Реферат по предмету "Математика, физика, астрономия"


История развития понятия «функция»

(1902-1984 гг.)


Английский физик-теоретик, один из основателей квантовой механики. Основные труды в математике по функциональному анализу и математической физике (уравнение Дирака, дельта-функция Дирака, статистика Ферми-Дирака). Нобелевская премия (1933).

Дирихле Петер Густав Лежен (1805-1859 гг.)


Немецкий математик. Основные труды по теории чисел и математическому анализу. Впервые точно сформулировал и исследовал понятие условной сходимости ряда (так называемый признак Дирихле), дал (1829) строгое доказательство возможности разложения в ряд Фурье функций, имеющей конечное число максимумов и минимумов.

Лейбниц Готфрид Вильгельм

(1646-1716 гг.)


Немецкий математик, физик, философ, изобретатель, историк, языковед. В математике его важнейшей заслугой является разработка (наряду с Ньютоном) дифференциального и интегрального исчисления. Дал определения дифференциала и интеграла, разработал правила дифференцирования суммы, разности, произведения, частного любой постоянной степени, дал определения экстремальных точек и точек перегиба, установил взаимно обратный характер основных операций анализа - дифференцирования и интегрирования. Заложил основы теории рядов и теории дифференциальных уравнений. Им предложены математические символы и термины, вошедшие во всеобщее применение - функция, дифференциал, дифференциальные уравнения, алгоритм, координаты, алгебраические и трансцендентные кривые, модель и др. Изобрел счетную машину и первый интегрирующий механизм, предвосхитил некоторые идеи матлогики, изложил начала теории определителей.

Лобачевский Николай Иванович (1792-1856 гг.)


Русский математик. Создатель (1826) неевклидовой геометрии. Дал (1834) метод приближенного решения алгебраических уравнений высших степеней; внес значительный вклад в теорию определителей. В области анализа Лейбниц получил новые результаты в теории тригонометрических рядов. Им же установлен один из наиболее удобных методов приближенного решения уравнений (метод Лобачевского).

Ньютон Исаак (1643-1727 гг.)


Английский физик, математик, механик и астроном. Одновременно с Лейбницем, но независимо от него, разработал дифференциальное и интегральное исчисления. Создавая математику непрерывных процессов, Ньютон в основу понятия флюксии (производной) и флюенты (интеграла). В работе “Анализ при помощи уравнений с бесконечным числом членов” (1669, опубл.1711) дан метод вычислений и вычислений функций - приближение бесконечными рядами, который имел впоследствии огромное значение для всего анализа и его приложений. В этом же труде изложен метод численного решения алгебраических (метод Ньютона). Наиболее полное изложение дифференциального и интегрального исчисления содержится в трактате “Метод флюксий и бесконечных рядов” (1670-71, опубл.1736), в котором в механических и математических выражениях сформулированы обе взаимно обратные задачи анализа, применен метод флюксий, ко многим геометрическим задач, решены задачи интегрирования обыкновенных дифференциальных уравнений путем представления решения в виде бесконечного степенного ряда, дана формула (бином Ньютона) для любого действительного показателя.

Орем Никола (ок.1323-1382 гг.)


Французский математик, физик и экономист. Доказал (ок.1350) расходимость гармонического ряда. В 1368 г. изложил учение о степени с дробными показателями. Написанный им “Трактат о сфере” сыграл значительную роль в разработке французской научной (астрономической и географической) терминологии.

Соболев Сергей Львович

(род. в 1908г.)


Советский математик. Основные труды по теории уравнений с частными производными, математической физике, функциональному анализу и вычислительной математике. Предложил новый метод решения гиперболических уравнений с частными производными, совместно со Смирновым В.И. разработал метод функционально-инвариантных решений для динамических колебаний слоистых сред. Им начато систематическое применения функционального анализа в теории уравнений с частными производными. Им же введен класс функциональных пространств и исследовано соотношение вложения для пространств. Ввел понятие обобщенного решения уравнения с частными производными и дал первое (1935) строгое определение обобщенной функции; с помощью этих понятий рассмотрел некоторые краевые задачи для уравнения с частными производными. В области вычислительной математики Соболев ввел понятие замыкаемых вычислительных алгоритмов, дал точную оценку норм погрешности кубатурных формул.

Ферма Пьер (1601-1665 гг.)


Французский математик. Получил важные результаты в теории чисел, алгебре, геометрии, теории вероятности. Автор ряда выдающихся работ. Ферма является одним из создателей теории чисел, с его именем связаны великая и малая теоремы Ферма. Вместе с Декартом является основоположником аналитической геометрии. В области метода бесконечно малых дал общее правило дифференцирования степенной функции, которое распространил на любые рациональные показатели.

Фурье Жан Батист Жозеф (1768-1830 гг.)


Французский математик. В труде “Аналитическая теория тепла” (1822г.) вывел дифференциальное уравнение теплопроводности и разработал метод его интегрирования при различных граничных условиях. В основе его метода лежит представление функции тригонометрическими рядами (рядами Фурье). Привел первый пример разложения в тригонометрические ряды функций, которые заданы на различных участках различными аналитическими выражениями. Развил предложенный Даламбером для решения волнового уравнения метод разделения (метод Фурье) переменных для изучения задач о колебаниях струны и теплопроводности стержня.

Эйлер Леонард (1707-1783 гг.)


