Реферат по предмету "Химия"


Теоретические основы химической технологии

--PAGE_BREAK--Биохимическая технология занимает особое место, поскольку живая клетка обладает высокоактивными, топкоселективными биологическими катализаторами, по своей эффективности при низких (нормальных природных) температурах, несравненно превышающими катализаторы, используемые в химических производствах. Биологическими катализаторами являются синтезируемые в организмах ферменты (или энзимы) и гормоны, а также поступающие в клетки извне витамины.
В настоящее время из биологических процессов промышленность использует в производстве лишь различные формы брожения с получением спиртов, ацетона, органических кислот, биологический синтез белковых кормовых дрожжей, биологическую очистку сточных вод, бактериальное кучное выщелачивание забалансовых руд ряда цветных металлов и т. п. Все эти процессы идут с участием различных микроорганизмов и, как правило, с низкой скоростью и потому не являются в достаточной степени эффективными. Однако умелое производственное применение катализа, осуществляемого в живой природе, позволило бы перестроить по-новому целые отрасли химической промышленности и расширить пищевые ресурсы. В перспективе использования биохимических процессов находятся проблемы фиксации атмосферного азота, синтеза белков и жиров, использование диоксида углерода для органического синтеза. Рациональное осуществление этих процессов позволило бы решить важнейшую проблему жизнеобеспечения человечества путем получения высококалорийных продуктов питания, создания кормовой базы на промышленной основе, получения соответствующих высокоэффективных лекарственных препаратов и средств борьбы с вредителями сельского хозяйства.
ПРОБЛЕМЫ ЖИЗНЕОБЕСПЕЧЕНИЯ И ХИМИЧЕСКАЯ ПРОМЫШЛЕННОСТЬ
Бурное развитие промышленного производства и рост народонаселения в значительной степени меняют характер взаимодействия человека с окружающей средой. В основе жизни лежит круговорот элементов, который для человека выражается в обмене веществ с природой. Земля, вода, воздух загрязняются промышленными и бытовыми отходами, сокращаются леса и запасы пригодных для сельского хозяйства земель, исчезают многие виды животных и растений. Под воздействием человека среда изменяется настолько быстро, что веками складывавшиеся в природе равновесия не успевают восстанавливаться, и она неконтролируемо начинает откликаться на эти воздействия. В результате всего этого серьезно ужесточаются условия жизни людей. Жизнеобеспечение человечества, т. е. удовлетворение запросов населения в пище, пресной воде, достаточно чистом для дыхания воздухе и в различных видах энергии, все в большей степени решается методами химической технологии. Обеспечение населения пищевыми продуктами осуществляется по двум основным направлениям; применением продуктов химической промышленности для увеличения продуктивности сельского хозяйства и производством искусственной и синтетической пищи.
Увеличение продуктивности сельскохозяйственного производства становится возможным при соответствующем развитии промышленности высокоэффективных минеральных удобрений, средств борьбы с вредителями сельского хозяйства и создании производства стимуляторов роста растений.
Минеральные удобрения должны быть по возможности безбалластными; иметь широкий спектр действия, т. е. содержать важнейшие питательные вещества, в том числе и микроэлементы; иметь хорошую структуру, что облегчает их хранение и использование; должны легко усваиваться растениями; а также улучшать структуру почв, в которую они вносятся.
Средства защиты растений — пестициды — должны обладать высокой избирательностью действия; достаточно быстро разрушаться; быть неядовитыми для всех животных и птиц. Как правило, все пестициды — органические соединения, и успехи в их синтезе и производстве целиком определяются развитием органической «химии и промышленностью органического синтеза.
