Реферат по предмету "Физика"


Электрификация животноводческой фермы крупного рогатого скота на 2700 голов ЗАО Агрофирма Луговская

Тюменская государственная сельскохозяйственная академия
ФГОУ ВПО
Механико-технологический институт
Кафедра "Энергообеспечение сельского хозяйства"
Специальность 311400 «Электрификация и автоматизация сельского хозяйства»
Выпускная квалификационная работа
Тема: «Электрификация животноводческой фермы крупного рогатого скота на 2700 голов ЗАО „Агрофирма Луговская“ Тюменского района Тюменской области с разработкой системы горячего и холодного водоснабжения»
Выполнил: студент
Булыгин Андрей Валерьевич
Содержание
Введение
1. Анализ хозяйственной деятельности
3. Электрификация технологических процессов
3.1 Выбор технологии содержания животных
3.2 Выбор оборудования для доения коров
3.3 Выбор резервуара для хранения молока
3.4 Выбор холодильной установки
3.5 Расчет осветительных установок
3.5.1 Расчет осветительных установок
3.5.2 Расчет мощности осветительной установки стойлового помещения
3.5.3 Расчет осветительной сети с выбором щитов и оборудования
3.5.3.1 Выбор сечения проводов
3.5.3 Расчет осветительных установок молочного блока
3.5.3.1 Расчет мощности осветительной установки электрощитовой
3.5.3.2 Расчет мощности осветительной установки молочной
3.5.3.3 Расчет мощности осветительной установки коридора
3.5.3.4 Расчет мощности осветительной установки тамбура
3.5.3.5 Расчет мощности осветительной установки вакуум-насосной
3.5.3.6 Расчет мощности осветительной установки лаборатории
3.5.3.7 Расчет мощности осветительной установки моечной
3.5.3.8 Расчет мощности осветительной установки уборной
3.5.4 Расчет осветительной сети молочного блока
3.5.4.1 Выбор сечения проводов ввода
3.6 Расчет электропривода вакуумных насосов доильной установки
3.7 Расчет отопления и вентиляции
3.8 Выбор (описание) холодного и горячего водоснабжения
3.8.1 Выбор оборудования
3.8.2 Определение мощности установки
3.9 Расчет силовой сети молочного блока
3.9.1 Выбор аппаратуры защиты и распределительного щита
4. Составление графиков нагрузки
5. Выбор Т.П. Расчет наружных сетей
6. Техника безопасности
6.1 Безопасность жизнедеятельности на производстве
6.2 Защитные меры в электроустановках
6.3 Безопасность жизнедеятельности в чрезвычайных ситуациях
7. Технико-экономические расчеты
Литература
Доклад
Введение
Современное сельскохозяйственное производство — крупный потребитель топливно-энергетических ресурсов. В сельских районах электрическую энергию расходуют на отопление, вентиляцию и горячее водоснабжение производственных, общественных и жилых зданий, создание искусственного микроклимата в животноводческих помещениях, сооружениях защищенного грунта, хранилищах и др.
Для систем электроснабжения сельского хозяйства характерны большая разобщенность, разнообразие потребителей и неравномерность электрических нагрузок не только в течении года, но и в течении суток. Эффективное использование энергии в хозяйствах возможно при учете особенностей электропотребления.
Важную роль в получении электроэнергии играет электрификация и автоматизация технологического процесса, которая обеспечивает бесперебойную и безаварийную работу. Электрификация, то есть производство, распределение и применение электроэнергии — основа устойчивого функционирования и развития всех отраслей промышленности и сельского хозяйства страны и комфортного быта населения. На базе электроэнергетике стали развиваться промышленность сельского хозяйства и транспорта.
Развитие сельскохозяйственной промышленности базируется на современных технологиях, широко использующих электрическую энергию. В связи с этим возросли требования, к качеству электрической энергии, к ее экономному и рациональному расходованию.
Электрификация, то есть производство, распределение и применение электроэнергии — основа устойчивого функционирования и развития всех отраслей промышленности и сельского хозяйства страны и комфортного быта населения. На базе электроэнергетике стали развиваться промышленность сельского хозяйства.