Математик, физик, механик, астроном. Родился в Швейцарии. Более 30 лет работал в Петербургской АН. Список его трудов содержит около 850 названий, в их числе несколько многотомных монографий по всем основным разделам современной ему математике и ее приложениям. Заложил основы нескольких математических дисциплин. Первый систематически ввел в рассмотрение функции комплексного переменного, вывел (1743) формулы, связывающие тригонометрические функции с показательными. Эйлер создал, как самостоятельную дисциплину, теорию обыкновенных дифференциальных уравнений, и заложил основы теории уравнений с частными производными. Его имя носят подстановки Эйлера (1768) при замене переменных в специальных интегралах, Эйлеровы интегралы (1731), метод ломаных Эйлера (1768) в численном решении обыкновенного дифференциального уравнения, Эйлеровы углы (1748) в преобразовании координат, функция и теорема Эйлера (1763) в теории чисел, прямая Эйлера (1765) в треугольнике, теорема Эйлера для выпуклого многогранника (1758), Эйлерова характеристика многообразия, задача Эйлера о Кенигсбергских мостах (1736). Обозначения: f(x) - 1734; e, p - 1736; sin(x), cos(x) - 1748; tg(x) - 1753; D x, S - 1755; i - 1777.

Литература

  1. Глейзер Г.И. История математики в школе: 7-8 класс - М.: Просвещение. - 1982.
  2. Глейзер Г.И. История математики в школе: 9-10 класс - М.: Просвещение. - 1983.
  3. Чистяков В.Д. Исторические экскурсы на уроках математики в средней школе. - Минск: “Народная освета”. - 1969.
  4. Малыгин К.А. Элементы историзма в преподавании математики в средней школе. - М.:Учпедгиз. - 1958.
  5. Математический энциклопедический словарь. - М.: Сов.энциклопедия. - 1988.
  6. Энциклопедический словарь юного математика. - М.: Педагогика. - 1989.

ЗАКЛЮЧИТЕЛЬНОЕ ЗАНЯТИЕ ПО ТЕМЕ “ФУНКЦИЯ”.


Построение занятий в форме лекций полезно в хорошо подготовленных классах, где школьники способны воспринимать новый материал, хорошо ориентируются в изученном материале.


К сожалению, таких классов в современной школе становится все меньше и меньше, поэтому заключительное занятие я предлагаю провести по следующему плану.


Лекционный материал об истории развития функции, проверку и закрепление знаний, решение примеров и задач необходимо чередовать. Важно проследить связь понятия “функция” с другими предметами, с повседневной жизнью.


Лекцию читаемую учителем слушать, безусловно, приятнее, но для учеников лучше принять непосредственное участие в подготовке урока.


Для проведения занятия я предлагаю раздать сообщения (на 3-5 минут каждое). Необходимо каждому из докладчиков помочь в работе над сообщением, продумать с ним план выступления, попытаться предугадать вопросы, которые могут последовать из аудитории.


Темы сообщений могут быть следующими (часть докладов можно взять из представленного реферата, переработав их предварительно для имеющегося уровня знаний учеников):

  • ПОНЯТИЕ ФУНКЦИИ В МАТЕМАТИКЕ ДО 17 ВЕКА
  • ФУНКЦИИ ВОКРУГ НАС (РАССКАЗ О ЗНАЧЕНИИ ФУНКЦИИ В ЖИЗНИ ЧЕЛОВЕКА
  • ПОНЯТИЕ ФУНКЦИИ ЧЕРЕЗ МЕХАНИЧЕСКОЕ И ГЕОМЕТРИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ (ВИЕТ, ДЕКАРТ)
  • ФУНКЦИИ В ФИЗИКЕ И ГЕОМЕТРИИ
  • АНАЛИТИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ФУНКЦИИ (2 ЧЕЛОВЕКА: ИСТОРИЯ+КОНКРЕТНЫЕ ПРИМЕРЫ)
  • ИДЕЯ СООТВЕСТВИЯ
  • ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ ПОНЯТИЯ ФУНКЦИИ В ЕСТЕСТВОЗНАНИИ (ХИМИЯ, БИОЛОГИЯ)
  • СОВРЕМЕННОЕ СОСТОЯНИЯ ПОНЯТИЯ “ФУНКЦИЯ” (готовить учитель для наиболее сильных классов)

О проведении урока следует объявить за 3-4 недели, подготовить стенгазету с анонсами предстоящих докладов.


Сам урок можно провести в виде конференции на тему: “Нужна ли нам функция”. Желательно вовлечение в диспуты всех учеников класса.


Дата добавления: 18.05.2001



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Українська національна ідея (за творами Т. Шевченка, М. Костомарова, Ю. Міхновського та Д. Донцова)
Реферат Характеристика и анализ педагогических целей
Реферат Производство этилена пиролизом этана мощностью 200000 тгод
Реферат Земельное право как отрасль права, наука и учебная дисциплина в Республике Беларусь
Реферат Еволюція теоретичних основ школи "Анналів"
Реферат Открытие Южной Америки португальцами и испанцами
Реферат Законодательный процесс: понятие, сущность, основные стадии (на примере РФ)
Реферат "Двенадцати стульев", описанной мемуаристами и многократно пересказанной литературоведами, вымысел практически неотделим от фактов, реальность от мистификации
Реферат Поняття про емоційний стрес, Регуляція емоційних станів, Потреби та їх роль у розвитку стресу
Реферат Батлер, Бенджамин Франклин
Реферат Поэтическая молитва в творчестве Пушкина
Реферат Анализ имеющихся статистических данных по условиям дорожного движения на а/д "Подъезд к г. Северодвинску"
Реферат Классическая политическая экономия 3
Реферат Сущность предпринимательства и малого бизнеса
Реферат Автоматизация производства и информационные системы на предприятии на материалах предприятия ООО