Регуляторы роста растений — физиологически активные /по отношению к растениям вещества, которые способны вызывать те или иные изменения в росте и развитии растений. Некоторые гербициды— средства борьбы с сорняками, будучи взятыми в) незначительном количестве, способы ускорять рост растений. Наиболее активные стимуляторы роста растений – гиббереллины — выделяются микробиологическим путем из продуктов жизнедеятельности некоторых грибов и высших растений. Другие регуляторы — десиканты и дефолианты, используемые соответственно для обезвоживания (подсушивания) растений и удаления листьев перед уборкой урожая, — также являются продуктами органического синтеза.
Стимуляторы роста животных — это, как правило, вещества, которые подавляют развитие инфекционных заболеваний у животных. Одновременно улучшается усвоение кормов, что позволяет снизить рацион животных. В настоящее время химическая промышленность приступает к освоению новых биостимуляторов, повышающих плодовитость домашних животных, рыб, насекомых (например, тутового шелкопряда).
Получение искусственной пищи представляет собой важное направление развития химической технологии.
Ограниченность площади земель, пригодных для сельского хозяйства, и небеспредельность интенсификации сельскохозяйственного производства придают проблеме получения искусственной пищи все большее значение. В первую очередь это касается синтеза различных белковых материалов. В настоящее время в промышленных масштабах синтез белков осуществляется в основном микробиологическим путем.
Микробиологическим называется синтез, осуществляемый ферментными системами микроорганизмов. Уже сейчас началось промышленное освоение микробиологического синтеза белков из легких масел, нормальных парафинов, метанола, этанола, уксусной кислоты и других органических соединений, получаемых преимущественно из нефти. Используя для микробиологического синтеза всего 5% нынешней мировой добычи нефти, можно обеспечить белковый рацион 5 млрд. человек, т. е. все население земного шара.
С помощью некоторых бактерий, усваивающих водород, удается вовлечь в реакцию кислород и атмосферный диоксид углерода, при атом получаются вода и формальдегид. Помимо того, что эти бактерии синтезируют очень нужный химической промышленности формальдегид и очищают воздух от диоксида углерода, они сами наполовину состоят из полноценного белка и могут быть использованьг в кормовых целях. Микробиологические процессы широко применяются в гидролизной промышленности при сбраживании сахаристых веществ в получении спиртов, виноделии, изготовлении кормовых дрожжей, в сыроварении, при обработке кож и т. п.
В индустриально развитых странах широкое распространение получила химическая промышленность основного органического синтеза \на базе растительного сырья, так называемая сахарохимия. Ее достоинством является гораздо большая доступность и ежегодная возобновляемость сырья. Кроме того, в задачу химической промышленности входит извлечение белков и углеводов из травы, древесных и сельскохозяйственных отходов, изготовление искусственной пищи из водорослей (таких, как хлорелла), синтез пищевых масел, Сахаров, жиров. В значительной степени эти про­цессы уже осуществляются в широком промышленном масштабе. Однако основная задача — это экологически чистый синтез белковых препаратов. Пищевая ценность белков зависит от их аминокислотного состава, поскольку аминокислоты не синтезируются в организме.
В настоящее время с помощью тонкого органического синтеза удается получать целый ряд аминокислот, а также некоторых полипептидов — нонапептида, брадикинина, инсулина.
Синтезируемые органические пищевые вещества нуждаются в специальном разделении фракций и очистке. Лучше всего этот процесс осуществляют живые организмы, из которых получают специальные полупроницаемые пленки -мембраны. Процесс разделения на них протекает при низких затратах энергии. Поэтому сейчас разрабатываются синтетические и полусинтетические мембраны, которые будут применять не только для очистки искусственных пищевых веществ, но и для разделения воздуха, сепарации молока, обессоливания воды и др.
Получение лекарственных препаратов так же является важной задачей жизнеобеспечения и в значительной степени определяется успехами органической химии и технологии органического синтеза. Химическая (фармацевтическая) промышленность выпускает огромные количества самых разнообразных лекарственных препаратов — алкалоидов, гликозидов, противоопухолевых средств, витаминов, гормонов, антисептиков, антибиотиков и т. п.
