--PAGE_BREAK--1.2 Однорідність статистичної сукупності
Варіацію можна визначити як кількісна відмінність значень однієї і тієї ж ознаки у окремих одиниць сукупності. Термін «варіація» має латинське походження — variatio, що означає відмінність, зміну, коливається. Вивчення варіації в статистичній практиці дозволяє встановити залежність між зміною, яка відбувається в досліджуваній ознаці, і тими чинниками, які викликають дану зміну.
Для вимірювання варіації ознаки використовують як абсолютні, так і відносні показники.
До абсолютних показників варіації відносять: розмах варіації, середнє лінійне відхилення, середнє квадратичне відхилення, дисперсію.
До відносних показників варіації відносять: коефіцієнт осциляції, лінійний коефіцієнт варіації, відносне лінійне відхилення і ін.
Розмах варіації R. Це найдоступніший по простоті розрахунку абсолютний показник, який визначається як різниця між найбільшим і найменшим значеннями ознаки у одиниць даної сукупності:
Розмах варіації (розмах коливань) — важливий показник тієї, що коливається ознаки, але він дає можливість побачити тільки крайні відхилення, що обмежує сферу його застосування. Для точнішої характеристики варіації ознаки на основі обліку тієї, що його коливається використовуються інші показники.
Середнє лінійне відхилення d, яке обчислюють для того, щоб врахувати відмінності всіх одиниць досліджуваної сукупності. Ця величина визначається як середня арифметична з абсолютних значень відхилень від середньої. Оскільки сума відхилень значень ознаки від середньої величини дорівнює нулю, то всі відхилення беруться по модулю.
Формула середнього лінійного відхилення (проста)
Формула середнього лінійного відхилення (зважена)
При використанні показника середнього лінійного відхилення виникають певні незручності, пов'язані з тим, що доводиться мати справу не тільки з позитивними, але і з негативними величинами, що спонукало шукати інші способи оцінки варіації, щоб мати справу тільки з позитивними величинами. У такий спосіб стало піднесення всіх відхилень до другого ступеня. Узагальнювальні показники, знайдені з використанням других ступенів відхилень, набули дуже широкого поширення. До таких показників відносяться середнє квадратичне відхилення і середнє квадратичне відхилення в квадраті, яке називають дисперсією.
Середня квадратична проста
Середня квадратична зважена
Дисперсія є не що інше, як середній квадрат відхилень індивідуальних значень ознаки від його середньої величини.
Формули дисперсії зваженої і простої :
Розрахунок дисперсії можна спростити. Для цього використовується спосіб відліку від умовного нуля (спосіб моментів), якщо мають місце рівні інтервали у варіаційному ряду.
Окрім показників варіації, виражених в абсолютних величинах, в статистичному дослідженні використовуються показники варіації (V), виражені у відносних величинах, особливо для цілей порівняння тієї, що коливається різних ознак однієї і тієї ж сукупності або для порівняння тієї, що коливається однієї і тієї ж ознаки в декількох совокупностях.
Дані показники розраховуються як відношення розмаху варіації до середньої величини ознаки (коефіцієнт осциляції), відношення середнього лінійного відхилення до середньої величини ознаки (лінійний коефіцієнт варіації), відношення середнього квадратичного відхилення до середньої величини ознаки (коефіцієнт варіації) і, як правило, виражаються у відсотках.
Формули розрахунку відносних показників варіації:
Аналіз однорідності статистичної сукупності доцільно проводити в наступній послідовності:
Визначення ступеня однорідності всієї сукупності поодинці або декільком істотним ознакам;
Визначення і аналіз аномальних спостережень;
Вибір оптимального варіанту виділення однорідних совокупностей.
У статистичній теорії і практиці розроблені різні підходи до оцінки ступеня однорідності. Цією проблемою займалися відомі учені — Ю. Аболенцев, Р. Кильдішев, В. Овсиенко і ін.
Способів і критерії виділення однорідних груп об'єктів в межах початкової сукупності багато.
Важливою передумовою отримання науково-обгрунтованих результатів статистичного аналізу є перевірка і виконання гіпотези про близькість розподілу емпіричних даних нормальному закону. Для нормального закону розподілу характерно, що
Одним з недоліків даного підходу до оцінки характеру розподілу вважається наявність суб'єктивності в аналізі достатності величини відхилення Х від М0 і Me. На практиці використовуються критерії Пірсону, Романовського, Ястремського, Колмогорова.
