Реферат по предмету "Химия"


Стадия сжигания серы в производстве серной кислоты

--PAGE_BREAK--1.1 Применение серной кислоты и олеума
Области применения серной кислоты и олеума весьма разнообразны. Значительная часть ее используется в производстве минеральных удобрений (30 – 60%),  производстве красителей (2 – 16%), химических волокон (5 – 15%), в металлургии (2 – 3%). Она применяется для различных технологических целей в текстильной, пищевой и других отраслях промышленности и народного хозяйства (рисунок 1.1).


Рисунок 1.1 – Применение серной кислоты


1.2 Физические свойства серной кислоты
Безводная серная кислота – бесцветная тяжелая, маслянистая жидкость без запаха. Очень сильная двухосновная кислота, способная вызывать ожоги кожи.  Плотность при 20°С 1,84 г/см3. Температура кристаллизации 10,37°С. Температура кипения моногидрата 296,2°С. При нагревании выше температуры кипения начинает разлагаться:

H2SO4 → SO3+ H2O

Смешивается с водой и SO3 во всех соотношениях, образуя гидраты H2SO4·nH2O, где n = 1, 2, 3, 4, 5 и 6. Вследствие образования гидратов при разбавлении водой происходит сильное разогревание серной кислоты.

Температура кипения серной кислоты зависит от ее концентрации. С повышением концентрации водной серной кислоты температура кипения ее возрастает и достигает максимума 336,5°С при концентрации 98,3%, что соответствует азеотропному составу, после чего снижается (таблица 1.1) [1].
Таблица 1.1




1.3 Химические свойства концентрированной серной кислоты
Концентрированная серная кислота является сильным окислителем. Окисляет HI и частично НВг до свободных галогенов, углерод – до СО2, S – до SO2, окисляет многие металлы. Проведение окислительно-восстановтельных реакций с участием H2SO4обычно требует нагревания. Часто продуктом восстановления является SO2:

S+ 2 H2SO4 = 3SO2↑+ 2H2O

C+ 2 H2SO4 = 2SO2 ↑+ CO2↑+ 2H2O

H2S + H2SO4 = SO2 ↑+ 2H2O + S↓

Сильные восстановители превращают H2SO4 в Sили H2S.

Концентрированная серная кислота при нагревании реагирует почти со всеми металлами (исключая Au, Pt, Be, Bi, Fe, Mg, Co, Ru, Rh, Os, Ir), например:

Cu+ 2 H2SO4 = CuSO4  + SO2↑+ 2H2O

Серная кислота образует соли – сульфаты (Na2SO4) и гидросульфаты (NaHSO4). Нерастворимы соли – PbSO4, CaSO4, BaSO4 и др.:

H2SO4+ BaCl2 = BaSO4↓ + 2HCl

Холодная серная кислота пассивирует железо, поэтому ее перевозят в железной таре. Безводная серная кислота хорошо растворяет SO3 и реагирует с ним, образуя пиросерную кислоту, получающуюся по реакции:

Н2SO4 + SO3=H2S2O7

Растворы SO3 в серной кислоте называются олеумом. Они образуют два соединения:H2SO4·SO3 и H2SO4·2SO3 [5].


1.4 Химические свойства разбавленной серной кислоты
Окислительные свойства для разбавленной серной кислоты нехарактерны. Разбавленная серная кислота обладает химическими свойствами, характерными для всех кислот: взаимодействует с основаниями, с основными и амфотерными оксидами, с солями:

H2SO4+2NaOH = Na2SO4 + 2H2O

H2SO4 + CaO = Ca SO4 + H2O

H2SO4 + СaCO3 = Ca SO4 + CO2 ↑+ H2O

При взаимодействии разбавленной серной кислоты с металлами, стоящими в ряду стандартных электродных потенциалов левее водорода, образуются соли серной кислоты (сульфаты) и выделяется водород:

Zn+ H2SO4= ZnSO4+ H2↑

Свинец не растворяется в разбавленной серной кислоте вследствие образования на его поверхности нерастворимого сульфата свинца [6].
    продолжение
--PAGE_BREAK--2.Выбор и обоснование источников сырья


В качестве сырья для производства серной кислоты применяют элементарную серу, серный колчедан, серосодержащие промышленные отходы.

Серный колчедан содержит от 35 до 50% серы. Совместно с серным колчеданом часто залегают сульфидные руды, которые подвергаются обжигу, в результате чего образуется значительное количество сернистых газов. Их так же целесообразно использовать для производства серной кислоты.

В последнее время в качестве сернокислотного сырья используют сероводородные газы, образующиеся при переработке нефти, коксовании углей, а также получаемые при очистке природного газа.