Охрана окружающей среды и здоровья обслуживающего персонала многих химических (и нехимических) производств достигается химическими методами. Газы очищают абсорбцией вредных примесей жидкостями, адсорбцией на твердых сорбентах и каталитическим превращением их в невредные соединения. Очистка сточных вод от вредных примесей также может осуществляться адсорбционными методами, фильтрованием через специальные фильтры, обработкой сильными окислителями (фтором, хлором, озоном и др.), ультрафиолетовым облучением, применением биологических методов. Особое значение в снижении загрязнения Мирового океана имеет переход на замкнутый водооборот в различных технологических процессах. Защита почвы и земных недр осуществляется утилизацией твердых отходов производства — шлаков, шламов, песков, огарков, пустой породы, т. е. реализацией комплексного использования сырья.
Охране окружающей среды уделяется во всем мире непрерывно возрастающее внимание ввиду резкого возрастания загрязнения окружающей среды с ростом производства.
При росте производству будет возрастать количество вредных отходов
Отсюда необходимость перехода к новым способам производства, дающим меньше вредных отходов, и как временное паллиативное мероприятие — устройство очистных сооружений. При этом следует учитывать, что увеличение промышленного производства, например, в 2 раза неизбежно потребует снижения предельно допустимых концентраций (ПДК) загрязняющих примесей в отходящих газах и водах тоже в 2 раза для сохранения существующего уровня вредности. Исходя из этого, необходимо разрабатывать новые, более эффективные способы очистки или же осуществлять переход к новым способам производства.
Вопросам экологической обстановки на планете уделяется теперь всё большее внимание со стороны политических и государственных деятелей. Вся производственная деятельность должна строиться на применении высокоэффективных средств и техноло­гий для обеспечения гармоничного взаимодействия человека и природы.
КАЧЕСТВО И СЕБЕСТОИМОСТЬ ХИМИЧЕСКОЙ ПРОДУКЦИИ
Предприятия уделяют большое внимание качеству выпускаемой продукции.
Качество химических продуктов в большинстве случаев определяется концентрацией в них основного вещества. Продукцией высшего и первого сорта считаются материалы, содержащие максимальное количество основных веществ и минимум примесей. Качество каждого химического продукта, т.е. состав и свойства его, должны удовлетворять требованиям, изложенным в государственных или общесоюзных стандартах (ГОСТ, ОСТ). При установлении стандартов учитываются требования потребителя и возможности производства. В зависимости от требований на продукцию какого-либо производства может быть несколько стандартов, но требования их должны быть такими, чтобы их было возможно осуществить в данном производстве. Требования к новым видам продуктов, на которые еще не установлены стандарты, определяются ведомственными техническими условиями.
Себестоимость продукции — это денежное выражение затрат данного предприятия на изготовление и сбыт продукции.
Затраты предприятия, непосредственно связанные с производством продукции, называются себестоимостью. Эти затраты учитываются двумя способами: по статьям калькуляции и первичным элементам затрат. По статьям калькуляции себестоимость продукции складывается из прямых затрат и накладных расходов, а прямые затраты — из основных статей, учитывающих стоимости:
1) сырья, полуфабрикатов и основных материалов, непосредственно участ­вующих в химических реакциях;
2) топлива и энергии на технологические цели;
3) заработной платы основных производственных рабочих;
4) амортизации, т.е. отчисления на возмещение износа основных производственных фондов: зданий, сооружений, оборудования и др.;
5) цеховых расходов, включающих затраты па содержание и текущий ремонт основных поризводствепных фондов (в том числе и зарплату вспомогательных и ремонтных рабочих).
Накладные расходы связаны с обслуживанием производства (содержание административно-управленческого персонала, (охрана труда и техника безопасности и пр.) и определяются в процентах от прямых затрат.