Будь-яка досліджувана сукупність разом із значеннями ознак, що склалися під впливом чинників, безпосередньо характерних для досліджуваної сукупності, може містити і значення ознак, отриманих під впливом інших чинників, не характерних для основної сукупності. Такі значення різко виділяються, тому використання методології статистичного аналізу даної сукупності без попереднього аналізу і вивчення аномальних спостережень приводить до серйозних помилок.
Причини появи в сукупності аномальних спостережень умовно підрозділяють таким чином:
1) зовнішні, такі, що виникають в результаті технічних помилок;
2) внутрішні, такі, що об'єктивно існують.
Такі спостереження для дослідника представляють особливий інтерес, оскільки можуть містити за рахунок впливу неврахованих чинників особливу інформацію. На практиці залежно від умов, місця і часу вплив одних чинників в кожен конкретний момент або проміжок часу значніший, ніж інших.
Вибір методу виявлення, аналізу аномальних спостережень визначається об'ємом сукупності, характером досліджуваних процесів і завдань (одновимірних або багатовимірних).
При реалізації одновимірних завдань при аналізі динамічної і статистичної інформації найбільш широкого поширення набув метод вияленія аномальних спостережень, заснований на визначенні q-статистики:
де yt — окремі рівні ряду;
у — середній рівень ряду;
sy – середнє квадратичне відхилення значень ряду від їх середнього рівня.
Якщо для розрахункового значення виконується умова
qt³qtk p (p)
із заздалегідь заданим рівнем вірогідності, то дані спостереження вважаються аномальними і після логіко-економічному аналізу причин помилок аномальності підлягають заміні скоректованим значенням (у разі помилки «I») і не підлягають коректуванню (у разі «II»).
Коректування здійснюється по схемі.
1. Розраховується нове значення рівня ряду:
yi (1) = qkp (p)sy + y .
2. замінюється на .
3. Визначаються нові характеристики ряд з : та .
4. yi = qkp (p)sy + y .
5. Перевіряється аномальність значенняyi :
úyi — yiú£e,
де e-заданий рівень точності определения yi .
Якщо дана умова виконується, то значення yi є скоректованим, не аномальним значенням, займає місцеyi (1) у ряду і аналізу піддається yi (2) .
Якщо умова не виконується, то рекомендується розрахувати yi(2) і перевірити на аномальність. Процес коректування носить ітераційний характер.
Найбільшого поширення набув при дослідженні динаміки метод Ірвіна, заснований на визначенні li– статистики. Аномальні спостереження виявляються по схемі:
li= úyi – yi-1ú/ sy ,
Якщо розрахункове значення перевищить рівень критичного (із заданим рівнем точності і числом спостережень), то воно визнається аномальним.
Табульовані значення l
Схема реалізації даного методу аналогічна попередньою, тільки у замінюється на yi-1 (попереднє значення ряду).
Спосіб, заснований на розрахунку q-статистики, застосовний для щодо стаціонарних рядів, оскільки при використанні для аналізу динамічних рядів, що мали яскраво виражену тенденцію, він приводить до помилок. Коректнішим є застосування статистики, в якій визначаються відхилення від теоретичних значень, отриманих по рівнянню тренда:
qi = úyt — ytú/ sy .
Доцільність виключення аномальних спостережень з сукупності, що вивчається, реалізується широким використанням методу угрупувань.
За допомогою методу угрупування явища, що вивчаються, підрозділяються на найважливіші типи, характерні групи і підгрупи по істотних ознаках. За допомогою угрупувань формують якісно однорідні частини статистичної сукупності.
У прикладних дослідженнях часто виникає необхідність з'ясувати, чи розрізняються генеральні сукупності, з яких узято дві незалежні вибірки. Наприклад, треба з'ясувати, чи впливає спосіб упаковки підшипників на їх споживчі якості через рік після зберігання. Або: чи відрізняється споживча поведінка чоловіків і жінок. Якщо відрізняється — рекламні ролики і плакати треба робити окремо для чоловіків і окремо для жінок. Якщо немає — рекламна кампанія може бути єдиною.
У математико-статистических термінах постановка завдання така: є дві вибірки x1, x2...,xm і y1, y2...,yn (тобто набори з m і п дійсних чисел), потрібно перевірити їх однорідність. Термін «однорідність» уточнюється нижче.
