менее 1 мес. по II группе). Персонал III группы должен иметь познания в электротехнике, знать устройство и вопросы обслуживания электроустановок, отчетливо представлять опасность при работе с электроустановками, знать общие правила техники безопасности и правила допуска к работе с электроустановками, знать специальные правила техники безопасности работ, которые входят в обязанности данного лица, уметь вести надзор за работающими с электроустановками, уметь практически оказать первую помощь пострадавшему.
IV квалификационная группа присваивается электромонтерам, связистам, оперативному персоналу подстанций, оперативно-ремонтному персоналу цеховых электроустановок (со стажем работы не менее года по III группе), начинающим инженерам и техникам (со стажем не менее 2 мес. по III группе) инженерам по технике безопасности (с производственным стажем не менее 3 лет). Персонал IV группы должен иметь познания в электротехнике в объеме специализированного профтехучилища, иметь полное представление об опасности при работах с электроустановками, знать Правила пользования и испытания защитных средств, применяемых в электроустановках, уметь проверять выполнение мер безопасности, организовать безопасное проведение работ и вести надзор за ними в электроустановках напряжением до 1000 В, знать правила оказания первой помощи.
V квалификационная группа присваивается электромонтерам, электрослесарям, мастерам, техникам и инженерам-практикам (с общим стажем не менее 5 лет). У мастеров, техников, инженеров с законченным средним или высшим техническим образованием общий стаж должен быть не менее 6 мес. Персонал V группы должен знать схемы оборудования своего участка, знать Правила пользования и испытания защитных средств, применяемых в электроустановках, иметь представление о том, чем вызвано требование того или иного пункта, уметь организовать безопасное производство работ и вести надзор за ними в электроустановках любого напряжения, знать правила оказания первой помощи, уметь обучать персонал других групп правилам техники безопасности и оказанию первой помощи.
По окончании обучения, при назначении на работу проверка знаний производится квалификационной комиссией в составе не менее трех человек. Согласно ГОСТ 12.1 013-78, в строительно-монтажной организации должен быть назначен инженерно-технический работник, имеющий квалификационную группу по технике безопасности не ниже IV, ответственный за безопасную эксплуатацию электрохозяйства организации.
Периодическая проверка знаний ПТЭ, ПТБ, должностных лиц проводится:
1 раз в год — для электротехнического персонала, непосредственно обслуживающего действующие электроустановки и проводящего в них наладочных и др. работ;
1 раз в три года — для ИТР, не относящегося к группе персонала, подвергающегося проверке 1 раз в год, а также инженеров по технике безопасности, допущенных к инспектированию электроустановок.
Технические меры электробезопасности
К техническим мерам профилактики электротравматизма относятся:
снятие напряжения;
электроизоляция оборудования;
применение пониженного напряжения;
применение защитного заземления и зануления электрооборудования;
защитное отключение, защитная блокировка;
применение защитных средств.
Снятие напряжения.
Эффективной мерой безопасности при обслуживании и ремонтных работах на электроустановках является снятие напряжения (обесточивание).
Все работы под напряжением по степени опасности можно разделить на четыре категории:
работы при полном снятии напряжения, когда на всех токоведущих частях установки снято напряжение и вход на соседнюю электроустановку, находящуюся под напряжением, закрыт на замок;
работа с частичным снятием напряжения характеризуется снятием напряжением только с участков, где производится работа, или полном снятием при незакрытом на замок входе в соседнюю электроустановку, находящуюся под напряжением;
работа, без снятия напряжения вблизи и на токоведущих частях, находящихся под напряжением (необходимо принимать меры, исключающие приближение людей к токоведущим частям);
работа без снятия напряжения вдали от токоведущих частей, находящихся под напряжением (исключено случайное приближение людей, — непрерывный надзор за опасной зоной)
В зависимости от напряжения и категории работ и в соответствии с нарядом-допуском рабочим выдаются защитные средства, организуется соответствующим образом рабочее место (устанавливается ограждение, вывешиваются плакаты, проверяется отсутствие напряжения, подсоединяются переносные заземления, устанавливается контроль за ведением работ).
Вид снятия напряжения определяется характером и объемом профилактических работ на электроустановках, а также опасностью электрического травмирования работников, не задействованных в данных работах.
Там, где позволяют условия, производится полное снятие напряжения с технологической линии, цеха или участка.
Частичное обесточивание предусматривает снятие напряжения с ограниченной части технологической линии и участка ведения работ. Решение о снятии напряжения принимает лицо, ответственное за электрохозяйство предприятия из числа ИТР энергослужбы с учетом требований ПТЭ, ПТБ, ПУЭ, по согласованию с администрацией предприятия.
Лицо, ответственное за снятие напряжения, обязано обеспечить:
системный контроль за снятием напряжения;
организацию и своевременное проведение ППР и профилактических испытаний электрооборудования, аппаратуры и сетей;
обучение, инструктаж и выдачу наряд-допуска на ведение работ;
наличие и своевременную проверку средств защиты.
Для подготовки рабочего места при работах со снятием напряжения выполняют в указанной последовательности, следующие технические мероприятия:
проводят необходимые отключения и принимают меры, исключающие ошибочное или произвольное включение;
устанавливают ограждение рабочего места и вывешивают предупредительные знаки на приводах ручного и дистанционного управления «не включай, работают люди»;
проверяют отсутствие напряжения на токоведущих частях, на которые накладывают заземление для защиты работающих от поражения электротока;
ограждают при необходимости рабочие места и оставшиеся под напряжением токоведущие части;    продолжение
--PAGE_BREAK--
проверяют отсутствие напряженности в электроустановках указателями напряжения, исправность которых контролируют перед применением с помощью приборов ППИ-4.
Электроизоляция электроустановок и тоководов и ее контроль.
Электрическая изоляция — это слой покрытия диэлектрика или диэлектрик, которым покрывается поверхность токоведущих частей, тоководов, или которыми токоведущие части отделяются друг от друга. Изоляция должна обладать высокими диэлектрическими свойствами, прочностью и сопротивляемостью к изменениям температурно-влажностной среды.
В электроустановках применяются следующие виды изоляции: рабочая, дополнительная, двойная и усиленная.
Рабочая изоляция обеспечивает нормальную работу электроустановок и защиту от поражения электрическим током.
Дополнительная — предусматривается как дополнение к рабочей для защиты от поражения электрическим током, в случаях ее повреждения.
Двойная изоляция состоит из двух независимых одной от другой рабочей и дополнительной изоляции. Рабочую (функциональную) называют основной изоляцией т.к она должна обеспечить электробезопасность работающих (изоляция обмоток машин, жил тоководов и т.д.). Дополнительной изоляцией может быть пластмассовый корпус машины, изолирующие втулки, блоки и т.д.
При двойной изоляции заземление или зануление металлических частей запрещается, так как этим шунтируется дополнительная изоляция, и ее преимущества сводится на нет. Соединение корпуса машины, имеющей двойную изоляцию с заземляющим устройством недопустимо, так как это снижает безопасность работающего.
Усиленная — это улучшенная рабочая изоляция, которая обеспечивает такой же уровень защиты, как и двойная.
Как правило, двойная изоляция применяется для выключателей, розеток, вилок, патронов ламп, переносных светильников, электрифицированного ручного инструмента, электроизмерительных приборов и некоторых бытовых приборов. Область применения двойной электроизоляции — электроустановки небольшой мощности. Она является действенным защитным средством.
Согласно ПУЭ, сопротивление изоляции электроустановок должно быть не менее 1000Ом на 1В рабочего напряжения. Так для сетей переменного напряжения 380/220В сопротивление изоляции должно быть не менее 380 кОм. Для электросетей напряжением до 1000В сопротивление изоляции токопроводных частей должно быть не ниже 0,5 МОм.
Следует учитывать, что в процессе эксплуатации изоляция претерпевает различные изменения: старение, механические повреждения, растрескивание от перепада температурно-влажностной среды. Поэтому электроизоляция подлежит систематическому осмотру и испытаниям согласно Правилам устройства электроустановок (ПУЭ) и Правилам техники безопасности (ПТБ).
Сопротивление изоляции электрооборудования назначается в зависимости от электрической мощности электроустановки, Ом
/>
где, U — напряжение, В; N — мощность, Вт.
В зависимости от вида электроизоляции электротехнические изделия подразделяются на следующие классы: 0, 01, І, ІІ, ІІІ при этом:
к классу 0 относятся изделия, в которых имеется рабочая изоляция, но отсутствует элементы для заземления (если они не относятся к классу ІІ или ІІІ);
к классу 01 относятся изделия, имеющий рабочую изоляцию и элемент для заземления, а также провод без заземляющей жилы для подсоединения к источнику питания;
к классу І относятся изделия, имеющие рабочую изоляцию и элемент для заземления, а также провод для подсоединения к источнику питания с заземляющей жилой и вилку с замыкающим контактом;
к классу ІІ относятся изделия, имеющие двойную или усиленную изоляцию и не имеющие элементов для заземления;
к классу ІІІ относятся изделия, в которых отсутствуют внутренняя и внешняя электрические цепи с напряжением более 42В.
Изделия, получающие питание от внешнего источника относятся к ІІІ классу в том случае, если они предназначены для присоединения непосредственно к источнику питания с напряжением не выше 42 В.
Электрическое разделение сети. Разветвленные электрические сети большой протяженности имеют значительную электрическую емкость. При этом даже прикосновение к одной фазе является очень опасным. Однако если сеть разделить на ряд небольших сетей такого же напряжения, которые обладают небольшой емкостью и высоким сопротивлением изоляции, то опасность поражения резко снижается. Электрическое разделение сетей осуществляется путем подключения отдельных электроустановок через разделительные трансформаторы. Область применения защитного разделения сетей — электроустановки напряжением до 1000В, эксплуатация которых связана с повышенной опасностью (в передвижных установках, ручном электрифицированном инструменте и т.д.)
Защитные ограждения. Важную роль в обеспечении электробезопасности работающих играет вынесение, по возможности, электрооборудования с рабочей зоны: размещение в местах, исключающих контакт, и на недостижимой высоте (в первую очередь, токоведущих частей и приводов). При этом отдается предпочтение дистанционному управлению технологическими процессами со специально оборудованных пунктов управления. Высоту расположения проводов воздушных линий электропередачи назначают с учетом напряжения (табл. 1).
Для исключения возможного контакта или опасного приближения к неизолированным токоведущим частям предусматриваются стационарные ограждения: сплошные и сетчатые. Сплошные ограждения применяются в электроустановках до 1000В в виде крышек, кожухов и т.д. Сетчатые ограждения имеют двери, которые закрывают на замок. Часто применяют при ведении профилактических работ переносные ограждения: щиты, изолирующие колпаки, изолирующие накладки. Они также оборудуются дверьми или крышками, которые закрываются на замок или обеспечены защитной блокировкой. Под блокировкой понимают автоматическое устройство, при помощи которого предотвращается попадание людей под напряжение в результате ошибочных действий. По принципу действия различают: механическую, электромагнитную и электрическую блокировки.
Таблица 1. Минимальное расстояние (м) по вертикали проводов воздушной линии электропередач при нормальном режиме работы от поверхности земли.
Местность