1. Анализ хозяйственной деятельности
ЗАО АФ «Луговская» в современных границах организовано 28 января 1987 года в связи с ликвидацией совхоза «Новоторманский». Расположено в центральной части Тюменского района на северо-востоке от районного и областного центров г. Тюмени 15 км.
Хозяйство размещено в ІІІ агроклиматическом районе, который характеризуется следующими данными: район теплый, умеренно увлажненный. Среднесуточная температура воздуха в период с температурой выше +10 колеблется в пределах 1900-2050. Средняя температура самого теплого месяца года (июль) равна +20, самого холодного (январь) — 18. Устойчивый снежный покров образуется 5-11 ноября. Наибольшей высоты он достигает в марте и обычно не превышает 27-35 см. Сумма осадков за год
по зоне составляет 363-422 мм. Около 1/3 осадков теплого периода (96-110мм) выпадает в апреле — первой половине июня, но примерно раз в три года в этот период выпадает всего 50% осадков, что отрицательно сказывается на урожае зерновых культур. Половина летних осадков выпадает во второй половине июля — сентября, что сильно усложняет уборку урожая.
Рельеф территории хозяйства представляет собой приподнятую равнину, рассеченную значительным количеством балок. Поросших лесом и кустарником, имеется большое количество блюдцеобразных впадин, которые значительно затрудняют механизацию в растениеводстве. В северной части землепользование равнина круто обрывается и переходит в надпойменную террасу реки Тура.
В зависимости от рельефа землепользования размещается и почвенный покров. Так, если в северной части землепользования располагаются луговые слоистые, лугово-болотные и торфяно-болотные почвы, то в центральной ее
части черноземы оподзоленные и выщелоченные. Далее к югу идут серые и темно-серые оподзоленные, а частично и подзолистые почвы.
Гидрографическая сеть представлена рекой Турой, которая протекает с востока на северо-запад, Малой речкой, ручьями, озерками.
Глубина залегания грунтовых вод тесно связана с рельефом, на повышенных элементах рельефа 6-8 м, на пониженных 3-4 м.
Растительный покров представлен двумя формами: древесной и травянистой.
Мясомолочная продукция, производимая в хозяйстве, реализуется на предприятиях и в магазинах города Тюмени.
Дорожная сеть представлена асфальтированной дорогой, проходящей от г. Тюмени и до ЗАО «Каменское», а на территории асфальтированными и грунтовыми дорогами.
ЗАО АФ «Луговская» имеет молочно-мясное направление. В структуре товарной продукции молоко занимает основную прибыль от общей суммы. Общая земельная площадь хозяйства 11639га, в т. ч.6505га сельскохозяйственных угодий, из них 3673га полей, 2057га сенокосов и
781га пастбищ. Распахано сельскохозяйственных угодий 57%. На начало 2005 гада имеется 2649 голов крупно рогатого скота, в т. ч.1021 коров, что составляет в структуре стада 39% и 115 голов лошадей данные показатели показаны на диаграмме и на листе № 6
В структуре посевных площадей зерновые занимают 1200га или 39%, кормовые 65,5%.
Урожайность зерновых 18ц/га. Материальное обеспечение осуществляется через ЗАО Тюменьагромаш и Ч.П. по запасным частям г.
Тюмени. Ремонт комбайнов, тракторов, автомашин и сельскохозяйственной техники производится в своем хозяйстве.
Показатели характеризующие размер предприятия Таблица 2.1.
Показатели
2002
2003
2004
2004г к 2002г
%
1. Валовая продукция в сопоставимых ценах 1994г, (т. руб)
2620
2628
2711
103,4
2. Товарная продукция, (т. руб)
29295
29258
36365
124,1
3. Общая земельная площадь, (га) в том числе:--PAGE_BREAK--
а) с/х угодий из них
б) пашни --PAGE_BREAK----PAGE_BREAK----PAGE_BREAK--
1,0
3,7
19,2 --PAGE_BREAK----PAGE_BREAK--
3,25
Насос для промывки
ВКС-2/26
Частота вращения мешалки, об/мин
50
Габаритные размеры, мм
длина
ширина
высота


2820
1350
1550
Масса, кг
808
3.4 Выбор холодильной установки
Охлаждение — важнейший способ сохранения качества и удлинение сроков сохранности сельскохозяйственных продуктов, замедляющий протекания в них биологических процессов
Т.к. в основном для получения холодоносителя для охлаждения молока в танке охладителе ТО-2 применяют холодильную установку МХУ-8С, а также ее рекомендуют применять совместно с доильной установкой АДМ-8, то выбираем именно ее.
