Реферат по предмету "Астрономия"


Что такое зв зды

--PAGE_BREAK--Откуда произошли названия звёзд и созвездий???
Если вы посмотрите на звёздное небо, то при некотором воображении в россыпи более или менее ярких звёзд увидите различные фигуры. Эти фигуры можно составлять различными способами. Уже в древней Греции было выделено 48 таких фигур, заполнивших почти всё звёздное небо, они получили название «созвездий». Некоторые звёзды не входили в созвездия, а характеризовались тем, около какого созвездия они расположены. Ещё древние вавилоняне, астрономические знания которых оказали сильное влияние на греков, выделили 12 созвездий, расположенных вдоль большого круга небесной сферы, по которому совершает своё видимое годичное движение Солнце(этот круг называется эклиптикой, от греческого «затмение», так как затмения происходят, когда Луна попадает на этот круг). Число созвездий зодиака равно числу месяцев, и Солнце проходит каждое из них за месяц. Изображения и названия созвездий зодиака и соответствующих месяцев, сделанном на основе звёздного атласа известного астронома XYII века Яна Гевелия. Первоначально вступление Солнца в созвездие Овна приурочивалось ко дню весеннего равноденствия, но за две тысячи лет этот день несколько сдвинулся по отношению к созвездиям зодиака. (Заметим, что Овен и Телец – устаревшие названия барана и быка), Под Стрельцом, т.е. стрелком, понимали кентавра, вооружённого луком со стрелами, под Козерогом – козла с рыбьим хвостом, Рыб представляли в виде двух рыб, соединенных тесьмой. Слово зодиак, от греческого «животное», объясняется тем, что большинство созвездий зодиака имеют вид животных. Фигуры созвездий зодиака и их названия в настоящее время почти такие же, как у греков: разница состоит только в том, что греки называли созвездие Весов «Клешнями» и рассматривали как клешни Скорпиона.
Севернее зодиака греки располагали 21 созвездие, а южнее – 15 созвездий: созвездия южного полушария греки знали хуже, так как в древности путешественники редко доходили даже до экватора. Уже в новое время были добавлены неизвестные грекам Южный Крест и другие южные созвездия. Названия созвездий объясняются теми фигурами, которые получались при соединении звёзд, образующих созвездие линиями. Разные народы по-разному истолковывали эти фигуры. Например, в ковше Большой Медведицы греки видели медведя, а арабы – погребальную процессию в виде гроба, перед которыми идут плакальщицы, возглавляемые «предводителем плакальщиц». Некоторые созвездия связаны между собой: Волопаса, т.е. пастуха, греки рассматривали как сторожа медведиц.
Шесть северных созвездий – Цефея, Кассиопеи, Андромеды, Персея, Пегаса и Кита – также связаны общей легендарной об эфиопском царе Кефее (Цефей – латинская форма этого имени), его жене Кассиопее и дочери Андромеде. Согласно этой легенде, Кассиопея оскорбила морских нимф нереид, и в наказание за это морской бог Посейдон послал морское чудовище Кита (представлявшегося зверем с лапами и страшной пастью) опустошать берега Эфиопии. Для спасения страны Кефей должен был принести в жертву свою дочь, имя которой означает «не видевшая мужа». Девушка уже была прикована к скале, когда появился на крылатом коне Пегасе Персей – герой, убивший ужасную Медузу Горгону, взгляд которой обращал всех, кто встречался с ней, в камень. Сам Персей в борьбе с Медузой Горгоной смотрел не на неё, а на её отражение в своём щите. Персей отрубил голову Горгоны и явился к Андромеде с этой головой. Показав её Киту, он превратил его в камень, освободил Андромеду и женился на ней. Расположение указанных созвездий соответствует моменту прибытия Персея.
Созвездие Ориона своим названием обязано имени мифического стрелка, убитого богиней Артемидой за то, что он вызвал её на состязание в метании диска.
Созвездие Геркулеса получило своё название только в новое время, греки называли «Коленопреклоненный».