Протилежним поняттям є «відмінність». Можна переформуліровать завдання: потрібно перевірити, чи є відмінність між вибірками. Якщо відмінності немає, то для подальшого вивчення дві дані вибірки часто об'єднують в одну.
Наприклад, в маркетингу важливо виділити сегменти споживчого ринку. Якщо встановлена однорідність двох вибірок, то можливе об'єднання сегментів, з яких вони узяті, в один. Надалі це дозволить здійснювати по відношенню до ним однакову маркетингову політику (проводити одні і ті ж рекламні заходи і тому подібне). Якщо ж встановлена відмінність, то поведінка споживачів в двох сегментах різна, об'єднувати ці сегменти не можна, і можуть знадобитися різні маркетингові стратегії, своя для кожного з цих сегментів.
Традиційний метод перевірки однорідності (критерій Стьюдента). Для подальшого критичного розбору опишемо традиційний статистичний метод перевірки однорідності. Обчислюють вибіркові середні арифметичні в кожній вибірці
потім вибіркові дисперсії
і статистикові Стьюдента t, на основі якої ухвалюють рішення
По заданому рівню значущості а і числу мір свободи (m+n _ 2) з таблиць розподілу Стьюдента знаходять критичне значення tкр. Якщо |t|>tкр, то гіпотезу однорідності (відсутність відмінності) відхиляють, якщо ж |t|tкр перевіряють, що t>tкр; цю постановку розглядати не будемо, оскільки в ній немає принципових відмінностей від обговорюваної тут.)
У більшості технічних, економічних, медичних і інших завдань представляє інтерес не перевірка рівності математичних очікувань або інших характеристик розподілу, а виявлення відмінності генеральних совокупностей, з яких витягують вибірки, тобто перевірка гіпотези H0. Методи перевірки гіпотези H0 дозволяють виявити не тільки зміну математичного очікування, але і будь-які інші зміни функції розподілу результатів спостережень при переході від однієї вибірки до іншої (збільшення розкиду, поява асиметрії і т. д.). Як встановлено вище, методи, засновані на використанні статистик t Стьюдента і Т Крамера-уелча, не дозволяють перевіряти гіпотезу H0. Апріорне припущення про приналежність функцій розподілу F(x) і G(x) до якого-небудь певного параметричного сімейства (наприклад, сімействам нормальних, логарифмічно нормальних, розподілів Вейбулла-гнеденко, гамма-распределеній і ін.), як також показано вище, зазвичай не можна достатньо надійно обгрунтувати. Тому для перевірки H0 слід використовувати методи, придатні при будь-якому виді F(x) і G(x), тобто непараметричні методи. (Нагадаємо, що термін «непараметричний метод» означає, що при використанні цього методу немає необхідності припускати, що функції розподілу результатів спостережень належать якому-небудь певному параметричному сімейству.)
Для перевірки гіпотези H0 розроблено багато непараметричних методів — критерії Смирнова, типу омега-квадрат (Лемана — Розенблатта), Вілкоксона (Манна-Уїтні), Ван-дер-вардена, Севіджа, хі-квадрат і ін. Розподіли статистик всіх цих критеріїв при справедливості H0 не залежать від конкретного виду співпадаючих функцій розподілу F(x)±G(x). Отже, таблицями точних і граничних (при великих об'ємах вибірок) розподілів статистик цих критеріїв і їх процентних можна користуватися при будь-яких безперервних функціях розподілу результатів спостережень.
продолжение
--PAGE_BREAK--1.3 Мета досліджень однорідності статистичної сукупності комерційних банків
Банківська статистика — галузь фінансової статистики, завданнями якої є отримання інформації для характеристики виконуваних банківською системою функцій, розробка аналітичних матеріалів для потреб управління грошово-кредитною системою країни, перш за все кредитного і касового планування і контролю за використанням планів.
Мета банківської статистики — забезпечити:
· характеристику діяльності банківської системи;
· оцінку її результатів;
· прогнозування результатів діяльності банку.
А також виявити чинники, що визначають результати і оцінку впливу банківської діяльності на розвиток ринкових відносин і її внесок в кінцеві економічні результати.
Суб'єктом статистичного аналізу є як самі банки, так і інші кредитні установи, реальні і потенційні клієнти і кореспонденти, фізичні і юридичні особи.
