--PAGE_BREAK--1.1.2. Эквивалентная электропроводность
Эквивалентная электропроводность λ[в см2/(г-экв Ом)вычисляется из соотношения:
(21)
где с — эквивалентная концентрация, г-экв/л.
Эквивалентная электропроводность — это электропроводность такого объема (φ см3) раствора, в котором содержится 1 г-экв растворенного вещества, причем электроды находятся на расстоянии 1 см друг от друга. Учитывая сказанное выше относительно удельной электропроводности, можно представить себе погруженные в раствор параллельные электроды на расстоянии 1 см., имеющие весьма большую площадь. Мы вырезаем мысленно на поверхности каждого электрода вдали от его краев площадь, равную φ-см2. Электропроводность раствора, заключенного между выделенными поверхностями таких электродов, имеющими площадь, равную φ- см2, и есть эквивалентная электропроводность раствора. Объем раствора между этими площадями электродов равен, очевидно, φ-см3 и содержит один грамм-эквивалент соли. Величина φ, равная 1000/с см3/г-экв, называется разведением. Между электродами, построенными указанным выше способом, при любой концентрации электролита находится 1 г-экв растворенного вещества и изменение эквивалентной электропроводности, которое обусловлено изменением концентрации, связано с изменением числа ионов, образуемых грамм-эквивалентом, т. е. с изменением степени диссоциации, и с изменением скорости движения ионов, вызываемым ионной атмосферой.
Мольная электропроводность электролита —это произведение эквивалентной электропроводности на число грамм-эквивалентов в 1 моль диссоциирующего вещества.
На рис. 1 показана зависимость эквивалентной электропроводности некоторых электролитов от концентрации. Из рисунка видно, что с увеличением с величина λ уменьшается сначала резко, а затем более плавно.
Интересен график зависимости λ от (2). Как видно из графика (Рис. 2), для сильных электролитов соблюдается медленное линейное уменьшение λ с увеличением , что соответствует эмпирической формуле Кольрауша (1900);
λ
=
λ∞— А (22)
где λ∞ — предельная эквивалентная электропроводность при бесконечном разведении: с → 0; φ → ∞
Значение λсильных электролитов растет с увеличением φ и ассимптотически приближается к λ∞. Для слабых электролитов (СН3СООН) значение λтакже растет с увеличением φ, но приближение к пределу и величину предела в большинстве случаев практически нельзя установить. Все сказанное выше касалось электропроводности водных растворов. Для электролитов с другими растворителями рассмотренные закономерности сохраняются, но имеются и отступления от них, например на кривыхλ
-с часто наблюдается минимум (аномальная электропроводность).
2. Характеристика уксусной кислоты
У́ксусная кислота(эта́новая кислота) — органическое вещество с формулой CH3COOH. Слабая, предельная одноосно́вная карбоновая кислота. Производные уксусной кислоты носят название «ацетаты».
Уксусная кислота
Общие
Химическая формула
CH3COOH
Молярная масса
60,05 г/моль
Физические свойства
Состояние (ст. усл.)
бесцветная жидкость
Плотность
1,0492 г/см³
Термические свойства
Температура плавления
16,75 °C
Температура кипения
118,1 °C
Критическая точка
321,6 °C, 5,79 МПа
Молярная теплоёмкость (ст. усл.)
123,4 Дж/(моль·К)
Энтальпия образования (ст. усл.)
−487 кДж/моль
Химические свойства
pKa
4,75
Оптические свойства
Показатель преломления
1,372
продолжение
--PAGE_BREAK--2. Физические свойства
Ледяная уксусная кислота Уксусная кислота представляет собой бесцветную жидкость с характерным резким запахом и кислым вкусом. Гигроскопична. Неограниченно растворима в воде. Смешивается со многими растворителями; в уксусной кислоте хорошо растворимы органические соединения и газы, такие как HF, HCl, HBr, HI и другие. Существует в виде циклических и линейных димеров
Давление паров (в мм. рт. ст.): 10 (17,1 °C) 40 (42,4 °C) 100 (62,2 °C) 400 (98,1 °C) 560 (109 °C) 1520 (143,5 °C) 3800 (180,3 °C) Диэлектрическая проницаемость: 6,15 (20 °C) Динамическая вязкость жидкостей и газов (в мПа·с): 1,155 (25,2 °C); 0,79 (50 °C) Поверхностное натяжение: 27,8 мН/м (20 °C) Удельная теплоемкость при постоянном давлении: 2,01 Дж/г·K (17 °C) Стандартная энергия Гиббса образования ΔfG0 (298 К, кДж/моль): −392,5 (ж) Стандартная энтропия образования ΔfS0 (298 К, Дж/моль·K): 159,8 (ж) Энтальпия плавления ΔHпл: 11,53 кДж/моль Температура вспышки в воздухе: 38 °C Температура самовоспламенения на воздухе: 454 °C Теплота сгорания: 876,1 кДж/моль
Уксусная кислота образует двойные азеотропные смеси со следующими веществами.
Вещество
tкип, °C
массовая доля уксусной кислоты
четыреххлористый углерод
76,5
3 %
циклогексан
81,8
6,3 %
бензол
88,05
2 %
толуол
104,9
34 %
гептан
91,9
33 %
трихлорэтилен
86,5
4 %
этилбензол
114,65
66 %
о-ксилол
116
76 %
п-ксилол
115,25
72 %
бромоформ
118
83 %
·
Уксусная кислота образует тройные азеотропные смеси с водой и бензолом (tкип 88 °C); с водой и бутилацетатом (tкип 89 °C).
3. Получение
Уксусную кислоту можно получить окислением ацетальдегида кислородом воздуха. Процесс проводят в присутствии катализатора — ацетата марганца (II) Mn(CH3COO)2 при температуре 50-60 °С:
2 CH3CHO + O2 → 2 CH3COOH
Ранними промышленными методами получения уксусной кислоты были окисление ацетальдегида и бутана.
Ацетальдегид окислялся в присутствии ацетата марганца (II) при повышенной температуре и давлении. Выход уксусной кислоты составлял около 95 %.
Окисление н-бутана проводилось при температуре 150—200 °C и давлении 150 атм. Катализатором этого процесса являлся ацетат кобальта.
Оба метода базировались на окислении продуктов крекинга нефти. В результате повышения цен на нефть оба метода стали экономически невыгодными, и были вытеснены более совершенными каталитическими процессами карбонилирования метанола.
--PAGE_BREAK--