Реферат по предмету "Математика, физика, астрономия"


Вопросы по курсу «МАТЕМАТИКА» для студентов 2 курса дневного отделения


Обычно предполагается, что если гипотеза Н0 выполняется, то вычисляемая по выборочным данным kнабл. Этого критерия и гипотеза Н0 принимается, если kнабл.Î (kкритич. левостор.; kкритич. правостор.) Если kнабл. попадает в критическую область (все остальные значения k Î (- ¥ ; kкритич. лев.) È (kкритич. прав. ; ¥ ), то гипотеза Н0 отвергается и принимается конкурирующая гипотеза Н1. При этом возможны ошибки двух типов: Первого рода: что гипотеза Н0 отвергается, в то время, как она верна. Вероятность этой ошибки: P(H1/H0) = a - уровень значимости критерия. Критерий подбирается так, чтобы a была как можно меньше. Второго рода: что отвергается гипотеза Н1, в то время, как она верна. b = P(H0/H1) Мощностью критерия – (1-b ) - вероятность попасть точке-выборке в критическое множество, когда верна конкурирующая гипотеза.


1-b = P(H1/H1)

37.Проверка гипотезы о равенстве генеральных средних при известных дисперсиях.


Признак x и h распределены нормально с известными дисперсиями.


Пусть по выборкам x 1, x 2, ... , x n объема n, h 1, h 2, ... , h m объема m, получены выборочные средние значения ( ; ). Выдвигается гипотеза о равенстве генеральных средних: H0: M(x ) = M(h ); При конкурирующей гипотезе:


H1: M(x ) ¹ M(h ); В качестве проверки гипотезы выбираем новую СВ ;




- СВ:


Д(Z)- дисперсия Д((- )/s (-)) =


M(Z) = 0; Д(Z) = 1. Для того, чтобы выбрать Zкр. и при заданном уровне значимости a , определить принимается или не принимается основная гипотеза, найти вероятности.


P(0 < Z < Zкр.) + P(Z > Zкр. прав.) = ½ Ф(Zкр.) + a /2 = ½ Ô(Zкр. прав.) = ½ - a /2


Zнабл. =


|Zнабл.| < Zкр.прав. Þ Н0 |Zнабл.| > Zкр.прав. Þ Н0 отвергается.

38. Проверка гипотезы о равенстве генеральных средних при неизвестных дисперсиях.


Пусть x и h нормально распределенные СВ, предполагается, что неизвестны, но равны между собой дисперсии. x 1, x 2, ... , x n h 1, h 2, ... , h m


; : Н0: М(x ) = М(h ) Н1: М(x ) ¹ М(h )


Для проверки гипотезы Н0, вводится СВ t, которая представляет собой



Теоретическое обозначение признака; СВ Т распределена по закону Стъюдента, зависит от первого параметра, который называется числом степеней свободы (k).


k = n + m – 2 (по таблице для распределения Стъюдента при заданном значении k и уровне значимости a в зависимости от вида альтернативной и конкурирующей гипотезы, находятся либо односторонние tкр., либо двухсторонние tкр.).


Ткр. прав. = - Ткр. лев. | Тнабл. | < Ткр. двуст. Þ Н0 | Тнабл. | > Ткр. двуст. Þ Н0 отвергается.

42. Марковские случайные процессы. Размеченный граф состояний.