Завдання банківської статистики визначаються змістом і специфікою її предмету. Вони обмежуються статистичним вивченням сукупності об'єктивно обумовлених економічних відносин усередині банківської системи, а також відносин елементів банківської системи з фінансовою системою в цілому і її елементами.
Метод статистики фінансів є певною процедурою, що складається з ряду етапів.
1 етап. є визначальний для подальшого статистичного дослідження. Тут відбувається розробка наукової гіпотези. Вона припускає постановку завдань дослідження для досягнення конкретної мети, формулювання цієї мети, виділення і обмеження об'єкту спостереження, розробку системи показників, що дозволяють описати об'єкт, що вивчається.
2 етап. Статистичне спостереження, тобто збір необхідних відомостей про об'єкт, що вивчається.
3 етап — зведення і угрупування зібраних даних. Від якості роботи, проведеної на 1 і 2 етапах, залежить якість статистичного аналізу і виводів.
Об'єктивність результатів статистичного аналізу залежить від ступеня однорідності статистичної сукупності. Якісно і кількісно однорідною вважається сукупність, одиниці якої мають загальні якісні ознаки і близькі по значеннях кількісні (істотні) ознаки.
Таким чином, метою дослідження однорідності сукупності комерційних банків за ознакою «величина активів» є виділення однорідних груп банків з метою забезпечення достовірності подальших статистичних досліджень.
Розділ 22.1 Оцінка однорідності статистичної сокупності комерційних банків за допомогою показників їх діяльності
Перевіримо однорідність досліджуваної сукупності за допомогою розрахунків показників варіації:
Вибіркове середнє визначаємо за формулою середньої арифметичної зваженої:
Дисперсія:
Середнє квадратичне відхилення:
Коефіцієнт варіації:
Оскільки отримане значення коефіцієнта варіації перевищує значення 33,3%, то дану вибірку не можна вважати однорідною. Тобто, досліджувана за ознакою «величина активів» сукупність українських банків не є однорідною. Для оцінки однорідності вибірки українських банків за ознакою «розмір активів, млн… грн» виконаємо ранжування варіаційного ряду в порядку зростання розміру активів. Визначимо мінімальне та максимальне значення варіант:
Розмах варіації
Розрахуємо кількість груп за формулою Стерджеса:
Скламо таблицю границь груп і розрахуємо кількість статистичних одиниць в кожній групі:
Побудуємо гістограму розподілу даного варіаційного ряду:
Розглядаючи побудовану гістограму розподілу варіаційного ряду, також можна зробити висновок про те, що оскільки гістограма за своїм зовнішнім виглядом не наближена до графіка нормального розподілу, то дана сукупність неоднорідна.
Оскільки дана сукупність неоднорідна, то будь-які статистичні дослідження можна виконувати тільки в рамках відокремлених однорідних груп. Перевіримо однорідність відокремлених груп.
Бачимо, що при побудові інтервального ряду з рівними інтервалами однорідність в межах окремих інтервалів відсутня, отже згруповані таким чином дані неможна використовувати для подальших статистичних досліджень.
Отже, для виділення однорідних груп необхідно провести побудову інтервального ряду з нерівними інтервалами (додаток 2).
Бачимо, що при побудові інтервального ряду з нерівними інтервалами було отримано однорідність даних в рамках окремих інтервалів. Отже, будь-які статистичні дослідження можна виконувати тільки в рамках цих відокремлених однорідних груп.
Перевіримо однорідність двох виборок, які взяті із генеральної сукупності. Порівняємо вибірки 7 та 10.
Вибірка 7:
Вибірка 10:
Перевіримо однорідність цих вибірок за допомогою статистики Стьюдента. Вибіркові середні:
млн… грн.
млн… грн.
Вибіркові дисперсії:
Значення статистики Стьюдента:
Критичне значення критерію Стьюдента при рівні значущості 0,05 та мірі свободи дорівнює 2,02.
Оскільки розраховане значення статистики Стьюдента більше за критиче, то гіпотеза однорідності (відсутності розходжень) має бути відхилена. Отже, вибірки не є однорідними.
продолжение
--PAGE_BREAK--2.2 Значення оцінки однорідності статистичної сокупності комерційних банків для статистичних досліджень
Український банківський сектор не є однорідним. Так, на долю трьох найбільших банків України (1,8% від загальної кількості досліджуваних банківських установ) належить біля 22,97% сукупних активів банківської системи, сукупні доходи 20 системообразуючих банків України (12% від їх загальної кількості) становлять 70,21% активів банківської системи України.