Созвездие Эридана греки называли «Рекой». Эридан – древнее название реки По, а также одно из имён мифического сына Солнца Фаэтона, согласно легенде упавшего на землю и утонувшего в По.
Известны и другие «преобразования» созвездий. Так, созвездие Корабля Арго впоследствии было разделено на Корму, Паруса, Компас и Киль. А из мелких звёзд, не входящих в известные раньше созвездия, были образованы новые созвездия: Горячие Псы, Щит Собесского, Ящерица, Рысь, Единорог и Секстант.
Ещё более любопытны названия звёзд. Пожалуй, только название Полярной звезды – звезды L созвездия Малой Медведицы (яркие звёзды созвездий принято обозначать греческими буквами L, B, Y, … в порядке их убывающего блеска) – и звёзд, носящих собственные имена людей, понятны без обращения к словарю. Полярная звезда получила своё название потому, что она находится вблизи Северного Полюса мира, вокруг которого происходит видимое суточное вращение звёздного неба. Собственные имена имеют, например, звёзды L и B созвездия Близнецов. Это Кастор и Поллукс, они названы так по именам двух мифических близнецов – сыновей Зевса и Леды. Звезда L Гончих Псов получила своё название Сердце Карла уже в новое время.
Очень немногие звёзды имеют греческие и латинские названия, большинство названий арабского происхождения. Это объясняется тем, что в средние века центр передовой науки находился на Ближнем и Среднем Востоке, где языком науки был арабский язык (как до этого в эллинистических странах – греческий, а позже в Европе – латинский). Важный вклад в науку того времени внесли учёные Средней Азии и Азербайджана: аль-Хорезми и аль-Бируни, Ибн Сина и Омар Хайям, Насир Ад-Дин ат-Туси и Улугбек. Много важных открытий было сделано также учёными Ирана, Ирака, Сирии, Египта, Северо-Западной Африки и мусульманской Испании. Труды этих учёных попадали в Западную Европу через Константинополь. Со многими трудами античной науки европейцы познакомились сначала по их арабским переводам и только потом – с греческими оригиналами.
Большинство арабских названий возникло следующим образом. В знаменитом труде александрийского астронома Клавдия Птолемея (II век до н.э.), обычно называемом нами «Альмагестом», имелся каталог 10022 звёзд, положения которых были измерены астрономами того времени. (Европейцы познакомились с этим трудом по его арабскому переводу: одно из греческих названий этого сочинения – «Мегисте синтаксис», что значит «Величайшая система», — арабы переделали в «аль-Маджисти», откуда и получилось «Альмагест».) Каждую звезду Птолемей характеризовал небольшим описанием, указывающим место этой звезды в созвездии. Именно от этих описаний в арабском переводе и произошли наши названия. Некоторые названия, впрочем, восходят не к Птолемею, а к староарабским названиям звёзд.
Заметим, что название Антареса объясняется тем, что эта звезда, как и Марс, красного цвета и является как бы заместителем Марса (наши названия планет – имена римских богов, соответствующих греческим богам Гермесу, Афродите, Аресу, Зевсу и Хроносу, именами которых называли планеты греки.)
От названия звезды Регул происходит слово «регулировать», так как этой звездой пользовались при регулировании полевых работ в Древнем Египте. Названия Мира и Проксима были даны учёными сравнительно недавно: название Мира получила звезда созвездия Кита за её удивительные свойства (она является долгопериодической переменной звездой), название Проксима было присвоено звезде созвездия Центавра после того, как было обнаружено, что эта звезда расположена ближе всех звёзд к Солнечной системе.