Предположим, что дана система S. Предп., что состояние этой сис-мы хар-ся параметрами состояний. Если состояние системы меняется во времени случайно, то говорят, что в сис-ме протекает случайный процесс. Сис-ма —аудитория. Для хар-ки состояния используется параметр—число студентов, тогда эта система с дискретными состояниями. Будем рассматривать системы с дискретными состояниями и непрерывным t: сис-ма мгновенно в произвольные сегменты t скачками меняет состояние. Если параметр t принимает дискретные значения (t=1,2,3,...), то происходит процесс с дискретным временем (случайная последовательность), если же t изменяется на некотором интервале, то процесс с непрерывным временем. Если случайные величины семейства принимают дискретные значения, то имеет место процесс с дискретными значениями, если же непрерывное, то с непрерывными значениями. Предположим, что рассматривается система с дискретными состояниями и непрерывным t. Пусть S1, S2,...,Sn —возможные состояния сис-мы. Для описания процесса, происх. в сис-ме, надо знать вер-ти каждого состояния на произвольный момент t. Р1(t)—вер-ть того, что в момент t сис-ма находится в 1-ом состоянии. Процесс, протекающий в системе, наз. марковским, если для него вероятность попасть в состояние Xi=Si в момент ti зависит не от всего прошлого, а лишь от состояния Xi-1=Si, в котором процесс был в предыдущий момент времени ti-1. Графом называется совокупность вершин и дуг, соединяющих эти вершины. Для описания процесса, протекающего в системе, удобно использовать размеченный граф состояний, в котором в кач-ве вершин исп-ся различные состояния системы, а в кач-ве дуг—стрелки, показ. возможные переходы за 1 шаг из состояния в состояние. При этом над каждой стрелкой указ. Плотность вероятности соответствующего перехода.

43. Система дифф. уравнений Колмогорова для вероятностей состояний.


Пусть дан марковский случайный процесс. Рi(t)—вер-ти состояний: i=1,n(все с чертой), тогда для Рi(t) выполняется следующее дифференциальное уравнение


d Рi(t)/dt=å ( от i<>k,k=1 до n) l ki* Рi(t)—å ( от j<>1,j=i до n) l ij*Pi(t); i=1,n(все с чертой) (1) Система из n уравнений , т.к. для любого момента t å ( от i=1 до n) Pi(t), то в системе (1) одно любое уравнение м-но отбросить. И, задав начальное условие на момент t=t0, P1(t0)=1, Pi(t0)=0, i=1,n( все с чертой).


В итоге м-но решить сис-му дифф. ур-ний и найти все вер-ти состояний Pi(t), i=1,n(все с чертой).

44. Предельные вероятности состояний. Нахождение предельных вероятностей.


Предположим, что дан марковский случайный процесс, тогда, используя уравнение Колмогорова, можно найти Рi(t); i =


Предельными или финальными вероятностями называют пределы


, если эти вероятности существуют, т.е. = Рi.


Если эти предельные вероятности существуют, то в системе устанавливается стационарный режим, при котором состояние системы меняется случайным образом, но вероятность каждого состояния остается неизменной.


Предельная вероятность в марковском случайном процессе существует, если этот процесс удовлетворяет свойству транзитивности. Процесс в протекающей системе называется транзитивным, если существует интервал времени t , в течение которого система может перейти из любого состояния Si в любое другое состояние Sj.


Алгебраические уравнения для предельной вероятности состояний


Пусть марковский случайный процесс удовлетворяет свойству транзитивности, тогда для него при t ® ¥ существуют предельные вероятности состояний Pi=const.


, Þ , в этом случае вместо дифференциального уравнения Колмогорова получили систему линейных уравнений относительно вероятности состояний



Одно уравнение отбрасывается, остается n уравнений, решая эту систему получаем Р1, Р2, ... , Рn.

45. Процессы гибели и размножения. Формулы для нахождения предельных вероятностей.


Мы предполагаем, что все потоки, переводящие систему из любого Si в Si+1 и из Si в Si-1 являются простейшими.


l i, i+1, l i, i-1 - интенсивность потока


Процессы такого типа называются процессами гибели и размножения.


Составим систему уравнений для нахождения предельной вероятности состояний:


S0: l 01P0 = l 10P1 S1: l 10P1 + l 12P1 = l 01P0 + l 21P2 S2: l 21P2 + l 23P2 = l 12P1 + l 32P3 ... Sn: l n, n-1 Pn = l n-1, n Pn-1 P0 + P1 + P2 + ... + Pn = 1


Из первого уравнения выражаем P1 =


l 01P0 + l 12P1 = l 01P0 + l 21P2


P2 =


P3 = Pn = ...


P0 + ... + = 1


46. Потоки событий. Простейший поток и его свойства.


Потоком событий называется последовательность каких-то однородных событий, следующих друг за другом через случайные интервалы времени, т.е. в произвольные моменты времени.


Потоки избираются на числовой оси, представляющей ось времени, точками, соответствующими моменту наступления событий.