Наиболее удобным сырьем сернокислотного производства является сера, выделяемая из самородных руд или из побочных продуктов ряда производств (газовая сера). Однако стоимость серы значительно выше, чем колчедана; кроме того, сера необходима для производства резины, спичек, сероуглерода, ядохимикатов, лекарственных препаратов и т.д. [7].

Элементарную серу получают из самородных руд (природных месторождений) или из газов, содержащих SО2 либо H2S. Сера, полученная из газов, называется газовой серой.

Сера — ценное сырье для получения серной кислоты, так как при сжигании ее образуется концентрированный газ с высоким содержанием SО2 и кислорода. Газ этот чистый (в самородной сере содержатся незначительные количества мышьяка), при обжиге серы не остается огарка, поэтому схема переработки этого вида сырья на серную кислоту упрощается и является более эконо­мичной. До 50% осей элементной серы в мире расходу­ется на производство серной кислоты. Остальные 50% потребляют сельское хозяйство, целлюлозно-бумажная и другие отрасли промышленности.

В последние годы особенно возрос объем производст­ва серы из природных газов, содержащих сероводород (например, во Франции и Канаде).

Относительная атомная масса серы 32,064. При обыч­ной температуре сера находится в твердом состоянии. Она существует в двух кристаллических формах — ром­бической и моноклинной:

Свойства

Ромбическая сера

Моноклинная сера

Плотность, г/см3

2,07                   

          2,06

Область устойчивости, °С

ниже 95,4                    

95,5 -119,0

Температура    плавления,°С

112,8 (при быстром нагревании)

118,8

Теплота плавлении:

Дж/г

кал/г



32,0                              

11,9



38,6

9,2

Температура кипения серы 444,6° С. При нагревании сера плавится, плавление сопровождается увеличением объема. При 120°С расплавленная сера легкоподвижна, при 190°С это темно-коричневая вязкая масса, а при 400° С расплав становится снова легкоподвижным. Это связано с изменением структуры молекул при изменении температуры.

Получение серы из самородных руд. Природная сера встречается в залежах осадочного происхождения (о. Сицилия в Италии), вулканического происхождения о. Хоккайдо в Японии), в шляпах соляных куполов (США). Месторождения в шляпах куполов но содержа­нию серы превосходят месторождения осадочного и вул­канического происхождении примерно в два раза: в них 27—70%  серы  (штаты Техас и Луизиана в США).

Обычно руды не обжигают, а выплавляют из них серу, часто используя для этого тепло горения самой се­ры. При этом на выплавку серы расходуется до 25% серы (следовательно, выход элементарной серы состав­ляет 75%). В США для добывания серы используют метод Фраша, по которому серу расплавляют  перегретой водой и выдавливают на поверхность сжатым воз­духом. Это дешевый способ, однако выход элементной серы составляет всего 30—60%.-



Рис. 2.1.Схема получения серы из серных концентратов флотацией в автоклавах:1 — плавильник, 2 — сборники растворов флотореагентов, 3 — флотационные автоклавы

По запасам серы Россия занимает одно из первых мест в мире. Для извлечения серы из руд применяют различные методы, например метод флотации с после­дующей выплавкой серы из концентрата в автоклавах. Схема получения серы этим методом показана на рис. 2.1. Флотацию тонкоизмельчеиной руды производят с применением флотореагентов (жидкое стекло, керосин, спирты). Полученный концентрат, содержащий до 75% серы и обезвоженный до содержания 10—15% влаги, направляют в плавильник 1, снабженный паровым зме­евиком и мешалкой. Полученная серная суспензия при 120— 130° С поступает в флотационный автоклав 3, в ко­торый из сборника 2 вводится водный раствор флотореагентов. Автоклав снабжен паровой рубашкой и мешалкой. При перемешивании жидкость дробится на мел­кие капли, к которым прилипают частицы пустой поро­ды и всплывают; расплавленная сера сливается из комической части автоклава; после слива серы спускают пустую породу. Степень извлечения серы из концентра­та составляет 95—98%.

Получение газовой серы. Газовая сера является отхо­дом процесса очистки газов цветной металлургии, неф­тепереработки, попутных нефтяных и природных газов. Это дешевый вид сырья, однако в такой сере содер­жатся мышьяк и другие вредные для катализатора при­меси, поэтому схема переработки этой серы на серную кислоту примерно такая же, как и схема переработки колчедана.

В табл. 2.1. приведена характеристика серы по сортам по ГОСТ 127.1-93

Наиболее чистая сера (газовая) выпускается нашей промыш­ленностью в соответствии с ГОСТ 5.75—68. Она вырабатывается из сероводорода, получаемою из газов нефтепереработки. В ней отсутствуют мышьяк к органические примеси, поэтому схема перера­ботки этой серы на серную кислоту самая экономичная. Этой сере присвоен знак качества.

Таблица 2.1

Примечание. Кроме указанных показателей нормируется также содержание селена, железа, марганца, мели. Содержание механических примесей не допускается.