Линейное напряжение, кВ


1
6
10
35
110
154
220
330
500
населенная
6
7
7
7
7
8
8
8
8
ненаселенная
6
6
6
6
6
7
7
7,5
8
труднодоступная
4
5
5
5
5
6
6
6,5
7
В механической блокировке (МБ) с помощью самозапирающихся замков, защелок и других механических приспособлений прерывается электрическая цепь при открытии его токоведущих частей, что исключает включение оборудования при снятии крышек, дверей в рубильниках, пускателях, автоматических выключателях.
В электромагнитной блокировке (ЭМБ) электромагнитные замки запирания, выключателей, разъединителей и заземляющих ножей обеспечивают определенную последовательность включения и выключения. Это исключает возможность возникновения опасных ситуаций — включения и выключения разъединителя под напряжением и т.д.
Электрическая блокировка (ЭБ) применяется в технологических электроустановках напряжением до 1000 В. С помощью электрических контактов осуществляется отключение напряжения при наличии открытых ограждений, дверей или кожухов, крышек.
Пониженное (малое напряжение). Одной из мер электробезопасности является применение пониженного напряжения с учетом возможной работы оборудования, приборов, аппаратуры. Так при работе всей осветительной техники применяется напряжение не выше 127/220 В. А при работе с переносным электроинструментом, а также с ручными переносными светильниками — напряжение 36 или 42 В. В помещениях с повышенной электробезопасностью, особо опасных и взрывопожароопасных помещениях, напряжение не должно превышать 12 В.
Источниками малого напряжения (12, 24, 36 и 42В) могут быть аккумуляторные батареи, понижающие трансформаторы, преобразователи частот.
При этом применение автотрансформаторов, реостатов для понижения напряжения запрещается из-за связи сетей малого и высокого напряжения.    продолжение
--PAGE_BREAK--
Для снижения опасности применения понижающих трансформаторов вторичную обмотку и корпус трансформатора заземляют или проводят зануление.
Защитное заземление, зануление. Безопасная работа с электроустановками обеспечивается устройством заземления, зануления (в сетях до 1000В) и защитного отклонения.
Область применения. Согласно ГОСТ 12.1 013-80 и ГОСТ 12.1 030-80 «Электробезопасность. Защитное заземление, зануление», ГОСТ 12.1 019-79 «Электробезопасность. Общие требования и номенклатура видов защиты», заземление или зануление следует выполнять:
при номинальном напряжении 380В и выше переменного тока, 440В и выше постоянного тока в сетях электроустановок в любых помещениях (в том числе, помещения без повышенной опасности);
при номинальном напряжении 36В и выше (по ГОСТ 12.1 013-80), 42В и выше (по ГОСТ 12.1 030-81) переменного тока и 110В и выше постоянного тока электроустановок в помещениях с повышенной опасностью и особо опасных помещениях, в наружных электроустановках;
при любом номинальном напряжении переменного и постоянного тока электроустановок во всех взрывоопасных условиях.
Части электроустановок, которые подлежат заземлению или занулению:
металлические корпуса электрических машин, трансформаторов, аппаратов, светильников, передвижные электроустановки, переносные электроустановки;
каркасы, РЩ, ЩУ и шкафы, а также съемные или открывающиеся части, если на них установлено электрооборудование напряжением выше 42В переменного тока или напряжением выше 110В постоянного тока;
приводы электрических аппаратов;
вторичные обмотки измерительных трансформаторов;
металлические РУ, металлические небольшие конструкции, металлические соединительные муфты, металлические оболочки и броня контрольных и силовых кабелей, металлические оболочки проводов, трубы электропроводки и т.д.;
железобетонные опоры ЛЭП.
Заземление электрооборудования. По своему функциональному назначению заземление делится на три вида — рабочее, защитное, заземление молниезащиты.
К рабочему заземлению относится заземление нейтралей силовых трансформаторов и генераторов, глухое или через дугогасящий реактор.
Защитное заземление выполняется для обеспечения безопасности, в первую очередь, людей.
Заземление молниезащиты служит для отвода тока молнии в землю от защитных разрядников и молниеотводов (стержневых или тросовых).
Защитное заземление должны выполнять свое назначение в течение всего года, тогда как заземление, молниезащиты — лишь в грозовой период.
Назначение защитного заземления. Защитное заземление предназначено для устранения опасности поражения электрическим током людей при соприкосновении с металлическими частями электрооборудования, оказавшимся под напряжением. Принцип действия защитного заземления состоит в снижении до безопасного уровня напряжений прикосновения и шага, вызванных замыканием на корпус электрооборудования. Достигается это уменьшением потенциала заземленного оборудования за счет малого сопротивления заземлителя, а также путем выравнивания потенциалов основания, на котором находится человек и заземленного оборудования за счет подъема потенциала основания до уровня потенциала заземленного оборудования.
Защитное заземление — это параллельное включение в электрическую цепь заземлителя со значительно меньшим сопротивлением Rзr(рис. 4, 6).
В сетях с напряжением до 1000В сопротивление заземляющего устройства должно быть не более 4 Ом, при напряжении выше 1000В — не более-0.5 Ом.
При таком включение в электрическую цепь ток, проходящий через человека, будет равен:
/>
где, Rr — сопротивление тела человека, Ом
Iобщ — общий проходящий ток через два заземлителя (тело человека и заземлитель), Ом;
Rобщ— общее сопротивление заземлителей, Ом.
/>
Рис 6. Защитное заземление: а — схема заземления корпуса электрооборудования; б — эквивалентная электрическая схема.
/>
/>
После подстановки значений Rобщ и Iобщ в формулу получим
/>
Пример.
Определить величину поражающего тока при однофазном включении человека в трехфазную сеть с изолированной нейтралью.
Допустим, что сопротивление пола и обуви: Rп= Rоб= 0 Ru= 3000 Ом
При отсутствии заземления ток поражения:
/> А
При наличии защитного заземления:
/> А
Как видим, ток поражения при наличии заземляющего устройства значительно меньше удерживающего.
Защитное заземление применяется в электроустановках напряжением до 1000В переменного тока с изолированной нейтралью или с изолированным выводом источника однофазного тока, а также электроустановках в напряжением до 1000В в сетях постоянного тока с изолированной средней точкой.