Например: - поток вызовов, поступающих на станцию скорой помощи;


- поток автомобилей, пересекающих перекресток.


Среднее число событий, происходящих в единицу времени называется интенсивностью потока. l - среднее число событий в потоке, происходящее за единицу времени. Свойства потока:

  1. Поток называется стационарным, если вероятность наступления того или иного числа событий за интервал времени длины а зависит от длины этого интервала и не зависит от того, в какой момент времени начинается отсчет этого интервала.

    t2 – t1 = a

  2. Поток событий называется потоком без последействия (без последствия), если для любых непересекающихся интервалов времени длины t 1 и t 2.

Вероятность появления того или иного числа событий в интервале t 2 не зависит от того, какое число событий произошло в интервале t 1.


Иначе, отсутствие последствия означает независимость наступления событий во времени.


3. Поток называется ординарным, если вероятность наступления двух и более событий за некоторый достаточно малый интервал времени t пренебрежимо мала по сравнению с вероятностью наступления одного события за этот интервал.


Поток, обладающий всеми тремя перечисленными свойствами называется простейшим.

47. Закон распределения числа событий за фиксированный промежуток времени и закон распределения интервала времени между событиями в простейшем потоке.


Пусть рассматривается какой-то поток событий. С ним всегда можно связать дискретную СВ – число событий, происходящих за интервал длины t . Эта СВ дискретна. С этим же потоком можно связать НСВ – интервал времени между событиями. Т – интервал времени между событиями в потоке. Для простейшего потока доказано, что число событий, попадающих на интервал длины t является ДСВ, распределенной по закону Пуассона. Вероятность того, что за время t произойдет ровно k событий.


(a > 0)


a = t l , l - интенсивность простейшего потока


при t = 1


Найдем закон распределения интервала времени между событиями простейшего потока. Выведем закон распределения интервала времени между событиями в потоке.


F(t) = ?


Fт(t) = P(T³ t) = 1 – Pt(k=0) = 1 - = 1 – e-l t, t ³ 0


Fт(t) = l e-l t


Всякий простейший поток можно задать интенсивностью, либо задать среднее значение времени между событиями в потоке (Т).


Средняя продолжительность интервала времени ; М(Т) = = Þ l =

48.Многоканальная СМО с отказами.


СМО— система, предназначенная для обслуживания какого-то потока поступающих на вход в систему заявок. Система характеризуется наличием того или иного числа каналов обслуживания. Если в системе несколько каналов, то мы считаем эти каналы равноправными, и они имеют одинаковые хар-ки (среднее число заявок, обслуж. 1-им каналом при непрерывной работе за единицу времени—одно и то же для всех каналов). Пусть СМО имеет n каналов обслуживания и на вход в систему поступает простейший поток заявок с интенсивностью l . Будем считать, что среднее время обслуживания одной заявки одним каналом Тоб=1/m ; продолж. Обслуж. Тоб—СВ, распределенная по показательному закону с параметром m . Тогда при непрерывной работе канала он может обслужить m заявок в единицу времени (технич., профес. Хар-ка каналов).


Пусть в случае, когда заявка, поступившая в систему, застает свободный хотя бы один канал, то она поступает сразу под обслуживание каким-то одним каналом. Если же заявка поступает в момент занятости всех каналов, то она получает отказ в обслуживании и покидает систему необслуженной. Нарисуем граф состояний таких СМО, при этом нумерацию состояний будем вести по числу заявок, находящихся в системе: S0—заявок нет S1—одна заявка, один канал занят, n-1 каналов свободно ,,, Sn—n заявок, n каналов занято, нет свободных.


Вероятности состояний:


Р0=(1+)-1


P1=; P2=(l 2/(2!m 2))*P0;....;Рr=(l k/k!m k)*P0

  1. Ротказа=Рn ( все каналы заняты).
  2. Относительная пропускная способность системы (вер-ть обслуживания) q=1—Pотказа=1—Рn
  3. Абсолютная пропускная способность(ср. число заявок, обслуж. за единицу времени) A=l q
  4. Среднее число занятых каналов =Aq/m

    Можно найти двумя способами:

  5. кзан—число занятых каанлов—СВ . зан=М(кзан)=
  6. зан=A/m 5. незан=n—зан 7. Степень загруженности каналов s = зан/n

49.Многоканальная СМО с ограниченным числом мест в очереди.