Таблица 3.3. Технические данные МХУ-8С.
Холодопроизводительность, кДж/ч
25120,8
Компрессор.
тип
количество
частота вращения, об/мин
число цилиндров, шт.


ФВ-6
1
1450
2
Конденсатор.
теплообменная поверхность, м²
производительность вентилятора, м³/ч


60
5000
Водяной насос.
тип
производительность, м³/ч


Е-1,5КМ-Б
6
3.5 Расчет осветительных установок
Свет является одним из важнейших параметром микроклимата. От уровня освещенности, коэффициента пульсации светового потока зависит производительность и здоровье персонала.
3.5.1 Расчет осветительных установок
Характеристики здания.
Таблица 3.4
Наименование
помещения.
площадь
м²
длина
м
ширина
м
высота
м
Среда.
Стойловое помещение
1380
69
20
3,22
сыр.
Площадка для весов.
9,9
3,3
3
3,22
сыр.
Инвентарная
9,9
3,3
3
3,22
сух
Венткамера
14,4
4,8
3
3,22
сух.
Помещение для
подстилки кормов
9,9
3,3
3
3,22
сыр.
Электрощитовая
9,9
3,3
3
3,22
сух.
Тамбур.
12,6
4,2
3
3,22
сыр.
3.5.2 Расчет мощности осветительной установки стойлового помещения
Согласно СниП принимаем рабочее общее равномерное освещение т.к работы ведутся с одинаковой точностью, нормированная освещенность составляет Ен=75Лк на высоте 0.8м от пола стр35 [л-4]. Т.к. помещение сырое и с химически агрессивной средой то принимаем светильник ЛСП15 со степенью защиты IР54 стр.41 табл.2 [л-4]. Расчетная высота осветительной установки.
Нр=Н-Нс-Нр п=3,22-0-0,8=2,42. (3.3)    продолжение
--PAGE_BREAK--
где, Н-высота помещения
Нс — высота свеса светильника, принимаем равной нулю, т.к крепежные
кронштейны устанавливаться не будут.
Нр. п. — высота рабочей поверхности.
Расстояние между светильниками.
L=Нр·λс=2,42·1,4=3,3м (3.4)
где, λс — светотехническое наивыгодное расстояние между светильниками при кривой силы света «Д» λс=1,4
Количество светильников в ряду
nс=а/L=69/3,3=21 шт. (3.5)
где, а — длина помещения
Количество рядов светильников.
nр=в/L=20/3,3=6 ряд. (3.6)
где, в — ширина помещения
Расчет производим методом коэффициента использования светового потока, т.к нормируется горизонтальная освещенность, помещение со светлыми ограждающими стенами без затемняющих предметов.
Индекс помещения.
i=а·в/Нр· (а+в) =69·20/2,42· (69+20) =6,4 (3.7)
Согласно выбранному светильнику, индексу помещения и коэффициентам отражения ограждающих конструкций (ρп=30 ρс=10 ρр. п. =10) выбираем коэффициент использования светового потока Uоу=0,67
Световой поток светильника.
Фс=А·Ен·Кз·z/nс·Uоу=1380·75·1,3·1,1/126·0,67=3861 Лм (3.8)
где, А-площадь помещения, м²
Ен-нормированная освещенность, Лк
Кз-коэффициент запаса
z-коэффициент неравномерности (z=1,1…1,2 стр.23 (л-4))
Световой поток одной лампы.
Фл=Фс/nл=3861/2=1930,5 Лм (3.9)
где, nл-число ламп в светильнике.
Принимаем лампу ЛД-40-1 с Фк=2000 Лм Рн=40Вт
Отклонение светового потока.
ΔФ=Фк-Фр/Фр·100%=2000-1930/1930·100%=3,6% (3.10)
Отклонение светового потока находится в пределах -10%…+20% и поэтому окончательно принимаем светильник ЛСП15 с лампой ЛД-40-1.
Аналогичные расчеты освещения произведёны и представлены в таблице № 3,9.
Таблица 3.5. Выбранное световое оборудование.