Заземление установок заключается в соединении с землей их металлических частей (нормально не находящихся под напряжением) с заземлителем, имеющим малое сопротивление растеканию тока.
Заземляющее устройство состоит из заземлителей, заземляющих шин и проводов, соединяющих корпуса электроустановок с заземлителями.
В зависимости от расположения заземлителей относительно заземленного оборудования, заземляющие устройства подразделяют на выносные и контурные (рис. 7). Заземлители выносного заземляющего устройства выносятся на некоторое удаление от заземляемого оборудования. Контурное заземляющее устройство обеспечивает более высокую степень защиты, так как заземлители располагаются по контуру всего заземляемого оборудования.
/>
Рис. 7. Выносное (а) и контурное (б) заземления:
1-электроды (заземлители); 2-токовды (шины); 3-электроустановки
На практике заземление осуществляется в следующем порядке:
выбирается заземляющее устройство (искусственное или естественное);
рассчитывается заземляющее устройство;
отдельные электроды (заземлители) объединяются в одно общее заземляющее устройство;
корпуса электроустановок соединяются с заземляющим устройством;
составляется документация для приемки заземляющего устройства в эксплуатацию.
При выборе заземляющего устройства часто используют, естественные заземлители, которыми служат трубопроводы, проложенные в земле и имеющие хороший контакт с грунтом, стальные трубы электропроводов. При строительстве промышленных зданий в качестве естественных заземлителей могут быть использованы металлические каркасы зданий.
Трубопроводы для горючих жидкостей и взрывоопасных газов использовать в качестве заземлителей запрещается. Металлические и железобетонные конструкции при использовании их в качестве заземляющих устройств должны образовывать непрерывную электрическую цепь по металлу (в железобетонных конструкциях должны предусматриваться закладные детали для присоединения электрического и технологического оборудования).
При использовании железобетонных фундаментов в качестве заземлителей сопротивление растеканию тока заземляющего устройства определяется по формуле
/>
где Qэ — удельное эквивалентное электрическое сопротивление земли, Ом м;
s — площадь, ограниченная периметром здания, м2.
Удельное эквивалентное электрическое сопротивление
/>,
где Q1; Q2-удельное электрическое сопротивление соответственно верхнего и нижнего слоя земли, Ом-м; h1-толщина верхнего слоя земли, м; a, b-безразмерные коэффициенты, зависящие от соотношения удельных электрических сопротивлений слоев земли. Если Qi>Q2, то a=3,6, b=0,1; если Q1
Под верхним слоем следует понимать слой земли, удельное сопротивление которого Q1 более, чем в два раза, отличается от удельного электрического сопротивления нижнего слоя Q2. Расчет заземляющего устройства начинается с определения сопротивления грунта (сопротивление 1 см 3 грунта). Значения удельных сопротивлений различных грунтов могут быть названы лишь приблизительно, так как зависят не только от вида грунта, но и от его влажности и атмосферных условий. Примерные значения удельного сопротивления некоторых грунтов в естественных условиях приведены ниже:
Вид грунта Удельное сопротивление
p, Ом м
Песок 400 и более
Супесок 300
Суглинок 100
Глина 60
Чернозем 50
Торф 20
Удельное сопротивление земли на глубине нескольких метров от поверхности сильно колеблется, увеличиваясь из-за высыхания к концу сухого лета и промерзания зимой.
Измеренное (табличное) удельное сопротивление грунта следует привести к расчетному значению
/> (3.4 27)
где Q — измеренное (табличное) значение сопротивления грунта, Ом-м;. k — сезонный коэффициент земли, учитывающий возможное увеличение удельного сопротивления слоя.
Значение k зависит от климатической зоны и равно от 1,5 до 7. Различают три климатические зоны, соответствующие северной, средней и южной полосе европейской части СНГ.
Исходя из условий работы, выбирается конструкция заземлителя (электрода) и определяется сопротивление заземлителя растеканию тока в грунт. Формулы для определения сопротивления заземлителя приведены в табл. 2.
Если в качестве заземлителя применяется угловая сталь, то в формулу для определения ее сопротивления подставляется приведенный диаметр d==0,95 b, где b-ширина полосы или полки угловой стали.
Количество стержней п заземляющего устройства находим по формуле
/>
где rо-допускаемое сопротивление заземляющего устройства, принимаемое менее 4 Ом.
Заземлитель из n1 длинных электродов длиной 11 по сравнению с заземлителем из n2 коротких электродов длиной l2при одинаковом их расходе {п1l1==п2l2} обеспечивает более низкое сопротивление из-за меньшего взаимного влияния электродов при меньшем их числе.
Для определения сопротивления очага вертикальных заземлителей необходимо знать расположение и расстояние а между ними: a= (1…3) l    продолжение
--PAGE_BREAK--
Сопротивление вертикальных заземлителей:
/>
где η — коэффициент использования (экранизации) вертикальных электродов.
Коэффициент η определяют по табл. 3 с учётом отношения а/1, количества электродов п и условий их размещения.
Стержни объединяются в очаг заземления соединительной полосой (шиной) и располагаются по замкнутому контуру длиной
/> (3.4 30)
При расположении стержней в ряд, длина полосы
/> (3.4 31)
Сопротивление полосы связи
/>
где h — глубина заложения полосы, м.
Таблица 2.
Схема
Тип заземлителя
Формулы
/>


Труба, стержень у поверхности земли
Труба, стержень на глубине h'; h= h'+1/2
Протяженный заземлитель (полоса, труба) на глубине А, ширина b
Кольцевой заземлитель (полоса, труба) на глубине h
Круглая пластина на поверхности земли (диаметр d)




/>
/>
/>
/>
/>


В заключение определяется сопротивление растеканию тока заземляющего устройства при данном количестве стержней с учетом полосы связи:
/>
где η1 — коэффициент экранирования (использования) между полосой связи и вертикальными электродами. В табл.3.4.4 приводятся значения коэффициента η1 с учетом отношения а/1, расположения электродов и их количества.
При отсутствии естественных заземлителей устраивают искусственные, в качестве которых применяют металлические трубы, стержни или угловую сталь, забитые в землю на 0,5-0,8 м ниже уровня земли и приваренные к шине, уложенной на глубине 0,5-0,8 м. Расстояние между вертикально забитыми заземлителями должно быть не менее их длины.
Таблица 3.
Количество электродов п