Для расчета затрат на единицу продукции определяют расходные коэффициенты по сырью, материалам, топливу и энергии в натуральных единицах (например, в тоннах сырья на тонну продукции), а затем, учитывая цены на сырье, материалы и другие статьи расхода, составляют калькуляцию. Соотношение отдельных статей расходов в себестоимости продукции сильно колеблется по различным химическим производствам. Наибольшее значение, как правило, имеет сырье. В среднем по химической промышленности оно составляет 60-70% себестоимости. Топливо и энергия обычно составляют около 15% себестоимости, но в электротермических и электрохимических производствах электроэнергия — основная статья расхода.
Заработная плата основных рабочих составляет в среднем около 4% себестоимости, так как крупномасштабные химические производства осуществляются непрерывным способом с высокой степенью механизации. Однако имеются производства, в которых зарплата основных производственных рабочих превышает 20% себестоимости продукции. Амортизационные отчисления составляют в среднем 3-4% себестоимости. Остальные затраты падают на цеховые расходы, представляющие значительную статью себестоимости.
Эффективность использования выделяемых капитальных вложений на строительство нового химического предприятия или реконструкцию действующего должна оцениваться на стадии проектирования и строительства этого предприятия. Экономическая эффективность выражается в росте производительности труда, снижении издержек производства, повышении коэффициента сменно­сти! оборудования, увеличении прибыли, ускорении ввода в действие строящихся предприятий, повышении качества продукции.
При проектировании нового предприятия химической промышленности из нескольких рассматриваемых вариантов экономически выгодным будет только тот, при котором эффективность капитальных вложений будет больше минимальной прибыли, полученной на каждый рубль вложений.
Путей повышения эффективности капитальных вложений в химическое производство много. Одним из наиболее важных является комплексное использование сырья с переработкой всех его компонентов в цепные для народного хозяйства продукты. Важным фактором улучшения экономических показателей производства следует считать интенсификацию работы оборудования, снижение транспортных расходов, совершенствование управления производством, улучшение условий труда рабочих и служащих.
Работники химической промышленности имеют дело с вредными и ядовитыми веществами — газами и жидкостями, пылящими сыпучими материалами, а также с высокими температурами. Специальными законами и правилами по технике безопасности и охране труда предусмотрены безопасные для трудящихся условия работы: герметичная аппаратура, вентиляция, изоляция горячих поверхностей, создание системы ограждений и т. п.
На различных производствах существуют опасности взрывов, механических травм, ожогов, быстрых отравлений, поражений электрическим током. Для предотвращения их предусмотрены со­ответствующие меры предосторожности, рассматриваемые в курсе техники безопасности.
Основные закономерности химической технологии
В химической технологии собственно химико-технологический процесс состоит из ряда операций: подготовки сырья, его химической или чаще физико-химической переработки, соответствующей обработки готовой химической продукции. От совершенства каждой из этих операций зависят как технологические, так и технико-экономические показатели производства. Не умаляя значения стадий подготовки сырья и обработки готовой продукции, отметим, что с позиций изучения основ химической технологии наибольшее значение имеет процесс собственно физико-химического передела сырьевого материала в продукт производства.
ПОНЯТИЕ О ХИМИКО-ТЕХНОЛОГИЧЕСКОМ ПРОЦЕССЕ
Химико-технологический процесс состоит из совокупности физических и химических явлений. Он складывается, как правило, из следующих взаимосвязанных элементарных стадий:
1) подвода реагирующих компонентов в зону реакции;
2) химических реакций;
    продолжение
--PAGE_BREAK--3) отвода из зоны реакции полученных продуктов.
Подвод реагирующих компонентов в зону реакции совершается молекулярной диффузией или конвекцией. При сильном перемешивании реагирующих веществ конвективный перенос называют также турбулентной диффузией. В двух- или многофазных системах подвод реагирующих компонентов может совершаться абсорбцией или десорбцией газов, конденсацией паров, плавлением твердых веществ или растворением их в жидкости, испарением жидкостей или возгонкой твердых веществ. Межфазный переход — это сложный диффузионный процесс.