   
Светимость Светимость звезды L часто выражается в единицах светимости Солнца, которая равна 4*1^33 эрг/с. По своей светимости звезды очень сильно различаются. Есть звезды белые и голубые сверхгиганты (их, правда, сравнительно немного), светимости которых превосходят светимость Солнца в десятки и даже сотни тысяч раз. Но большинство звезд составляют «карлики», светимости которых значительно меньше солнечной, зачастую в тысячи раз. Характеристикой светимости является так называемая «абсолютная величина» звезды. Видимая звездная величина зависит, с одной стороны, от ее светимости и цвета, с другой — от расстояния до нее. Звезды высокой светимость имеют отрицательные абсолютные величины, например -4, -6. Звезды низкой светимости характеризуются большими положительными значениями, например +8,+10. Температура Температура определяет цвет звезды и ее спектр. Так, например, если температура поверхности слоев звезд 3-4тыс. К., то ее цвет красноватый, 6-7 тыс. К. — желтоватый. Очень горячие звезды с температурой свыше 10-12 тыс. К. имеют белый или голубоватый цвет. В астрономии существуют вполне объективные методы измерения цвета звезд. Последний определяется так называемым «показателем цвета», равным разности фотографической и визуальной и визуальной звездной величины. Каждому значению показателя цвета соответствует определенный тип спектра.
У холодных красных звезд спектры характеризуются линиями поглощения нейтральных атомов металлов и полосами некоторых простейших соединений (например, CN, СП, Н20 и др.). По мере увеличения температуры поверхности в спектрах звезд исчезают молекулярные полосы, слабеют многие линии нейтральных атомов, а также линии нейтрального гелия. Сам вид спектра радикально меняется. Например, у горячих звезд с температурой поверхностных слоев, превышающей 20 тыс. К, наблюдаются преимущественно линии нейтрального и ионизованного гелия, а непрерывный спектр очень интенсивен в ультрафиолетовой части. У звезд с температурой поверхностных слоев около 10 тыс. К наиболее интенсивны линии водорода, в то время как у звезд с температурой около 6 тыс. К. линии ионизированного кальция, расположенные на границе видимой и ультрафиолетовой части спектра. Заметим, что такой вид I имеет спектр нашего Солнца. Последовательность спектров звёзд, получающихся при непрерывном изменении температуры их поверхностных слоёв, обозначается следующими буквами: O, B, A, F, G, K, M, от самых горячих к очень холодным. Каждая буква описывает спектральный класс.
Спектры звезд
Исключительно богатую информацию дает изучение спектров звезд. Уже давно спектры подавляющего большинства звезд разделены на классы. Последовательность спектральных классов обозначается буквами O, B, A, F, G, K, M. Существующая система классификации звездных спектров настолько точна, что позволяет определить спектр с точностью до одной десятой класса. Например, часть последовательности звездных спектров между классами B и А обозначается как В0, В1… В9, А0 и так далее. Спектр звезд в первом приближении похож на спектр излучающего «черного» тела с некоторой температурой Т. Эти температуры плавно меняются от 40-50 тысяч градусов у звезд спектрального класса О до 3000 градусов у звезд спектрального класса М. В соответствии с этим основная часть излучения звезд спектральных классов О и В приходиться на ультрафиолетовую часть спектра, недоступную для наблюдения с поверхности земли.
Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд.
Химический состав звезд Химический состав наружных слоев звезд, откуда к нам «непосредственно» приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а обилие остальных элементов достаточно невелико. Приблизительно на каждые десять тысяч атомов водорода приходиться тысячи атомов гелия, около 10 атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Обилие остальных элементов совершенно ничтожно. Без преувеличения можно сказать, что наружные слои звезд — это гигантские водородно-гелиевые плазмы с небольшой примесью более тяжелых элементов. Хотя по числу атомов так называемые «тяжелые металлы» (т.е. элементы с атомной массой, большей, чем у гелия) занимают во Вселенной весьма скромное место, их роль очень велика. Прежде всего, они определяют характер эволюции звезд, т.к. непрозрачность звездных недр для излучений существенно зависит от ее непрозрачности.
Наличие во Вселенной (в частности в звездах) тяжелых элементов имеет важное значение. Совершенно очевидно, что живая субстанция может быть построена только при наличии тяжелых элементов и их соединений. Общеизвестна роль углерода в структуре живой материи. Не менее важны и другие элементы, например железо, фосфор. Царство живого — это сложнейшие сцепления тяжелых элементов. Мы можем, поэтому со всей определенностью сформулировать следующее положение: если бы не было тяжелых металлов, не было бы и жизни. Поэтому проблема химического состава космических объектов (звезд, туманностей, планет) имеет первостепенное значение для анализа условий возникновения жизни в тех или иных слоях Вселенной.