    продолжение
--PAGE_BREAK--3. Синтез и анализ ХТС


При получении обжигового газа путем сжигания серы отпадает необходимость очистки от примесей. Стадия подготовки будет включать лишь осушку газа и утилизацию кислоты. При сжигании серы протекает необратимая экзотермическая реакция:

S
+
O
2
=
SO

                                                                                                (1)

 с выделением очень большого количества  теплоты: изменение Н= -362,4 кДж/моль, или в пересчете на единицу массы 362,4/32=11,325 кДж/т = 11325 кДж/кг S.

При сжигании 1 моля серы расходуется 1 моль кис­лорода. При этом получают 1 моль сернистого газа.

Поэтому при горении серы в воздухе, содержащем 21% кислорода, возможно (теоретически) получить 21% сернистого ангидрида. Выход сернистого ангидрида здесь выше, чем при горении колчедана и цинковой об­манки. При сжигании серы в производстве серной кис­лоты получается наиболее выгодное соотношение SO2и кислорода. Если сжигать серу с небольшим избытком воздуха, можно получить сернистый газ с повышенным содержанием SО2. Однако при этом развивается температура до 1300°С, что приводит к разрушению футе­ровки печи; это ограничивает получение из серы газа с высокой концентрацией SO2.

Расплавленная жидкая сера, подаваемая на сжигание, испаряется (кипит) при температуре 444,6 0С; теплота испарения составляет 288 кДж/кг. Как видно из приведенных данных, теплоты реакции горения серы вполне достаточно для испарения исходного сырья, поэтому взаимодействие серы и кислорода происходит в газовой фазе (гомогенная реакция).

Сжигание серы в промышленности проводят следующим образом. Серу предварительно расплавляют (для этого можно использовать водяной пар, полученный при утилизации теплоты основной реакции горения серы). Так как температура плавления серы сравнительно низка, то путем отстаивания и последующей фильтрации от серы легко отделить механические примеси, не перешедшие в жидкую фазу, и получить исходное сырье достаточной степени чистоты. Для сжигания расплавленной серы используют два типа печей – форсуночные и циклонные. В них необходимо предусмотреть распыление жидкой серы для ее быстрого испарения и обеспечения надежного контакта с воздухом во всех частях аппарата.

Из печи обжиговый газ поступает в котел-утилизатор и далее в последующие аппараты.

Концентрация диоксида серы в обжиговом газе зависит от соотношения серы и воздуха, подаваемых на сжигание. Если воздух берут в стехиометрическом количестве, т.е. на каждый моль серы 1 моль кислорода, то при полном сгорании серы концентрация будет равна объемной доле кислорода в воздухе Сso2.max=21%. Однако обычно воздух берут в избытке, так как в противном случае в печи будет слишком высокая температура.

При адиабатическом сжигании серы температура обжига для реакционной смеси стехиометрического состава составит ~ 15000С. В практических условиях возможности повышения температуры в печи ограничены тем, что выше 13000С быстро разрушается футеровка печи и газоходов. Обычно при сжигании серы получают обжиговый газ, содержащий 13 – 14% SO2.

Газовая сера может содержать вредные для контактной массы примеси (например, мышьяк), поэтому технологическая схема ее переработки аналогична схеме переработки колчедана (см. рис. 3.1). Отличие заключа­ется только в устройстве печи для обжига сырья.




--PAGE_BREAK--4. Расчет материального баланса
Расчет материального баланса является основным этапом. На основе материального баланса определяется целый ряд важнейших техноэкономических показателей: расход сырья и вспомогательных материалов для обеспечения заданной производительности; тепловой баланс и, соответственно, расход энергии, и теплообменную аппаратуру; экономический баланс производства, себестоимость продукции и, следовательно, рентабельность производства.

 Составление уравнений по каждому узлу


1.Составляем уравнения по первому узлу:

0.92*N011=N12SO2

N12SO2=N12*0.08                                           N011=X1

0.92*N011=N12*0.08                                      N12=X3

0.92*
X
1
=
X
3
*0.08                (1)
2. Составляем уравнения по второму узлу:

а) 0,99*N12SO2=N23SO3

    0.99*N12*0.08=N23SO3                               N23SO3=X4

   
0.99*
X
3
*0.08=
X
4                  
  (2)

б) N12*(0.21-0.08)=2N23SO3

   
X
*(0.21-0.08)=2
X
4
            (3)
3.Составляем уравнение по третьему узлу:

а) G302*0.925=2000  базисное уравнение G302=X7

   
X7*0.925=2000                  (4)
б) 0.998*N23SO3=2000/Mr(H2SO4)

    0.998*X4=2000/98              (5)