Химические реакции — это второй этап химико-технологического процесса. В реагирующей системе обычно происходит несколько последовательных (а иногда и параллельных) химических реакций, приводящих к образованию основного продукта, а также ряд побочных реакций между основными исходными веществами и примесями, наличие которых в исходном сырье неизбежно. В результате кроме основного образуются побочные продукты (материалы, имеющие народнохозяйственное значение) или же отходы и отбросы производства, т. е. продукты реакций, не имеющие значительной ценности и не находящие достаточного применения в народном хозяйстве. Побочные продукты и отходы производства могут образоваться при основной реакции наряду с целевым продуктом, а также вследствие побочных реакций между основными исходными веществами и примесями. Обычно при анализе производственных процессов учитываются не все реакции, а лишь те из них, которые имеют определяющее влияние на количество и качество получаемых целевых продуктов.
Отвод продуктов из зоны реакции может совершаться так же, как и подвод реагирующих компонентов диффузией, конвекцией и переходом вещества из одной фазы (газовой, жидкой, твердой) в другую.
Суммарная скорость процесса определяется скоростью перечисленных элементарных стадий. Как правило, эти элементарные процессы протекают с различной скоростью и последовательно. Поэтому общая (суммарная) скорость процесса лимитируется скоростью наиболее медленной стадии. Если наиболее медленно происходит сама химическая реакция, и она лимитирует суммарную скорость, то процесс протекает в кинетической области. Для ускорения таких процессов технологии изменяют те факторы, которые более всего влияют на скорость химической реакции, увеличивая, например, концентрацию исходных компонентов, температуру, давление, применяя катализаторы. Если общую скорость процесса лимитирует подвод реагирующих компонентов или отвод продуктов реакции, то процесс протекает в диффузионной области. Для ускорения таких процессов стремятся увеличить скорость диффузии усилением перемешивания (турбулизацией реагирующей системы), диспергированием фаз, повышением температуры и концентрации, гомогенизацией системы, т.е. переводом многофазной системы в однофазную и т.п. Если скорости всех стадий технологического процесса соизмеримы — процесс протекает в так называемой переходной области, то для увеличения скорости такого процесса необходимо, прежде всего, воздействовать па систему теми факторами, которые увеличивают как диффузию, так и скорость химической реакции, например повышением концентрации реагирующих веществ и температуры.
Знание основных закономерностей химической технологии дает возможность установить оптимальные условия процесса, проводить его наиболее эффективно с максимальным выходом, обеспечить получение продуктов высокого качества. Технолог пользуется основными закономерностями при анализе существующего производства для его улучшения и в особенности при организации нового процесса.
КЛАССИФИКАЦИЯ ХИМИКО-ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ
Все процессы химической технологии делят, прежде всего, на химические, включающие химическую реакцию, и физические. В данном курсе рассматривается классификация химико-технологических процессов. Химические реакции являются важнейшим этапом химико-технологического процесса.
При классификации химико-технологических процессов учитывают деление химических реакций на простые, сложнопараллельные и сложнопоследовательные. При описании отдельных классов химико-технологических процессов реакции подразделяют по типу взаимодействия реагентов на окислительно-восстановительные (гомолитические) и кислотно-основные (гетеролитические). Химические реакции и процессы массопередачи могут быть обратимыми или необратимыми, соответственно различают и технологические процессы в целом.
Необходимо разграничивать процессы, протекающие в кинетической и диффузионной области. Этот вид классификации процессов сильно усложняется в гетерогенных системах, в особенности при взаимодействии компонента газовой или жидкой смеси с поверхностью твердого пористого материала. В таких процессах в зависимости от лимитирующего этапа можно наблюдать области: виешнедиффузионную, переходную от внешне- к внутридиффузионной, внутридиффузионную (в порах твердого материала), внутреннюю — переходную и кинетическую. Такие области имеют наи­большее значение для гетерогенно-каталитических процессов.