Радиус звезд
Энергия, испускаемая элементом поверхности звезды единичной площади в единицу времени, определяется законом Стефана-Больцмана. Поверхность звезды равна 4П^2Таким образом, если известны температура и светимость звезды, то мы можем вычислить ее радиус.
Масса звезд В сущности, говоря, астрономия не располагала и не располагает в настоящее время методом прямого и независимого определения массы (есть не входящей в состав кратных систем) изолированной звезды. И это достаточно серьезный недостаток нашей науки о Вселенной. Если бы такой метод существовал, прогресс наших знаний был бы значительно более быстрым. Массы звезд изменяются в сравнительно узких пределах. Очень мало звезд, массы которых больше или меньше солнечной в 10 раз. В такой ситуации астрономы молчаливо принимают, что звезды с одинаковой светимостью и цветом имеют одинаковые массы. Они определяются только для двойных систем. Утверждение, что одиночная звезда с той же светимостью и цветом имеет такую же массу, как и ее «сестра», входящая в состав двойной системы, всегда следует принимать с некоторой осторожностью.
Считается, что объекты с массами меньшими 0,02 М уже не являются звездами. Они лишены внутренних источников энергии, и их светимость близка к нулю. Обычно эти объекты относят к планетам. Наибольшие непосредственно измеренные массы не превышают 60М.
Рождение звезд Современная астрономия располагает большим количеством аргументов в пользу утверждения, что звезды образуются путем конденсации облаков газово-пылевой межзвездной среды. Процесс образования звезд из этой среды продолжается и в настоящее время. Выяснение этого обстоятельства является одним из крупнейших достижений современной астрономии. Еще сравнительно недавно считали, что все звезды образовались почти одновременно много миллиардов лет назад. Крушению этих метафизических представлений способствовал, прежде всего, прогресс наблюдательной астрономии и развитие теории строения и эволюции звезд. В результате стало ясно, что многие наблюдаемые звезды являются сравнительно молодыми объектами, а некоторые из них возникли тогда, когда на Земле уже был человек.
Важным аргументом в пользу вывода о том, что звезды образуются из межзвездной газово-пылевой среды, служит расположение групп заведомо молодых звезд (так называемых «ассоциаций») в спиральных ветвях Галактики. Дело в том, что согласно радиоастрономическим наблюдениям межзвездный газ концентрируется преимущественно в спиральных рукавах галактик. В частности, это имеет место и в нашей Галактике. Более того, из детальных «радио изображений» некоторых близких к нам галактик следует, что наибольшая плотность межзвездного газа наблюдается на внутренних (по отношению к центру соответствующей галактики) краях спирали, что находит естественное объяснение, на деталях которого мы здесь останавливаться не будем. Но именно в этих частях спиралей наблюдаются методами оптической астрономии «зоны Н», т. е. облака ионизованного межзвездного газа. Причиной ионизации таких облаков может быть только ультрафиолетовое излучение массивных горячих звезд — объектов заведомо молодых.
Центральным в проблеме эволюции звезд является вопрос об источниках их энергии. В прошлом веке и в начале этого века предлагались различные гипотезы о природе источников энергии Солнца и звезд. Некоторые ученые, например, считали, что источником солнечной энергии является непрерывное выпадение на его поверхность метеоров, другие искали источник в непрерывном сжатии Солнца. Освобождающаяся при таком процессе потенциальная энергия могла бы, при некоторых условиях» перейти в излучение. Как мы увидим, ниже, этот источник на раннем этапе эволюции звезды может быть довольно эффективным, но он никак не может обеспечить излучение Солнца в течение требуемого времени.
    продолжение
--PAGE_BREAK--Успехи ядерной физики позволили решить проблему источников звездной энергии еще в конце тридцатых годов нашего столетия. Таким источником являются термоядерные реакции синтеза, происходящие в недрах звезд при господствующей там очень высокой температуре (порядка десяти миллионов градусов).