Існує також значна структурна неоднорідність, обумовлена відмінністю в характері і об'ємах що проводяться різними по величині банками операцій, їх клієнтурою, відношенням з властями і бізнесом, відношенням до них з боку приватних вкладників, доступністю інструментів управління фінансовими ризиками, здібностями привертати ресурси на зовнішньому ринку і так далі До теперішнього часу в банківській системі утворилися різні типи кредитних установ, що якісно відрізняються один від одного за джерелами ресурсів, характером розміщення, стратегіям розвитку і тому подібне Найважливіші «типові» відмінності між банківськими інститутами зумовлювалися наступними обставинами: типом інтеграції банку з виробничим капіталом; розміром банку; господарським профілем корпоративної клієнтури банку; наявністю або відсутністю участі держави в управлінні. Можна виділити наступні основні групи банків:
— банки-центри фінансово-виробничих холдингів;
— крупні спецбанки;
— крупні банки для зовнішньоекономічних розрахунків;
— крупні корпоративні банки;
— банки регионов-фінансових центрів;
— дрібні столичні банки.
Окрім відмічених груп, як два що різко відрізняються і глибоко відособлених від решти сегментів банківської системи виділяються системообразующие банки (Приватбанк, Укрсиббанк) і дочірні банки іноземних банків. Перші — знаходяться під частковим або повним контролем держави і є найбільшими гравцями на ринку приватних внесків і найбільшими операторами на ринку державних цінних паперів, другі є каналом для розміщення ресурсів, що поступають з-за кордону від материнських компаній, в українські фінансові інструменти, кредити українських підприємствам і підрозділам іноземних компаній.
Таким чином, моделювання банківського сектора не може обмежуватися сукупними агрегатами банківської системи на макрорівні, а вимагає розробки мікромоделей, що враховують особливості різних банків.
Висновки
Статистичні методи — методи аналізу статистичних даних. Виділяють методи прикладної статистики, які можуть застосовуватися у всіх областях наукових досліджень і будь-яких галузях народного господарства, і інші статистичні методи, застосовність яких обмежена тією або іншою сферою.
Статистичні методи аналізу даних застосовуються практично у всіх областях діяльності людини. Їх використовують завжди, коли необхідно отримати і обгрунтувати які-небудь думки про групу (об'єктів або суб'єктів) з деякою внутрішньою неоднорідністю. Одна і та ж сукупність може бути якісне однорідною в одному статистичному дослідженні і різнорідною в іншому. Об'єктивність результатів статистичного аналізу залежить від ступеня однорідності статистичної сукупності. Якісно і кількісно однорідною вважається сукупність, одиниці якої мають загальні якісні ознаки і близькі по значеннях кількісні (істотні) ознаки.Таким чином, метою дослідження однорідності сукупності комерційних банків за ознакою «величина активів» є виділення однорідних груп банків з метою забезпечення достовірності подальших статистичних досліджень.Проведені дослідження сукупності українських банків за ознакою «розмір активів» дають підстави стверджувати, що існуєструктурна неоднорідність банків за цією ознакою, обумовлена відмінністю в характері і об'ємах що проводяться різними по величині банками операцій, їх клієнтурою, відношенням з властями і бізнесом, відношенням до них з боку приватних вкладників, доступністю інструментів управління фінансовими ризиками, здібностями привертати ресурси на зовнішньому ринку і так далі.
Проведене виділення однорідних груп банків за розміром активів дозволяє виконувати подальші статистичні дослідження в рамках однорідних груп.
Використана література
1. Орлов А. И. Прикладная статистика. Учебник. — М.: Экзамен, 2006.
2. Л. В. Щербина. Общая теория статистики. — Эксмо, 2008 г.
3. В. Н. Салин, Э. Ю. Чурилова. Курс теории статистики для подготовки специалистов финансово-экономического профиля. — Финансы и статистика, 2006 г.
4. С. Р. Моисеев, М. В. Ключников, О. М. Акимов, Е. А. Пищу лин. Финансовая статистика: денежная и банковская. — КноРус, 2008 г.
Додаток 1
Дані про розмір активів банків України станом на 01/01/2008 р.
продолжение
--PAGE_BREAK--