Если механизм процесса сложный, принадлежность его к тому или иному классу определяется целенаправленностью. В классификации технологических процессов большое значение имеет необходимый для их оптимизации технологический режим.
Технологическим режимом называется совокупность основных факторов (параметров), влияющих на скорость процесса, выход и качество продукта.
Для большинства химико-технологических процессов основными параметрами режима являются температура, давление, применение катализатора и активность его, концентрации взаимодействующих веществ, способ и степень перемешивания реагентов.
Параметры технологического режима определяют принципы конструирования соответствующих реакторов. Оптимальному значению параметров технологического режима соответствуют максимальная производительность аппаратов и производительность труда персонала, обслуживающего процесс. Поэтому характер и значения параметров технологического режима положены в основу классификации химико-технологических процессов. Однако все параметры технологического режима взаимосвязаны и обусловливают друг друга. Изменение одного из параметров влечет за собой резкое изменение оптимальных величин других параметров режима. Поэтому четкая классификация технологических процессов по всем без исключения параметрам режима была бы очень сложна и нецелесообразна в общем курсе химической технологии. Необходимо выбрать параметры, оказывающие решающее влияние.
На конструкцию реакторов и скорость процессов сильно влияют способ и степень перемешивания реагентов. В свою очередь, способ и интенсивность перемешивания реагирующих масс зависят от агрегатного состояния последних. Именно агрегатное состояние перерабатываемых веществ определяет способы их технологической переработки и принципы конструирования аппаратов. Поэтому при изучении общих закономерностей химической технологии принято делить процессы и соответствующие им реакторы прежде всего по агрегатному (фазовому) состоянию взаимодействующих веществ. По этому признаку все системы взаимодействующих веществ и соответствующие им технологические процессы делят на однородные, или гомогенные, и неоднородные, или гетерогенные.
Гомогенными называются такие процессы, в которых все реагирующие вещества находятся в одной какой-либо фазе: газовой (Г) или жидкой (Ж). В гомогенных системах взаимодействующих веществ реакции происходят обычно быстрее, чем в гетерогенных, механизм всего технологического процесса проще и соответственно управление процессом легче, поэтому технологи на практике часто стремятся к гомогенным процессам, т.е. переводят твердые реагирующие вещества или по крайней мере одно из них в жидкое состояние плавлением или растворением; с той же целью производят абсорбцию газов или конденсацию их.
Гетерогенные системы включают две или большее число фаз. Существуют следующие двухфазные системы: газ — жидкость, газ — твердое тело; жидкость — жидкость (несмешивающиеся); жидкость — твердое тело и твердое тело — твердое тело. В производственной практике наиболее часто встречаются системы Г-Ж, Г-Т, Ж-Т. Нередко производственные процессы протекают в многофазных гетерогенных системах, например Г-Ж-Т, Г-Т-Т, Ж-Т-Т, Г-Ж-Т-Т и т.п. Гетерогенные процессы более распространены в промышленной практике, чем гомогенные. При этом, как правило, гетерогенный этап процесса (массопередача) имеет диффузионный характер, а химическая реакция происходит гомогенно в газовой или жидкой среде. Однако в ряде производств протекают гетерогенные реакции на границе Г-Т, Г-Ж, Ж-Т, которые обычно и определяют общую скорость процесса. Гетерогенные реакции происходят, в частности, при горении (окислении) твердых веществ и жидкостей, при растворении металлов и минералов в кислотах и щелочах.
Химические процессы делят на каталитические и некаталитическис. По значениям параметров технологического режима процессы можно разделить на низко- и высокотемпературные, происходящие под вакуумом, при нормальном и высоком давлении, с высокой и низкой концентрацией исходных веществ и т.п. Однако такая подробная классификация, применяемая в некоторых руководствах по отдельным химическим производствам, излишне сложна для общего курса химической технологии.