В результате этих реакций, скорость которых сильно зависит от температуры, протоны превращаются в ядра гелия, а освобождающаяся энергия медленно «просачивается» сквозь недра звезд и, в конце концов, значительно трансформированная, излучается в мировое пространство. Это исключительно мощный источник. Если предположить, что первоначально Солнце состояло только из водорода, который в результате термоядерных реакций целиком превратится в гелий, то выделившееся количество энергии составит примерно 1052 эрг. Таким образом, для поддержания излучения на наблюдаемом уровне в течение миллиардов лет достаточно, чтобы Солнце «израсходовало» не свыше 10% своего первоначального запаса водорода.
Теперь можно представить картину эволюции какой-нибудь звезды следующим образом. По некоторым причинам (их можно указать несколько) начало конденсироваться облако межзвездной газово-пылевой среды. Довольно скоро (разумеется, по астрономическим масштабам!) под влиянием сил всемирного тяготения из этого облака образуется сравнительно плотный непрозрачный газовый шар. Строго говоря, этот шар еще нельзя назвать звездой, так как в его центральных областях температура недостаточна для того, чтобы начались термоядерные реакции. Давление газа внутри шара не в состоянии пока уравновесить силы притяжения отдельных его частей, поэтому он будет непрерывно сжиматься. Некоторые астрономы раньше считали, что такие протозвезды наблюдаются в отдельных туманностях в виде очень темных компактных образований, так называемых глобул. Успехи радиоастрономии, однако, заставили отказаться от такой довольно наивной точки зрения. Обычно одновременно образуется не одна протозвезда, а более или менее многочисленная группа их. В дальнейшем эти группы становятся звездными ассоциациями и скоплениями, хорошо известными астрономам. Весьма вероятно, что на этом самом раннем этапе эволюции звезды вокруг нее образуются сгустки с меньшей массой, которые затем постепенно превращаются в планеты.
 При сжатии протозвезды температура ее повышается, и значительная часть освобождающейся потенциальной энергии излучается в окружающее пространство. Так как размеры сжимающегося газового шара очень велики, то излучение с единицы его поверхности будет незначительным. Коль скоро поток излучения с единицы поверхности пропорционален четвертой степени температуры (закон Стефана — Больцмана), температура поверхностных слоев звезды сравнительно низка, между тем как ее светимость почти такая же, как у обычной звезды с той же массой. Поэтому на диаграмме «спектр — светимость» такие звезды расположатся вправо от главной последовательности, т. е. попадут в область красных гигантов или красных карликов, в зависимости от значений их первоначальных масс.
В дальнейшем протозвезда продолжает сжиматься. Ее размеры становятся меньше, а поверхностная температура растет вследствие чего спектр становится все более ранним. Таким образом, двигаясь по диаграмме «спектр — светимость», протозвезда довольно быстро «сядет» на главную последовательность. В этот период температура звездных недр уже оказывается достаточной для тою, чтобы там начались термоядерные реакции. При этом давление газа внутри будущей звезды уравновешивает притяжение, и газовый шар перестает сжиматься. Протозвезда становится звездой.
Но что произойдет со звездами, когда реакция «гелий — углерод» в центральных областях исчерпает себя, так же как и водородная реакция в тонком слое, окружающем горячее плотное ядро? Какая стадия эволюции наступит вслед за стадией красного гиганта?
Белые карлики Совокупность данных наблюдений, а также ряд теоретических соображений говорят о том, что на этом этапе эволюции звезды, масса которых меньше, чем 1,2 массы Солнца, существенную часть своей массы, образующую их наружную оболочку, «сбрасывают». Такой процесс мы наблюдаем, по-видимому, как образование так называемых «планетарных туманностей». После того как от звезды отделится со сравнительно небольшой скоростью наружная оболочка, «обнажатся» ее внутренние, очень горячие слои. При этом отделившаяся оболочка будет расширяться, все дальше и дальше отходя от звезды.