Коэффициент использования η при отношении
расстояния между электродами к их длине




a/1=1


a/1=2


a/1=3


При размещении электродов в ряд


2
0,84-0,87
0,90-0,92
0,93-0,95
3
0,76-0,80
0,85-0,88
0,90-0,92
5
0,67-0,72
0,79-0,83
0,85-0,88
10
0,56-0,62
0,72-0,77
0,79-0,83
15
0,51-0,56
0,66-0,73
0,75-0,80
20
0,47-0,50
0,65-0,70
0,74-0,79
При размещении электродов по контуру


4
0,66-0,72
0,76-0,80
0,84-0,86
6
0,58-0,65
0,71-0,75
0,78-0,82
10
0,52-0,58
0,66-0,71
0,74-0,78
20
0,44-0,50
0,61-0,66
0,68-0.73
40
0,38-0,44    продолжение
--PAGE_BREAK--
0,55-0,61
0,64-0,69
60
0,36-0,42
0,52-0,58
0,62-0,67
100
0,33-0,39
0,49-0,55
0,59-0,65
Таблица 4.
Отношение расстояния между трубами (уголками) к их длине
Коэффициент использования η1 при числе труб (уголков)


4
6
8
10
20
30
50
70
При размещении электродов в ряд,


1
2
3
0,77
0,89
0,92
0,72
0,84
0,88
0,67
0,79
0,85
0,62
0,75
0,82
0,42
0,56
0,68
0,31
0,46
0,58
0,21
0,36
0,49
0, 19
0,32
0,42
При размещении электродов по контуру
1
2
3


0,45
0,55
0,70


0,40
0,48
0,64


0,36
0,43
0,60


0,34
0,40
0,56


0,27
0,32
0,45


0,24
0,30
0,41


0,21
0,28
0,37


0, 20
0,26
0,35


В качестве вертикальных электродов используют стальные трубы, угловую и круглую (прутковую) сталь длиной l=2…10 м. Наименьшие поперечные размеры допускаются у круглых электродов — d=6 мм, толщина полок угловой стали — 4 мм и толщина стенок стальных труб — b=3,5 мм. Такие размеры электродов обусловлены необходимостью надежной работы заземлителя при коррозии и могут быть увеличены из условий достаточной механической, прочности при погружении их в грунт.
Горизонтальные полосовые заземлители в виде лучей, колец или контуров используются как самостоятельные заземлители или как элементы сложного заземлителя из горизонтальных и вертикальных электродов. Для горизонтальных заземлителей применяется полосовая сталь сечением не менее 48 мм2 и толщиной 4 мм и круглая сталь диаметром не менее 10 мм.
В однородном грунте глубина заложения вертикальных электродов h=0,5...1 м мало влияет на снижение их сопротивления.
Соединение элементов заземляющих устройств осуществляется с помощью сварки, а корпуса машин и аппаратов соединяются с проводниками заземляющих устройств сваркой, надежными болтовыми соединениями. Минимальное поперечное сечение заземляющих голых медных проводов должно быть 4 мм2, алюминиевых — 6 мм2, стальных — 24 мм2. Сечение изолированных медных проводов должно быть не менее 1,5 мм2, алюминиевых — 2,5 мм2.
Заземляющие проводники, расположенные в помещениях, должны быть доступны для осмотра, защищены от коррозии. Каждый заземляемый элемент установки должен быть присоединен к заземлителю или заземляющей магистрали посредством отдельного ответвления (параллельное заземление). Последовательное включение в заземляющий проводник нескольких заземляемых частей установки запрещается. При приемке в эксплуатацию каждого заземляющего устройства необходимо иметь: паспорт, включающий исполнительные чертежи и схемы заземляющего устройства с указанием расположения подземных коммуникаций; акты на подземные работы по укладке элементов заземляющего устройства; протоколы приемо-сдаточных испытаний заземляющего устройства.
Измерение сопротивления заземляющих устройств производится в первый год эксплуатации, а в дальнейшем — не реже одного раза в три года, для цеховых электроустановок — не реже одного раза в год. Измерение сопротивления заземлителей, удельного сопротивления грунта проводится в периоды наименьшей проводимости (летом, зимой). Срок службы заземлителей — 25-30 лет.    продолжение
--PAGE_BREAK--
Зануление. Занулением называется присоединение металлических корпусов электрических машин, трансформаторов и других токоведущих металлических частей электрооборудования, которые не находятся под напряжением при нормальной работе, к многократно заземленному нулевому проводу.
Нулевым проводом называется провод сети, соединенный с глухозаземленной нейтралью трансформатора или генератора или со средним нулевым проводом сети постоянного тока.
Многократное заземление нулевого провода — это дополнительная, но обязательная мера защиты, осуществляемая через каждые 200 м по его длине. Надежная защита возможна, если сечение нулевого четвертого провода (Sн. пр) будет равно (не менее) 50% сечения фазного провода сети (Sф) при изготовлении их из одного материала:
/>
Обычно нулевой провод изготавливается из стали, а фазные провода — из цветных металлов. В этом случае необходимо учитывать, что сопротивление их зависит от плотности тока.
На основе экспериментальных данных для выбора эквивалентных по сечению проводников из стали и цветных металлов получены следующие соотношения.
Если провода линии изготовлены из алюминия (Sф^A1)
/>
если провода линии изготовлены из меди (Sф^М),
/>
Назначение защитного зануления — устранение опасности поражения электрическим током при соприкосновении человека с металлическими частями электрооборудования, оказавшимися под напряжением при замыкании фазы на корпус или землю.
Область применения зануления — трехфазные четырехпроводники сети напряжением до 1000В с глухозаземленной нейтралью или глухозаземленным выводом источника однофазного тока.
Принцип действия зануления основан на превращении пробоя на корпус в однофазное короткое замыкание (замыкание между фазой и нулевым проводом) с целью вызвать ток большой силы, способный обеспечить срабатывание защиты (плавких вставок, средств автоматики).
/>
Рис. 8. Схема зануления.
Для того, чтобы произошло быстрое и надежное срабатывание средств защиты, необходимо, чтобы ток короткого замыкания, превышал ток отключения (оплавление плавкой вставки и отключение аппарата).
/> (3.4 37)
где, Ік. з. — ток короткого замыкания, А
к — коэффициент кратности тока короткого замыкания относительно тока отключения;
Іном— номинальный ток оплавления плавкой вставки или срабатывания автомата, А.
Согласно ПУЭ, проводники зануления подбирают таким образом, чтобы ток короткого замыкания превышал не менее, чем в 3 раза, номинальный ток плавкой вставки.
Время срабатывания отключения поврежденной электроустановки с момента появления напряжения на корпус электроустановки составляет 5-7с при защите плавкими вставками и 1-2с — при защите автоматами.
В аварийный период, с момента возникновения замыкания фазы на корпус и до автоматического отключения поврежденной электроустановки от сети, заземление электроустановок через нулевой защитный проводник снижает напряжение между корпусом и землей.