По характеру протекания процесса во времени соответствующие аппараты и осуществляемые в них процессы делят на периодические и непрерывные. Непрерывно действующие реакторы называют проточными, так как через них постоянно протекают потоки реагирующих масс.
По гидродинамическому режиму различают два предельных случая перемешивания реагирующих компонентов с продуктами реакции. Полное смешение представляет собой режим, при котором турбулизация столь сильна, что концентрация реагентов в проточном реакторе одинакова во всем объеме аппарата от ввода исходной смеси до места вывода продукционной смеси.
Идеальное вытеснение наблюдается тогда, когда исходная смесь не перемешивается с продуктами реакции, а проходит ламинарным потоком по всей длине или высоте аппарата. Происходит плавное изменение концентраций в направлении потока реагентов, тогда как в реакционном объеме полного смешения нет градиента концентраций. В промышленных проточных реакторах степень перемешивания всегда меньше, чем в аппаратах полного смешения, и больше, чем в аппаратах идеального вытеснения. В некоторых типах реакторов режим перемешивания близок к одному из предельных случаев.
По температурному режиму проточные реакторы и происходящие в них процессы делят на изотермические, адиабатические и политермические. При изотермических процессах температура постоянна во всем реакционном объеме. Идеально-изотермический режим возможен лишь в реакторах с достаточно сильным перемешиванием, приближающимся к полному смешению. Близки к изотермическим процессы, в которых происходят реакции с малым тепловым эффектом (например, изомеризация) или при малой концентрации реагирующих веществ. Последнее характерно для процессов очистки газов от вредных примесей.
При адиабатических процессах нет отвода или подвода теплоты, вся теплота реакции аккумулируется потоком реагирующих веществ. Идеально-адиабатический режим возможен лишь в реакторах идеального вытеснения при полной изоляции от внешней среды. В таких реакторах температура потока вдоль оси реактора прямо или обратно пропорциональна степени превращения исходного вещества в продукт.
В политермических реакторах теплота реакции лишь частично отводится из зоны реакции или компенсируется подводом для эндотермических процессов. В результате температура по длине (или высоте) реакционного объема изменяется неравномерно, и температурный режим выражается различными кривыми.
Химические превращения веществ сопровождаются в той или иной степени тепловыми процессами. По тепловому эффекту процессов их делят на экзо- и эндотермические. Такое деление имеет особо важное значение при определении влияния теплового эффекта на равновесие и скорость обратимых реакций. Тепловой эффект реакций в ряде производств определяет технологическую схему производства и конструкцию реактора.
В гетерогенных системах различают прямоточные, противоточные и перекрестные процессы. Такой вид классификации необходим для определения характера изменения движущей силы процесса по высоте (длине) реактора. Таким образом, даже упрощенная классификация процессов, принятая в общем курсе химической технологии, довольно сложна, поскольку она отражает всесторонний подход к изучению разнообразных химико-технологических процессов, существующих в промышленности.
Основные объекты, изучаемые в химической технологии — равновесие и скорость химико-технологических процессов.
РАВНОВЕСИЕ В ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССАХ
Технологические процессы делят на обратимые и необратимые. Необратимые процессы протекают лишь в одном направлении.
Все обратимые процессы стремятся к равновесию, при котором скорости прямого и обратного процессов уравниваются, в результате чего соотношение компонентов во взаимодействующих системах остается неизменным до тех пор, пока не изменятся условия протекания процесса. При изменении таких технологических параметров, как температура, давление, концентрация реагирующих веществ, равновесие нарушается, и процесс может протекать в том или ином направлении до наступления нового равновесия. Количественно состояние равновесия в химической реак­ции описывается законом действующих масс (ЗДМ):
при постоянной температуре и наличии равновесия отношение произведения действующих масс продуктов реакции к произведению действующих масс исходных веществ есть величина постоянная.