Мощное ультрафиолетовое излучение звезды — ядра планетарной туманности — будет ионизовать атомы в оболочке, возбуждая их свечение. Через несколько десятков тысяч лет оболочка рассеется и останется только небольшая очень горячая плотная звезда. Постепенно, довольно медленно остывая, она превратится в белый карлик.
Таким образом, белые карлики как бы «вызревают» внутри звезд — красных гигантов — и «появляются на свет» после отделения наружных слоев гигантских звезд. В других случаях сбрасывание наружных слоев может происходить не путем образования планетарных туманностей, а путем постепенного истечения атомов. Так или иначе, белые карлики, в которых весь водород «выгорел» и ядерные реакции прекратились, по-видимому, представляют собой заключительный этап эволюции большинства звезд. Логическим выводом отсюда является признание генетической связи между самыми поздними этапами эволюции звезд и белыми карликами.
Черные карлики Постепенно остывая, они все меньше и меньше излучают, переходя в невидимые «черные» карлики. Это мертвые, холодные звезды очень большой плотности, в миллионы раз плотнее воды. Их размеры меньше размеров земного шара, хотя массы сравнимы с солнечной. Процесс остывания белых карликов длится много сотен миллионов лет. Так кончает свое существование большинство звезд. Однако финал жизни сравнительно массивных звезд может быть значительно, более драматическим.
Нейтронные звезды Если масса сжимающейся звезды превосходит массу Солнца более чем в 1,4 раза, то такая звезда, достигнув стадии белого карлика, на том не остановится. Гравитационные силы в этом случае очень велики, что электроны вдавливаются внутрь атомных ядер. В результате изотопы превращаются в нейтроны способные прилетать друг к другу без всяких промежутков. Плотность нейтронных звезд превосходит даже плотность белых карликов; но если масса материала не превосходит 3 солнечных масс, нейтроны, как и электроны, способны сами предотвратить дальнейшее сжатие. Типичная нейтронная звезда имеет в поперечнике всего лишь от 10 до 15 км, а один кубический сантиметр ее вещества весит около миллиарда тонн. Помимо неслыханно громадной плотности, нейтронные звезды обладают еще двумя особыми свойствами, которые позволяют их обнаружить, невзирая на столь малые размеры: это быстрое вращение и сильное магнитное поле. В общем, вращаются все звезды, но когда звезда сжимается, скорость ее вращения возрастает — точно так же, как фигурист на льду вращается гораздо быстрее, когда прижимает к себе руки. Нейтронная звезда совершает несколько оборотов в секунду. Наряду с этим исключительно быстрым вращением, нейтронные звезды имеют магнитное поле, в миллионы раз более сильное, чем у Земли.
Пульсары Первые пульсары были открыты в 1968 г., когда радиоастрономы обнаружили регулярные сигналы, идущие к нам из четырех точек Галактики. Ученые были поражены тем фактом, что какие-то природные объекты могут излучать радиоимпульсы в таком правильном и быстром ритме. Вначале, правда, ненадолго астрономы заподозрили участие неких мыслящих существ, обитающих в глубинах Галактики. Но вскоре было найдено естественное объяснение. В мощном магнитном поле нейтронной звезды, движущиеся по спирали электроны генерируют радиоволны, которые излучаются узким пучком, как луч прожектора. Звезда быстро вращается, и радиолуч пересекает линию нашего наблюдения, словно маяк. Некоторые пульсары излучают не только радиоволны, но и световые, рентгеновские и гамма-лучи. Период самых медленных пульсаров около четырех секунд, а самых быстрых — тысячные доли секунды. Вращение этих нейтронных звезд было по каким-то причинам еще более ускорено; возможно, они входят в двойные системы.