в) N301=N301SO2 + N301N2 + N301SO3 + N301O2

    N301SO2=N12SO2*(1-0.99)=N12SO2*0.01=N12*0.08*0.01

    N301N2= 0.79*N012

    N301SO3=N23SO3*(1-0.998)=0.002*N23SO3

     N301O2=N12*(0.21-0.08)-1/2*N12*(0.21-0.08)=N12*0.13*(1-

   1/2)=0.13/2*N12

    N301=N12*0.08*0.01+0.79*N012+0.002*N23SO3+0.065*N12

    N301=0.0658*N12+0.79*N012+0.002*N23SO3

   
X
6
=0.0658*
X
3
+0.79*
X
2
+0.002*
X
1
    (6)             

    N012=X2

    N301=X6

Но надо учесть, что N12=N012  , т.е.  X
2
=
X
3
      (7)

6 неизвестных и 7 уравнений. Выбрасываем уравнение (3) и получаем систему уравнений:
0,92*X1=0.08*X3

0.99*0.08*X3=X4

0.925*X7=2000

0.998*X4=20.41

X6=0.0658*X3+0.79*X2+0.002*X4

X3=X2



0.92*X1-0.08*X3=0

0.0792*X3-X4=0

X7=2162.2

X4=20.45

0.8558*X3+0.002*X4— X6=0
0.92*X1-0.08*X3=0

0.0792*X3-20.45=0

X7=2162.2

X4=20.45

0.8558*X3+0.002*20.45-X6=0




0.92*X1-0.08*X3=0

X3=257.23

X7=2162.2

X4=20.45

0.8558*X3+0.041-X6=0
0.92*X1=0.08*257.23

X3=257.23

X7=2162.2

X4=20.45

0.8558*257.23+0.041-X6=0
X1=22.37=N011

X3=257.23=X2=N12=N012

X7=2162.2=G301

X4=20.45=N23SO3

X6=220.18=N301
1.Количество целевого продукта:

X7=G301=2162.2 кг 92.5%  серной кислоты
2. Расход серы:

X1=N011=22.37 кмоль

ms=Ns*MS=22.37*32=715.84 кг

GSнач=715,84/0,92=778,1 кг было введено в систему
3. Расход воздуха:

X2=X3=N012=257.23 кмоль

Gвозд=Nвозд*Mвозд=257,23*29=7459,67 кг
4.Определение расхода кислорода и азота

GO2=7459,67*0,21=1566,7 кг

GN2=7459,67*0,79=5893,1 кг
5.     Определяем количество SO2, содержащегося в газе:

X3=N12=257.23 кмоль

N12SO2=257.23*0.08=20.58 кмоль

GSO2=NSO2*MSO2=20.58*64=1317 кг
6.     Определение SO3, содержащегося в газе:

 X4=N23SO3=20.45 кмоль

GSO3=NSO3*MSO3=20.45*80=1636 кг
7.     Расход воды на абсорбцию:

G03=G301*MH2O/MH2SO4=2162.2*18/98=397 кг

8.     Выхлопные газы:

X6=N301=220.18 кмоль

G301=G301SO2+G301N2+G301SO3+G301O2=1317*0.01+5893.1+

0.002*1636+0.065*7459.67=13.17+5893.1+3.27+484.88=

6394.42 кг




Материальный баланс



Введено

Получено

Реагенты

кг

% масс

Продукты

кг

%масс

Сера

778,1

9

Серная кислота:

2162,2

25

Вода

397

4,6

H2SO4

2000

23,2

Воздух:

7459,67

86,4

H2O

162,2

1,8

21% О2

1566,7

18,1

Выхлопные газы:

6394,42

74,1

79%
N
2


5893,1

69,3

SO2

13,17

0,15







N2

5893,1

68,25







SO3

3,27

0,06







O2

484,88

5,64







Невязка

78,15

0,9













Всего

8634,77

100

Всего

8634,77

100

    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Культурная работа сущность и основные модели
Реферат The Change Essay Research Paper EssayIn this
Реферат Карл Маркс о капитале и прибавочной стоимости
Реферат Mans Inhumanity To Man Essay Research Paper
Реферат Salem Witch Trials
Реферат Программа для решения дифференциальных уравнений первого порядка методом Рунге-Кутта
Реферат Незавершенная реформа Н.С. Хрущёва: преобразования вооруженных сил СССР в 1953-1964 гг.
Реферат Жанр описания жития в древнерусской литературе
Реферат Деятельность Владимира Никитича Виноградова
Реферат Государственная собственность в системе факторов экономического роста
Реферат Право как социальное явление правосознание правоотношения правовые институты и организации
Реферат Анализ деятельности организации на ООО "Айгуль"
Реферат Классификация методов контроля качества РЭСИ. Методы неразрушающего контроля РЭСИ
Реферат Пушкинские образы в Элегии Некрасова
Реферат СПИД - чума XX века