Наименование
помещения
тип светильника
тип лампы
кол-во
светильников
уст. мощность,
Вт
стойловое
помещение
ЛСП15
ЛД-40-1
126
10080
помещение для
подстилки
НСР01
Б-215-225-200
1
200
инвентарная
НСР01
Б-215-225-200
1
200
Венткамера
НСП17
Б-215-225-200
4
25,3
Тамбур
Н4Б300-МА
Г-215-225-300
4
1200
Электрощитовая
ЛСП02
ЛДЦ40-4
1
80
площадка перед входом
НСП03-60
Б220-40
7
280
площадка для весов
НСР01
Б-215-225-200
1
200
помещение
навозоудаления
НСР01
Б-215-225-200
2
400
3.5.3 Расчет осветительной сети с выбором щитов и оборудования
3.5.3.1 Выбор сечения проводов
Согласно ПУЭ из условий механической прочности сечение проводов с алюминиевыми жилами, должно быть не менее 2мм², т.к. у применяемых светильников корпуса металлические, то сечение заземляющих и токопроводящих проводов должно быть не менее 2,5мм², выбор сечения проводов производим по потере напряжения.
Суммарная нагрузка осветительной сети.
РΣ=ΣРл. н. +1,2ΣРл. л. =3380+1,2·10160=15,5кВт (3.11)
где, ΣРл. н. — суммарная мощность ламп накаливания
1,2ΣРл. л. — суммарная мощность люминесцентных ламп
ΣРлн=800+200+1200+280+200+400=3380Вт (3.12)
ΣРлл=10080+80=10160Вт (3.13)
Силовая сеть питается от трех осветительных щитов, схема компоновки осветительной сети приведена ниже.
Момент нагрузки между силовым и 1 осветительным щитом.
Мсщ-ощ=1,2 (РΣ) ·Lсщ-ощ=6·5=30 кВт·м (3.14)
ΣР — суммарная мощность люминесцентных ламп питающиеся от данного щита.
Lсщ-ощ — расстояние между силовым и 1 осветительным щитом
Расчетное сечение между щитами.
S=Мсщ-ощ/С·ΔU=30/50·0,2=3 мм (3.15)
где, С-коэффициент зависящий от напряжения и металла из которого состоит токоведущая жила (при U=380В и алюминиевой жилы С=50. ΔU-допустимая потеря напряжения между щитами, т.к согласно ПУЭ допустимая потеря напряжения составляет 2,5%, между щитами принимаем допустимую потерю 0,2%, а на группах 2,3%. Принимаем ближайшее наибольшее сечение, которое равняется 4мм² и по этому сечению, принимаем провод АПВ4-4мм². Ток на вводе в осветительный щит.    продолжение
--PAGE_BREAK--
Iсщ-ощ=РΣ/U·cosφ=15,5/0,38·0,98=39,8А (3.16)
где, U-номинальное напряжение, В, cos φ-коэффициент мощности осветительной нагрузки.
Выбранный провод проверяем по допустимому нагреву. Согласно (л-5) допустимая токовая нагрузка на данное сечение составляет Iдоп=50А
Iсщ-ощ=20,4А
Окончательно принимаем четыре провода АПВ4-4мм²
Выбор сечения проводов на участках.
Момент нагрузки на каждой группе
М=Σ (Р·L) (3.18)
где, L-расстояние от осветительного щита до светового прибора.
Σ-сумма мощностей входящих в группу.
М1=1,2· (80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1+80·71,4+80·74,7=81,9 кВт·м
М2=1,2· (80·5,4+80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1+80·71,4=74,8 кВт·м
М3=1,2· (80·2,1+80·5,4+80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1) =68 кВт·м
Допустимая потеря напряжения на группах принята 2,3%
Сечение проводов на каждой группе
S=М/С·ΔU (3.19)
где, М — момент нагрузки на группе
Значение коэффициента С аналогично что и при выборе сечения провода между щитами, т.к питание осветительной нагрузки на группах осуществляется трехфазной четырехпроводной линией.
S1=81,9/50·2,3=0,7 мм² (3.20)
S2=74,8/50·2,3=0,6 мм² (3.21)
S3=68/50·2,3=0,59 мм² (3.22)
На группах принимаем 4 провода АПВ (2,5) прокладываемых в трубах с сечением токоведущей жилы 2,5 мм² выбранный провод проверяем по условию нагрева длительным расчетным током.