Сверхновые Звезды, массы которых не достигают 1,4 солнечной, умирают тихо и безмятежно. А что происходит с более массивными звездами? Как возникают нейтронные звезды и черные дыры? Катастрофический взрыв, которым заканчивается жизнь массивной звезды, — это воистину впечатляющее событие. Это самое мощное из природных явлений, совершающихся в звездах. В мгновение высвобождается больше энергии, чем излучает ее наше Солнце за 10 миллиардов лет. Световой поток, посылаемый одной гибнущей звездой, эквивалентен целой галактике, а ведь видимый свет составляет лишь малую долю полной энергии. Остатки взорвавшейся звезды разлетаются прочь со скоростями до 20 000 км в секунду.
Такие грандиозные звездные взрывы называются сверхновыми. Сверхновые — довольно редкое явление. Каждый год и других галактиках обнаруживают от 20 до 30 сверхновых, главным образом в результате систематического поиска. За столетие в каждой галактике их может быть от одной до четырех. Однако в нашей собственной Галактике сверхновых не наблюдали с 1604 г. Может быть, они и были, но остались невидимыми из-за большого количества пыли в Млечном Пути.
Чёрные дыры
От звезды, имеющей массу больше, чем три солнечных, и радиус больше 8,85километра, свет уже не сможет уйти от нее в пространство. Уходящий от поверхности луч искривляется в поле силы тяжести так сильно, что возвращается обратно на поверхность. Кванты света — фотоны — излучаемые телом, возвращаются обратно, как брошенные вверх на земле камни. Никакое излучение не прорывается во внешний мир, чтобы донести весть о печальной судьбе звезды.
Превратившись в черную дыру, небесное тело не исчезает из Вселенной. Оно дает о себе знать внешнему миру благодаря своей гравитации. Черная дыра поглощает световые лучи, идущие от нее на более значительное расстояние. Черная дыра может вступать в гравитационное взаимодействие с другими телами: она может удерживать около себя планеты или образовывать с другой звездой двойную систему. Итак, скорость эволюции звезд определяется их первоначальной массой. Так как по ряду признаков со времени образования нашей звездной системы — Галактики — прошло около 15—20 млрд. лет, то за это конечное (хотя и огромное) время весь описанный эволюционный путь прошли только те звезды, массы которых превышают некоторую величину. По-видимому, эта «критическая» масса всего лишь на 10—20% превышает массу Солнца. С другой стороны, как уже подчеркивалось, процесс образования звезд из межзвездной газово-пылевой среды происходил в нашей Галактике непрерывно. Он происходит и сейчас. Именно поэтому мы наблюдаем горячие массивные звезды в левой верхней части главной последовательности. Но даже звезды, образовавшиеся в самом начале формирования Галактики, если их масса их меньше чем 1,2 солнечной, еще не успели сойти с главной последовательности. Заметим, кстати, что темп звездообразования в настоящее время значительно ниже, чем много миллиардов лет назад. Солнце образовалось около 5 млрд. лет назад, когда Галактика уже давно сформировалась и в основных чертах была сходна с «современной». Вот уже, по крайней мере, 4,5 млрд. лет оно «сидит» на главной последовательности, устойчиво излучая благодаря ядерным реакциям превращения водорода в гелий, протекающим в его центральных областях. Сколько еще времени это будет продолжаться? Расчеты показывают, что наше Солнце станет красным гигантом через 8 млрд. лет. При этом его светимость увеличится в сотни раз, а радиус — в десятки. Эта стадия эволюции нашего светила займет несколько сот миллионов лет. Наконец, тем или иным способом разбухшее Солнце сбросит свою оболочку и превратится в белый карлик. Вообще говоря, нам, конечно, небезразлична судьба Солнца, так как с нею тесно связано развитие жизни на Земле.
Диаграмма Герцшпрунга-Ресселла Для понимания природы звезд важно выявить зависимости между их отдельными характеристиками. Такие связи находятся путем сопоставления соответствующих величин. Так, в начале XX в. датский астроном Э. Герцшпрунг и американский астрофизик Г. Ресселл установили одну из таких зависимостей и представили ее в виде диаграммы, носящей теперь их имена.