Повторное заземление позволяет снизить напряжение нулевого провода и корпуса зануленного оборудования относительно земли при замыкании фазы на корпус, как при нормальном режиме, так и при обрыве нулевого провода.
При отсутствии повторного заземления нулевого провода при замыкании фазы на корпус участок нулевого провода в месте замыкания и прикосновения к нему корпуса по отношению к земле находится под напряжением:
/>
где, Iк — ток, протекающий по участку: фазный — нулевой провод (ток замыкания), А;
Zн — сопротивление участка нулевого провода от источника питания до места присоединения поврежденного оборудования, Ом,
Rф и Rн — активное сопротивление фазного и нулевого проводов сети, Ом.
При наличии повторного заземления нулевого провода появляется цепь тока замыкания через это заземление.
Автоматическое отключение сетей.
Помимо заземления, профилактика электротравматизма заключается в правильном подборе и эксплуатации изоляции электросетей и установок, в автоматическом отключении, применении пониженных напряжений и различных блокировок, в разработке и применении индивидуальных средств защиты.
В тех случаях, когда безопасность не может быть обеспечена устройством заземления, применяются защитные устройства, основными элементами которых являются магнитные пускатели и реле защитного отключения.
Наиболее универсальными устройствами являются те, которые для обеспечения высокой эксплуатационной надежности выполняются на новых полупроводниковых приборах.
Например, в СНГ предложено устройство защиты от утечки тока в землю с использованием переменного оперативного тока пониженной частоты. Устройство обладает высокой чувствительностью и может осуществить защиту при токах утечки от 15 мА и выше.
В устройстве защиты от короткого замыкания в электросетях, запатентованном в ФРГ, используется оперативный ток повышенной частоты, что обеспечивает время отключения короткого замыкания 1 мс.
Во Франции запатентовано защитное устройство, которое также реагирует на токи повышенной частоты и отличается простотой конструкции.
Защитное отключение (ЗО) — это система автоматического отключения электроустановки при возникновении в ней опасности поражения человека электрическим током (быстродействующая защита).
ЗО должно обеспечивать защиту в следующих случаях: при замыканиях на землю или корпус, при появлении токов утечки. Защитное отключение используют в тех случаях, когда нет уверенности в надежности заземления или зануления.
К устройствам защитного отключения (УЗО) предъявляются следующие требования: высокая чувствительность (реагирование на незначительные изменения входной величины), короткое время срабатывания (время отключения не должно превышать 0,2 с), способность отключить напряжение выборочно от поврежденного оборудования, надежность и самоконтроль (отключение при неисправности УЗО)
Эффективно применение защитного отключения в электроустановках напряжением до 1000В: в передвижных электроустановках с изолированной нейтралью; в стационарных установках для защиты электрифицированного инструмента; в условиях повышенной опасности в стационарных электроустановках с глухозаземленной нейтралью; на отдельных установках высокой мощности.
Электрозащитные средства.
Электрозащитные средства (ЭЗС) — это переносимые и перевозимые средства, служащие для защиты людей, работающих с электроустановками, от поражения электрическим током, от воздействия электрической дуги и электромагнитного поля.
По характеру применения средства защиты, согласно ГОСТ 12.4 011-89 «Средства защиты работающих. Общие требования», классифицируются на две категории:
средства коллективной защиты;
средства индивидуальной защиты.
По степени защиты ЭЗС подразделяются на: основные и дополнительные.
Основные ЭЗС — это средства защиты, изоляция которых длительно выдерживает рабочее напряжение электроустановок, что позволяет безопасно соприкасаться с источникам тока.
Дополнительные ЭЗС — это средства, которые сами по себе не могут при данном напряжении обеспечить защиту от поражения током и применяются как дополнительные меры защиты к основным средствам.
К основным защитным средствам, которые позволяют работать непосредственно на токоведущих частях, находящихся под напряжением до 1000В, относятся: изолирующие оперативные измерительные штанги, токоизмерительные изолирующие клещи, указатели напряжения, изолирующие тяги, захваты, инструмент с изолированными рукоятками, диэлектрические перчатки.
Испытательное напряжение для основных защитных средств зависит от рабочего напряжения установки и должно быть не меньше трехкратного значения линейного напряжения в электроустановках с изолированной нейтралью и не меньше трехкратного фазного напряжения в установках с глухозаземленной нейтралью.
К дополнительным средствам индивидуальной защиты, применяемым в электроустановках напряжением до 1000В, которые усиливают изолирующее действие основных средств, относятся: диэлектрические галоши, диэлектрические резиновые коврики, различные виды изолирующих лестниц, подставок, площадок, ограждения, предупредительные плакаты, переносные заземления и т.д.
К основным защитным средствам при работе в электроустановках с напряжением выше 1000В относятся: изолирующие штагы, изолирующие и электроизмерительные клещи, указатели напряжения; изолирующие устройства и приспособления для работы на высоковольтных линиях (ВЛ) с непосредственным прикосновением электромонтера к токоведущим частям (изолирующие лестницы, площадки, изолирующие тяги, канаты, корзины телескопических вышек и др.)
/>
Рис. 9. Индивидуальные электрозащитные средства:
1 — выключающая штанга; 2 — пасатижы; 3 — защитные очки; 4 — изолирующий коврик; 5 — изолирующая подставка; 6 — изолирующие перчатки; 7 — отвертка; 8 — клещи; 9 — технические галоши и клещи; 10 — токоизмерительные клещи.
К дополнительным ЭЗС, применяемые в электроустановках с напряжением выше 1000В относятся: диэлектрические перчатки, боты, ковры, изолирующие подставки и накладки; диэлектрические колпаки, переносные заземления; оградительные устройства; плакаты безопасности.
Кроме перечисленных ЭЗС, в электроустановках применяют также такие средства индивидуальной защиты: очки, маски, противогазы, рукавицы, предохранительные пояса и страховочные канаты.
Таблица 5. Нормы и сроки электрических испытаний средствзащиты в электроустановках напряжением до 1000 В.
Средства защиты
Испытательное напряжение,
кВ
Продолжитель-ность испытаний, мин
Допустимый
ток,
МА
Периодичность испытаний, в мес.
Изолирующие штанги
40
5
-
24
Изолирующие электроизмерительные
клещи
2
5
-    продолжение
--PAGE_BREAK--
24
Указатели напряжения:
однополюсные