СМО— система, предназначенная для обслуживания какого-то потока поступающих на вход в систему заявок. Система характеризуется наличием того или иного числа каналов обслуживания. Если в системе несколько каналов, то мы считаем эти каналы равноправными, и они имеют одинаковые хар-ки (среднее число заявок, обслуж. 1-им каналом при непрерывной работе за единицу времени—одно и то же для всех каналов). Пусть дана сис-ма с простейшим потоком, инт-ть которого l , один канал в среднем может обслужить m заявок в единицу времени. Пусть в сис-ме имеется m мест для постановки заявок в очередь. Предположим, что заявка, заставшая в момент своего поступления один канал свободным, тут же обслуж. Если же в момент поступления заявки все каналы заняты, но имеется хотя бы одно свободное место в очереди, то заявка становится в очередь на обслуживание, при этом как только один из каналов освобождается, одна заявка из очереди поступает на обслуживание. Если заявка, поступившая в систему, застает занятыми все каналы и места в очереди, то она получает отказ в обслуживании и покидает систему. Возможные состояния системы: S0—заявок нет S1—одна заявка, n-1 канал свободен, все места в очереди свободны Sn—n заявок, все каналы заняты, все места в очереди свободны Sn+1—все каналы заняты, 1 заявка в очереди, m-1 мест в очереди свободны Sn+m—все каналы заняты, m мест (все) в очереди заняты.


Предельные вероятности состояний:


Р0=(1+


1.Ротказа=Рn+m=


2.Относительная пропускная сп-ть q=1—Pn+m 3.Абсолютная пропускная сп-ть A=l q 4.Среднее число заявок в очереди


50.Многоканальная СМО с неограниченным числом мест в очереди.

51.Многоканальная СМО с отказами.


СМО— система, предназначенная для обслуживания какого-то потока поступающих на вход в систему заявок. Система характеризуется наличием того или иного числа каналов обслуживания.


Если в системе несколько каналов, то мы считаем эти каналы равноправными, и они имеют одинаковые хар-ки (среднее число заявок, обслуж. 1-им каналом при непрерывной работе за единицу времени—одно и то же для всех каналов).


Пусть число мест в очереди не ограничено. Хар-ки этой СМО получим из характеристик СМО с ограниченным количеством мест в очереди, предполагая, что m—>¥ . Тогда в выражении для Р0 имеем


Р0==


При m —>¥ å 1 + e + e 2+ ...+e m-1 сходится только в том случае, если 0<e <1; если e >=1 сумма расходится, т.е. для этой СМО процесс не является транзитивным. Следовательно, предельные вер-ти состояний не существенны.


Будем считать, что при m—>¥ , e <1 . Следовательно предельн. вер-ти сост-й сущ. и хар-ки СМО след.:

  1. Ротказа=0
  2. q=1 каждая заявка будет обслужена
  3. .
  4. Среднее время ожидания . 6.A=l q=l . 7.

Дата добавления: 28.05.2001



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Правила произношения латинских слов \латинский\
Реферат 25 января оформлена книжная выставка к 150-летию Антона Павловича Чехова (29. 01. 1960- 15. 07. 1904)
Реферат Инновационный проект ночного клуба "Баскунчак"
Реферат Richard III
Реферат Барахов, Исидор Никифорович
Реферат Отчуждение личности, как источник преступного поведения
Реферат Цветы - символ молодости
Реферат *Современные проблемы физики полимеров и кристаллов, проф. Хохлов А. Р
Реферат Рональд Рейган: от актера до президента
Реферат История ведения хозяйства в дубравах Среднего Поволжья и состояние дубрав в прошлом
Реферат Елецкий пейзаж в творчестве ММ Пришвина
Реферат Особый путь России и стимулирование инновационной активности
Реферат Сравнительный анализ европейских парламентов Парламенты в странах
Реферат Что такое макроэкономика?
Реферат Маркетинговые исследования и их роль в управлении предприятием