Эта постоянная величина называется константой равновесия К.
В гетерогенных системах обратимыми называют
такие процессы, в которых возможен самопроизвольный переход вещества или энергии из одной фазы в другую в обоих направлениях.
Межфазное равновесие определяют на основе закона распределения вещества и правила фаз.
Расчет константы равновесия осуществляют либо по экспериментальным данным или же через нормальное химическое сродство.
Для большого числа химических превращений константы равновесия при стандартных условиях приведены в справочниках физико-химических величин в виде таблиц или номограмм.
Влияние основных параметров технологического режима на равновесие определяется принципом Ле Шателье,
в системе, выведенной внешними воздействиями из состояния равновесия, самопроизвольно происходят изменения, стремящиеся уменьшить это воздействие и привести систему к новому состоянию равновесия.
СКОРОСТЬ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ
Скорость технологического процесса по целевому продукту есть результирующая скоростей прямой, обратной и побочных реакций, а также турбулентной и молекулярной диффузии исходных веществ в зону реакции и продуктов из этой зоны.
Изменение концентрации основного исходного вещества и продукта реакции в течение процесса характеризуется кривыми, которые различны для простых и сложных реакций, а также для процессов, протекающих по типу идеального вытеснения и полного смешения. Для простых процессов, протекающих по типу идеального вытеснения без изменения объема по схеме A-^D, концентрация основного исходного вещества сА уменьшается во вре­мени от начальной
Большинство химических реакций относится к сложным, т.е., состоит из нескольких элементарных, поэтому характер изменения концентраций реагентов носит более сложный характер.
Скорость производственного процесса определяет производительность соответствующих аппаратов или размеры и число их.
Скорость процесса рассчитывают по степени превращения исходного вещества, по выходу продукта за определенный промежуток времени или через константу скорости процесса.
Степень превращения определяют по основному исходному веществу. Основным исходным веществом называется вещество, по которому ведется расчет. Это, как правило, наиболее дорогое из веществ, присутствующих в исходной смеси.
Многие процессы являются многомаршрутными, т.е. протекают по нескольким параллельным или последовательным реакциям с получение побочных продуктов. Для таких процессов большое значение имеет избирательность процесса.
Избирательностью (селективностью) процесса называют отношение количества основного исходного вещества, превратившегося в целевой продукт, к общему количеству превратившегося вещества.
Избирательность в различных многомаршрутных процессах колеблется весьма сильно. Так, в старом способе производства бутадиена из этилового спирта она составляла лишь 0,25—0,3 и получалось до 30 других веществ, как полезных, так и отходов производства. Селективность окисления аммиака до оксида азота NО колеблется на разных катализаторах от 0,85 до 0,97, т.е. от 3 до 15% NH3 превращается в N2 и N2O.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Правильный выбор марзана для бумагорезальной машины
Реферат Разработка методов исследования характеристик генетического алгоритма распределе-ния цепей по слоям в МСМ
Реферат Сравнительный анализ скульптуры Поликлета "Дорифор" и скульптуры Донателло "Давид"
Реферат Экономическая эффективность отрасли мясного скотоводства в хозяйстве ТНВ "Дружба"
Реферат Понятие коммереческого права
Реферат История болезни - кожные болезни (обширный псориаз)
Реферат Морфологічні особливості медулобластом мозочка
Реферат Пространство и время в произведениях Ф.М.Достоевского
Реферат Монархічна форма правління: поняття, ознаки, види
Реферат Ухилення від повернення виручки в іноземній валюті
Реферат 1. общая характеристика работы актуальность темы исследования
Реферат Снежный буревестник
Реферат Virtual Communities Essay Research Paper Virtual CommunitiesWhat
Реферат Физическая сторона радиоактивности
Реферат Факторинг и факторинговые операции банков на примере Банка Национальная Факторинговая Компания