0,75


1


0,6


12
Двухполюсные
0,60
1
4
12
Диэлектрические перчатки
6
1
6
6
Инструменты с изолирующими рукоятками
2
1
-
12
Диэлектрические галоши
3,5
1
2
12
Перед каждым применением средств индивидуальной защиты персонал обязан: очистить и протереть пыль; проверить исправность и отсутствие внешних повреждений; диэлектрические перчатки проверить на отсутствие проколов, а диэлектрические коврики — на отсутствие трещин, пузырей, каверн, заусенцев. Прокол диэлектрических перчаток легко установить закручиванием последних к пальцам. Герметичность проверяют по отсутствию выхода воздуха из перчаток или пузырей при погружении их в воду. Дефекты в диэлектрических ковриках очень легко обнаружить при их перегибах. Необходимо также проверить по штампу, для какого напряжения допустимо применение данного защитного средства и не истек ли срок периодического испытания. Пользоваться средствами индивидуальной защиты, у которых срок эксплуатации истек, категорически запрещается. Диэлектрические перчатки подлежат периодическим испытаниям один раз в 6 мес., диэлектрические коврики — один раз в два года. (табл.3.4 5)
При выполнении различных видов работ для соблюдения безопасности обычно применяют переносные заземления. Переносное заземление — надежное средство защиты при работе на отключенных участках, оборудовании или линиях на случай ошибочной подачи напряжения на участок работ. Переносное заземление состоит из гибких медных проводов (для заземления и закорачивания между собой всех трех фаз установки) сечением не менее 25 мм2 и зажимов для присоединения закорачивающих проводов к заземляющей шине (полосе) или электроду. Допускается применение отдельного переносного заземления для каждой фазы.
Работы по устройству переносного заземления осуществляются в следующей последовательности. Вначале присоединяют заземляющий провод к «земле» (очагу заземления), после чего проверяют отсутствие напряжения на заземляемых токоведущих частях. При отсутствии напряжения с помощью штанг или руками в диэлектрических перчатках накладывают зажимы закорачивающих проводов. Снимают заземление в обратном порядке. Все операции по наложению и снятию переносного заземления выполняются в диэлектрических перчатках.
8. Мероприятия, предупреждающие об опасности поражения электротоком
Мероприятия по предупреждению поражения электрическим током являются надежной мерой по снижению электротравматизма. Звуковая и световая сигнализация, применяемые в большинстве случаев одновременно, являются, в данном случае, наиболее распространенным и доступным средством. Электролампочки своим цветом указывают работающему лицу на состояние установки. Зеленая, например, сигнализирует о снятии напряжения электроустановки, красная — о подаче опасного напряжения на электроустановку. Таким образом, звонок, сирена или красная лампочка обычно предупреждают о появлении опасного напряжения на электроустановке.
Другим видом сигнализации, предупреждающей персонал об опасности, являются плакаты и схемы, размещаемые в соответствующих местах электроустановок.
Плакат — одно из наиболее эффективных и доступных средств пропаганды правил и мер безопасности. Предупредительные плакаты являются предостерегающими, запрещающими, разрешающими и напоминающими.
Маркировка оказывает также существенное влияние на предупреждение электротравм, служит для распознавания назначения и принадлежности различных частей электрооборудования, кабелей и проводов. В первую очередь следует маркировать распределительные устройства, распределительные пункты и щиты.
Маркировка должна устанавливаться стандартами и широко использоваться для различного рода предупреждающих обозначений и сигналов.
9. Электробезопасность на производстве
Воздушные линии электропередачи. Обеспечение электроэнергией производство начинается с сооружения ЛЭП. Монтаж линий и все монтируемые электроустановки должны удовлетворять требованиям Правил устройства электроустановок (ПУЭ). На опорах воздушных линий нулевой провод должен располагаться ниже фазных проводов, а провода наружного освещения (если они необходимы) прокладываются под нулевым проводом. Расстояние от нижнего провода до земли, пола, настила при наибольшей стреле провеса должно быть не менее (м): 2,5 — над рабочими местами; 3,5 — над проходами; 6,0 — над проездами (ГОСТ 12.1 013-78).
Одним из опаснейших мест на производство является невысокая подвеска проводов временных электролиний в местах проезда машин. Опасность поражения может возникнуть при провозке грузов с большими габаритами, при движении по скользкой дороге, имеющей уклон, с поднятым кузовом при движении и работе автокранов.
Крючья и штыри изоляторов фазных проводов на железобетонных опорах должны быть заземлены через стальную арматуру опоры или через проложенные по опорам заземления в сетях с изолированной нейтралью, а в сетях с заземленной нейтралью арматура железобетонных опор должна быть соединена с нулевым заземленным проводом.
Минимальное сечение проводов из условия механической прочности должно быть не менее (мм2): 16 — для алюминиевых, однопроволочных; 5 — для оцинкованных стальных однопроволочных; 25 — для стальных многопроволочных проводов.
Периодический осмотр воздушной линии производится электромонтером один раз в месяц, а внеочередной — после аварий, ураганов, при морозе ниже 40°С, гололеде, пожаре вблизи линии.
Электродвигатели. Различные виды работ на производство выполняют с помощью электроустановок. При этом устройство электрических сетей осуществляется так, чтобы можно было отключать все электроустановки в пределах участков работ.
Электромонтажные работы (присоединение и отсоединение проводов, ремонт, наладка) выполняет персонал, имеющий квалификационную группу по технике безопасности, после снятия напряжения со всех токоведущих частей и их заземления. Зона производства работ ограждается сплошным или сетчатым ограждением. На производство работ выдается наряд-допуск, в котором указываются меры по электробезопасности. Перед допуском к работе с действующими электроустановками рабочих инструктируют на рабочем месте.
Рабочее напряжение на вновь смонтированную электроустановку может быть подано только по решению рабочей комиссии.
Выключатели, контакторы, магнитные пускатели, рубильники, пускорегулирующие устройства, предохранители должны иметь надписи, указывающие, к какому двигателю они относятся.
При производстве работ по регулировке выключателей и разъединителей, соединенных проводами, должны быть приняты меры по предупреждению непредвиденного включения. При кнопочном включении и отключении оборудования и механизмов кнопки должны быть заглублены на 3-5 мм за габариты пусковой коробки.
Для предупреждения несчастных случаев кнопки пуска (аппараты управления) следует располагать непосредственно у механизма и блокировать их со звуковой и световой сигнализацией. При перегрузке электродвигателей устанавливается аварийная защита на их отключение. Плавкие вставки предохранителей должны быть калиброваны с указанием на клейме завода-изготовителя номинального тока вставки Iст.
Выбор плавких вставок для защиты от многофазных замыканий электродвигателей механизмов с легкими условиями пуска определяется номинальным током вставки:
/>
Для двигателей механизмов с тяжелыми условиями пуска (частые пуски) />
/> (3.4 40)
Для наблюдения за пуском и работой электродвигателей механизмов на пусковом щитке устанавливается амперметр, измеряющий ток в цепи статора электродвигателя.
Вибрация электродвигателя, измеренная в каждом подшипнике, не должна превышать значений, приведенных ниже.
Таблица6.
Синхронная частота вращения, об/мин
3000
1500
1000
750 и ниже
Допустимая амплитуда вибрации подшипника, мм
0,05
0,10
0,13
0,16
Электродвигатели немедленно отключаются, если создается угроза несчастного случая, при появлении дыма, огня, вибрации выше допустимых норм, поломке приводимого механизма, перегреве подшипников и электродвигателя.
Распределительные устройства (щиты, пульты, щитки) должны соответствовать требованиям ПУЭ и закрываться сплошными ограждениями. Если распределительные устройства содержатся в помещениях, доступных для не электротехнического персонала, они должны находиться на высоте не менее 2,5 м.    продолжение
--PAGE_BREAK--
Все щитки на производство должны быть снабжены надписями, указывающими номер щитка, назначение или номер, каждой отходящей линии, положения «Включено» и «Отключено». При монтаже и эксплуатации необходимо следить, чтобы расстояния между укрепленными голыми частями разной полярности, а также между ними и неизолированными металлическими частями были не менее 12 мм по воздуху, а плавкие калиброванные вставки соответствовали данному типу предохранителей.
Для предупреждения электротравматизма распределительные устройства подлежат осмотру и чистке не реже одного раза в три месяца, текущему ремонту не реже одного раза в год и капитальному ремонту не реже одного раза в три года.
Электроинструменты. На производство электроинструменты должны храниться в сухом помещении.
Контроль сохранности и исправности электроинструмента осуществляется специально назначенным лицом, имеющим квалификационную группу по технике безопасности не ниже III.