На горизонтальной оси диаграммы Герцшпрунга — Ресселла (диаграммы Г. — Р) откладывают температуру звезды, а на вертикальной — ее светимость в относительных единицах (по отношению к светимости Солнца). Каждой звезде на диаграмме отвечает вполне определенная точка. Обычно говорят, что место на диаграмме занимает звезда, а не соответствующая ей точка, и при обсуждении эволюции звезд пишут: «звезда движется по диаграмме», подразумевая при этом, что в процессе эволюции звезды из-за изменения температуры и светимости звезды соответствующая ей точка на диаграмме Г. — Р. меняет свое положение.
Из этой диаграммы следует, что светимость звезды и ее спектральный класс связаны между собой определенной, хотя и не однозначной зависимостью. Большинство звезд расположено вдоль линии, идущей от горячих и ярких звезд к холодным и слабым («тусклым») звездам. Это и есть известная главная последовательность, а принадлежащие ей звезды — звездами главной последовательности. К этой последовательности принадлежит подавляющее большинство звезд, в том числе и наше Солнце (спектральный класс G2). Главная последовательность в месте, отмеченном вертикальной чертой, делится на верхнюю и нижнюю части. Звезды нижней части главной последовательности называются желтыми или красными карликами (в зависимости от их температуры). Солнце — типичный желтый карлик.
Выше главной последовательности в области температур ниже 6000 К расположены звезды, образующие группу красных гигантов (их светимость порядка 102—103 и радиус порядка 10—60 R) и группу красных сверхгигантов (L 10 L, R 200—300 R). Звезды горячие (T ЗОООО К) и яркие (L 104 — 106 L, R 40 R) называются белыми сверхгигантами. Заметьте, что холодных и неярких звезд гораздо больше, чем горячих и ярких.
В левом нижнем углу диаграммы находятся белые карлики (T 10000 К, L 10-4 L, R O,Ol R).
Итак, мы видим, что светимость звезды и спектральный класс взаимосвязаны. Одна из первых задач теории — объяснить эту зависимость, найти физические явления, лежащие в ее основе. Как это сделала современная астрофизика, мы увидим позже. Здесь же только отметим, что сразу после построения этой диаграммы ей приписали эволюционное значение: предполагалось, что звезды эволюционируют вдоль главной последовательности от горячих и ярких звезд к холодным и слабым. Потом выяснилось, что эволюция звезд имеет более сложный характер, и до сих пор звезды, изображения которых находятся в левой верхней части диаграммы, называют «ранними», а звезды другого конца главной последовательности — «поздними».
Звёздные скопления
По-видимому, почти все звезды рождаются группами, а не по отдельности. Поэтому нет ничего удивительного в том, что звездные скопления — вещь весьма распространенная. Астрономы любят изучать звездные скопления, потому что им известно, что все звезды, входящие в скопление, образовались примерно в одно и то же время и приблизительно на одинаковом расстоянии от нас. Любые заметные различия в блеске между такими звездами являются истинными различиями. Какие бы колоссальные изменения ни претерпели эти звезды с течением времени, начинали они все одновременно. Особенно полезно изучение звездных скоплений с точки зрения зависимости их свойств от массы — ведь возраст этих звезд и их расстояние от Земли примерно одинаковы, так что отличаются они друг от друга только своей массой.
Звездные скопления интересны не только для научного изучения — они исключительно красивы как объекты для фотографирования и для наблюдения астрономами-любителями. Есть два типа звездных скоплений: открытые и шаровые. Эти названия связаны с их внешним видом. В открытом скоплении каждая звезда видна отдельно, они распределены на некотором участке неба более или менее равномерно. А шаровые скопления, наоборот, представляют собой как бы сферу, столь плотно заполненную звездами, что в ее центре отдельные звезды неразличимы.
Открытые звездные скопления
Наверное, самым знаменитым открытым звездным скоплением являются Плеяды, или Семь сестер, в созвездии Тельца. Несмотря на такое название, большинство людей может разглядеть без помощи телескопа лишь шесть звезд. Общее количество звезд в этом скоплении — где-то между 300 и 500, и все они находятся на участке размером в 30 световых лет в поперечнике и на расстоянии 400 световых лет от нас.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.