Исправность инструмента заключается: в быстром включении и отключении (но не самопроизвольно) от электросети, отсутствии доступных для случайного прикосновения токоведущих частей и проводов, отсутствии обрыва заземляющего провода электроинструмента. Один раз в месяц необходимо убедиться в отсутствии замыканий на корпус инструмента, осмотреть целостность изоляции проводов. Перед выдачей электроинструмента рабочему проверяется затяжка болтов, крепящих узлов, отдельных деталей, исправность редуктора вращением шпинделя рукой при отключенном электродвигателе, состояние щеток и коллектора, целостность изоляции, отсутствие оголенных проводов, исправность заземления. Выдавать рабочим инструмент, имеющий дефекты, категорически запрещается.
Эксплуатация электроинструмента и ручных электрических машин.
Согласно ГОСТ 12.2 007.0-75* и ГОСТ 12.2 013-75*, электроинструмент и ручные электрические машины по способу защиты человека от поражения электрическим током делятся на три класса:
І класс — изделия с рабочей изоляцией всех деталей, находящихся под напряжением, и штепсельными вилками с заземляющим контактом;
ІІ класс — изделия, у которых все детали, находящиеся под напряжением имеют двойную или усиленную изоляцию. Эти изделия не имеют устройства для заземления;
ІІІ класс — изделия с номинальным напряжением не более 42В, у которых ни внутренние, ни внешние электрические цепи не находятся под другим напряжением тока.
В зависимости от степени защиты от влаги электроинструмент и ручные электрические машины изготовляют в следующих исполнениях: незащищенные, брызгозащищенные, водонепроницаемые.
При работе в помещениях без повышенной опасности напряжение электроинструмента должно быть не более 220В. При работе в помещениях с повышенной опасностью и вне помещений напряжение электроинструмента должно быть не более 36В.
При невозможности подать напряжение 36В разрешается работа электроинструмента напряжением до 220В при наличии защитного отключения или надежного заземления корпуса с использованием защитных средств (коврика, галош, диэлектрических перчаток). В данных условиях необходимо применять электрические машины II и III классов по ГОСТ 12.2 007.0-75.
При работе машин II класса необходимо применять средства индивидуальной защиты. В особо опасных помещениях разрешается работать электроинструментом на напряжение 36В с обязательным применением защитных средств. В данных условиях необходимо применять электрические машины III класса.
Корпус электроинструмента на напряжение более 36В должен иметь специальный зажим для присоединения заземляющего провода с отличительным знаком «З», или «Земля». Для присоединения электроинструмента к сети должен применяться кабель, а при применении гибкого многожильного провода (типа ПРГ) с изоляцией на напряжение не ниже 500В этот провод помещается в резиновый шланг (рис. 10).
/>
Рис. 10. Подключение электроинструмента в сеть через понижающий трансформатор и его заземление: а, б — сеть однофазного тока, напряжение 36В и более; сеть трехфазного тока, напряжение 36В, 1-заземляющий зажим; 2-заземляющий провод; 3-крепление заземляющей жилы провода к корпусу электроинструмента; 4-шнур.
К работе с электроинструментом и ручными электрическими машинами допускаются лица, имеющие 1 группу по электробезопасности, а к работе с инструментом и машиной класса 1 в помещениях с повышенной опасностью поражения током, особо опасных помещениях и вне помещений — с группой по электробезопасности не ниже 2.
Следует применять инструмент и машины только в соответствии с назначением, указанным в паспорте завода-изготовителя. Машины и инструмент должны иметь инвентарный номер.
И ручной электроинструмент и вспомогательное оборудование подлежат периодической проверке не реже одного раза в 6 мес. В периодическую проверку входят: внешний осмотр; измерения сопротивления изоляции; контроль исправности цепи заземления; проверка работы на холостом ходу в течение не менее 5 мин.
Проверка исправности цепи заземления инструмента и машин класса 1, в соответствии с ГОСТ 12.2 013-75*, должна быть выполнена устройством на напряжении 12В с подключением к заземляющему контакту штепсельной вилки и к доступной для прикосновения металлической части инструмента и машины. Инструмент и машину считают неисправными, если устройство покажет наличие тока.
При организации рабочего места необходимо предусматривать подвеску проводов, кабелей так, чтобы они не соприкасались с металлическими, горячими, влажными, масляными поверхностями или предметами.
Во время перерыва в работе и прекращения подачи тока электроинструмент должен отключаться от сети.
Рабочим, которые получили электроинструменты, категорически запрещается: передавать инструмент другим лицам, разбирать и производить его ремонт, держаться за провод и касаться режущих и вращающихся частей, удалять стружки, опилки и пыль во время работы или до полной остановки, работать на высоте 2,5 м с использованием приставных лестниц. При работе на улице в период грозы, тумана, дождя все работы должны быть прекращены.
Основное силовое электрооборудование (трансформаторы, магнитные станции, распределительные щиты) проверяется и испытывается непосредственно после установки на производство. Электронагреватели бункеров, самосвалов инвентарные щиты греющей опалубки проверяются систематически не реже одного раза в смену. Эта проверка заключается в визуальном осмотре и контроле сопротивления изоляции кабелей, проводов, потреблением тока, то есть — в проверке равномерности загрузки трансформатора по фазам и отсутствии перегрузки по контрольным амперметрам. Периодические испытания изоляции, заключающиеся в замерах сопротивления и электрической прочности изоляции, являются одной из основных мер предупреждения травматизма.
Сопротивление изоляции проводов в установках с напряжением до 1000В на отдельных участках (между предохранителями и токоприемником) должно быть не менее 0,5 МОм (500000 Ом). В сырых помещениях, где изоляция может поглощать влагу и терять свои защитные свойства, сопротивление изоляции проверяют один раз в год, а в особо сырых — не реже двух раз в год.
В тех случаях, когда силовые осветительные проводки имеют пониженное сопротивление, необходимо немедленно принимать меры по восстановлению изоляции или замене проводов. По нормам допускается нагрев проводов до 40°С сверх температуры окружающей среды 25° С. При нагреве проводов до 48°С время службы изоляции сократится наполовину, а при нагреве до 64° С — в 8 раз. Проведенные исследования показывают, что продолжительность службы изоляции класса А (хлопок, бумага, пропитанные или погруженные в изоляционный материал) в электродвигателях при температуре 105°С составляет 15-20 лет. При повышении температуры до 140°С срок эксплуатации сокращается до нескольких месяцев. Быстрое старение сопровождается уменьшением эластичности и механической прочности. Изоляция трескается, ломается и даже возможен ее пробой. В результате перегрева проводов, кроме травмирования рабочих, появляется возможность возникновения пожаров. Если мгновенно не отключить такой участок сети, неизбежно загорание изоляции проводов. Поэтому расстояние от сгораемых конструкций зданий до реостатов (всех исполнений), а также до электродвигателей и аппаратов (за исключением закрытых) должно быть не менее 1,5 м.
Следовательно, важно правильно выбирать сечение проводов, чтобы возрастание тока не привело к перегрузке, т.е. к длительному превышению допустимых значений тока. Это явление часто наблюдается в строительной практике, когда подключаются дополнительные потребители, не учтенные расчетом.
При обследовании электрических сетей, машин, аппаратов важно установить, наблюдаются ли перегрузки в сети. Для этого рабочий ток в сети измеряют амперметром, включенным в начале испытываемого участка. Однако такой способ измерений связан с разрывом электросети, что не всегда возможно. Поэтому ток удобнее измерять электроизмерительными клещами, когда электроцепь не разрывается и напряжение не снимается.
Кроме определения силы тока с помощью приборов ее можно установить, подсчитав общую мощность всех потребителей, включенных на данном участке электрической цепи.
Величина рабочего, тока:
для двухпроводной сети
/>
для трехпроводной
/>
для четырехпроводной сети
/>
для силовой сети трехфазного переменного тока
/>
где Рн — номинальная мощность потребителя; Uл — линейное напряжение в сети; kс— коэффициент спроса, зависящий от количества электроприемников, степени их загрузки, одновременности работы; h — коэффициент полезного действия; cos j — номинальные токи электрических машин и аппаратов (указаны в паспортных табличках или заводских каталогах).
Перегрузку электросетей, машин и аппаратов устанавливают сравнением рабочего тока, замеренного одним из способов или рассчитанного по формулам, с допустимыми длительными токовыми нагрузками, опреляемыми по таблицам в зависимости от их марок и способа прокладки. Перегрузку электросетей, машин и аппаратов также можно определить, измерив их температуру и сравнив ее с максимально допустимой. Для этой цели используют термометры, термопары и различные термоиндикаторы. В качестве термоиндикаторов широко используются термокраски и термокарандаши, фиксирующие превышение температуры на поверхности двигателя путем изменения окраски.
Если установлено, что рабочий ток превышает допустимые длительные токовые нагрузки, то немедленно находят причины перегрузок и принимают меры по их устранению.
К факторам, повышающим безопасность работ (при напряжении менее 1000 В), относится окраска металлических частей, оборудования, приборов, которые могут оказаться под напряжением. Там, где окраска не повреждена, сопротивление находится в пределах l0…l08 Ом.
10. Статическое электричество и меры защиты людей и оборудования при его эксплуатации от зарядов статического электричества
Электрические заряды, накопленные на диэлектриках вследствие трения их друг о друга или о металл, называют статическим электричеством. При трении в местах соприкосновения на поверхности диэлектрика возникает электрический заряд большой плотности, который вследствие малой электропроводности диэлектрика исчезает весьма медленно.
Электризация возникает также посредством индукции. На металле проявляется электрический заряд противоположного знака, который растекается с равномерной плотностью по его поверхности. Явления электризации возникают в самых разных условиях: при движении жидкости по трубопроводам; при сливе, наливе, перекачке и переливании жидкости падающей струей; при движении по трубопроводам и выходе из сопла сжатых и сжиженных газов; при перемешивании веществ в смесителях; при фильтрации воздуха и газа; при работе ременных передач, выполненных из различных непроводящих материалов, при измельчении, обработке и транспортировке материалов на органической или полимерной основе и т.п.
Разность потенциалов при электризации диэлектриков может достигать очень высоких напряжений. Так, например, при перекачивании бензина через трубопровод, имеющий изолированный участок, величина потенциалов между изолированным участком трубопровода и землей колеблется в пределах 1460-14600 В.
Накопившаяся энергия представляет большую опасность и может проявиться в виде искрового разряда. Освободившаяся в виде искры энергия 0,01 Дж способна обусловить возникновение пожара и взрыва. Опасность искрового разряда в воздухе возникает уже при напряжении 300 В. Для выравнивания потенциалов и предотвращения искрения все параллельно идущие трубопроводы, при расстоянии между ними до 100 мм, следует соединить между собой перемычками через 20-25 м. Каждая система оборудования и трубопроводов должна быть заземлена не менее, чем в двух местах. Наличие заземления необходимо проверять мегомметром или тестером не реже одною раза в шесть месяцев и после каждого ремонта оборудования.
Для снятия электростатических зарядов, возникающих при наливе, перекачке и транспортировке нефтепродукта, все металлические насосы, трубопроводы, цистерны и другие устройства необходимо металлически соединить между собой. Ручные приемники (бочки, бидоны) должны быть хорошо заземлены либо посредством специального соединения, либо плотного контакта с объектом, если конструкция системы, снабжающей нефтепродуктом, сама хорошо заземлена.    продолжение
--PAGE_BREAK--
При разливе жидкостей-диэлектриков в сосуды из изолирующих материалов (стекла и др.) следует применять воронки из электропроводящего материала, которые заземляются и с помощью медного троса соединяются с подводящим шлангом. Воронка должна достигать дна сосуда, в противном случае конец заземленного троса необходимо пропустить через воронку до дна сосуда, чтобы жидкость стекала по этому тросу.
При защите жидких и газообразных веществ от статического электричества необходимо знать, что более интенсивная электризация характерна для жидкостей, которые имеют более высокое электрическое сопротивление. При электрической проводимости менее 109 Ом/см жидкости склонны к сильной электризации.
Интенсивность электризации прямо пропорциональна скорости подачи жидкого нефтепродукта. Подача сплошной и плавной струей способствует электризации в меньшей степени, чем при свободно падающей струе с разбрызгиванием. Разность потенциалов при свободном падении струи жидкости в емкость, а также при длительном времени и большой скорости истечения жидкостей достигает 18 000-20 000 В.
Наибольшая электризация наблюдается в трубопроводах, изготовленных из низкоуглеродистых сталей. Шероховатость поверхности трубопроводов приводит к завихрениям жидкости при ее движении, из-за чего усиливается электризация нефтепродукта.
Электризация жидкости возникает и усиливается лишь в некоторых наиболее благоприятных для электризации местах (клапаны, насосы, изменения сечения трубопровода). На других участках электризованная жидкость или теряет свои заряды, или только сохраняет полученный заряд.
При наполнении емкостей следует загрузочные трубы доводить до днища; загрузку производить через отверстия с большим поперечным сечением, не допуская соприкосновения струи жидкости со стенками емкости и поверхностью жидкости. При загрузке в пустую емкость, а также если выпускаемое отверстие загрузочного патрубка невозможно погрузить в жидкость, заполнение следует производить со скоростью, не превышающей 0,5-0,7 м/с. Введение в состав нефтепродуктов антистатических присадок повышает их электропроводность, а следовательно, ослабляет опасные проявления статической электропроводности.
Сливные резиновые шланги с металлическими наконечниками для налива в бочки должны быть заземлены медной проволокой, обвитой по шлангу снаружи с шагом 0,1м или пропущенной внутри, с припайкой одного конца к металлическим частям продуктопровода, а другого — к наконечнику шланга. Наконечники шлангов должны быть изготовлены из металла (бронза, алюминий), не дающею искры при ударе. Отбор проб жидкостей из емкостей (резервуаров) во время их заполнения или опорожнения запрещается, следует производить лишь после того, как жидкость придет в спокойное состояние.
Значительное накопление статического электричества может происходить на технологическом оборудовании и представляет опасность для окружающих. Для предупреждения возможности опасных искровых разрядов с поверхности оборудования предусматривают следующие меры:
заземление всех металлических и электропроводящих частей технологического оборудования;
уменьшение удельного поверхностного электрического сопротивления материалов-диэлектриков; повышение относительной влажности воздуха до 65 — 70% (если это позволяет условия производства);
охлаждение электризующих поверхностей до температуры на 10оС ниже температуры окружающей среды;
нейтрализация разрядов статического электричества путем ионизации воздуха рабочего пространства (воздействие сильного электрического поля или радиоактивного излучения); — применение нейтрализаторов коронного разряда;
применение гидрофильных добавок при возможности увлажнения продуктов и материалов или применение гидрофобных добавок с высокими электропроводными свойствами;
изменение режима технологического процесса (ограничение скорости транспортировки, обработки, истечения), замена взрыво- и пожароопасных веществ на менее опасные и т.д.
применение токопроводящих полов.
Покрытие пола и обувь считаются электропроводящими, если сопротивление между электродом, установленным на полу, и землей или между электродом внутри обуви и наружным электродом не превышает 106 Ом/см2.
Заряды статическою электричества могут накапливаться на теле человека, особенно при пользовании обувью с непроводящими электричество подошвами, одеждой и бельем из шерсти, шелка и искусственных волокон, при передвижении по непроводящему покрытию пола и при выполнении ряда ручных операций с веществами-диэлектриками.
Высокое поверхностное сопротивление тканей человека затрудняет стечение зарядов, которые накапливаются на теле, и человек длительное время может находиться под большим потенциалом. Потенциал изолированного от земли тела человека может достигать 7000В и более, а максимальная энергия, освобождающаяся при искровом разряде с него, может составлять 2,5-7,5 мДж. Человек под воздействием электростатических разрядов испытывает неприятные ощущения, удары, теряет равновесие.
При работе со взрывоопасными веществами в стесненных условиях, в помещениях, где возможно образование на теле человека электростатических зарядов, следует избегать ношения одежды из синтетических материалов (нейлона, перлона и т.п.) и шелка, а также не рекомендуется ношение колец, браслетов, на которых аккумулируются заряды статического электричества. При выполнении работ в зоне с возможным накоплением статического электричества рекомендуется его отводить при помощи электропроводной обуви, антистатического халата, электропроводной подушки стула, легко снимаемых электропроводных браслетов, соединенных с землей через сопротивление 105 — 107Ом. Хорошими электропроводными свойствами обладают покрытия из бетона, антистатического линолеума, электропроводной резины и т.д.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Из истории московского «полуострова»
Реферат Индивидуальный (персонифицированный) учет в системе государственного пенсионного страхования
Реферат Деятельность историка и архивиста Г.Ф. Миллера в области комплектования, описания и использования документальных материалов
Реферат Экономическая эффективность производства ферритовых стронциевых порошков на ОАО Олкон
Реферат Теория химико-технологических процессов
Реферат История Великой Отечественной войны в литературе (критические замечания по книгам В. Суворова)
Реферат Проектирование участка по сборке двигателей внутреннего сгорания
Реферат Зовнішньополітичні пріоритети України
Реферат Банк России, его правовое положение и функции
Реферат Акционерное общество как юридическое лицо.
Реферат Корпоративные финансы-сущность
Реферат Глобальные компьютерные сети 2
Реферат Лечебные учреждения Пятигорска
Реферат Результаты реформ перестройки. Состояние экономики России к 1992г.
Реферат Акционерные общества (WinWord 7.)