Допустимая токовая нагрузка на выбранное сечение составляет Iдоп=30 А.
Определяем токи на группах, токи на всех трех группах аналогичны друг другу и поэтому рассчитываем ток одной из групп.
I=Р/Uном·cosφ=6/0,38·0,8=20А (3.23)
Проверяем выбранный провод по условию
Iдоп=30А≥Iрасч=20А (3.24)
Условие выполняется, значит принимаем выбранный ранее провод.
Момент нагрузки между силовым и 2 осветительным щитом.
М=1,2 (ΣР) ·L=6·5,6=33,6 кВт·м (3.25)
Расчетное сечение.
S=М/С·ΔU=33,6/50·0,2=3,3 (3.26)
Принимаем 4 одножильных провода АПВ с сечением токоведущей жилы 4 мм², дальнейший расчет тока и проверка выбранного сечения аналогична что и при расчете 1 осветительного щита, т.к. они имеют одинаковые нагрузки, значит принятый провод принимаем окончательно. Моменты нагрузки на группах.
М1=1,2· (80·2,1+80·5,4+80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1=68 кВт·м
М2=1,2· (80·5,4+80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1+80·71,4=74,8 кВт·м
М3=1,2· (80·8,7+80·12+80·15,3+80·18,6+80·21,9+80·25,2+80·28,5+80·31,8+80·35,1+80·38,4+80·41,7+80·45+80·48,3+80·51,6+80·54,9+80·58,2+80·61,5+80·64,8+80·68,1+80·71,4+80·74,7) =81,9 кВт·м
Сечение проводов на каждой группе
S1=68/50·2,3=0,59 мм² (3.27), S2=74,8/50·2,3=0,6 мм² (3.28)
S3=81,9/50·2,3=0,7 мм² (3.107)
Значение С иΔU аналогично что и при расчетах 1 осветительного щита.
Принимаем на группах 4 провода марки АПВ с одной жилой сечением 2,5 мм², дальнейший расчет токов на группах и проверка выбранного сечения по нагреву длительным расчетным током аналогично расчету на группах 1 осветительного щита, т.к они имеют одинаковые нагрузки на группах.
Момент нагрузки между силовым и 3 осветительным щитом.
Мсщ-3ощ= (1,2· (ΣР) +Р) ·Lсщ-ощ3= (1,2· (40) +3360) ·1=3,4 кВт·м (3.29)
где, 1,2· (ΣР) — суммарная мощность люминесцентных ламп
Р — суммарная мощность ламп накаливания
Расчетное сечение провода между щитами.
S=Мсщ-ощ3/С·ΔU=3,4/50·0,2=0,3 мм² (3.30)
Принимаем 4 одножильных провода АПВ с сечением токоведущей жилы 2,5 мм²
Расчетный ток на вводе в осветительный щит.
I=Р/μUн·cosφ=3,4/3·220·0,8=6,8 А (3.31
Проверка выбранного сечения по допустимому нагреву.
Iдоп=30А≥Iрасч=6,8 А (3.32)
Условие выполняется, значит провод выбран верно.
Моменты нагрузки на группах
М1=1,2· (40·1,2) + (40·3,1+300·3,1+40·3,1+200·3,9+200·5,9+40·7,9+300·7,9+200·9,4+200·11,4+200·12,4+40·11,4+40·11,4) =12,9кВт·м
М2=200·71+300·73,1+40·73,1+200·74,2+200·76,3+300·77,8+40·77,8+200·79,3=110,6кВт·м
Сечение проводов на каждой группе.
S1=12,9/50·2,3=0,1 мм² (3.33)
S2=110,6/50·2,3=0,9 мм² (3.34)
На всех группах принимаем провод АПВ4 (1·2,5), то есть четыре провода с сечением токоведущей жилы 2,5 мм² способ прокладки 4 провода в трубе.
Расчетный ток на группах.
I1=1980/3·220·0,98=3 А (3.35)
I2=1480/3·220·0,98=2,2 А (3.36)
Наибольший расчетный ток вышел в 1 группе и составил I1=3А, именно этот ток будем учитывать при проверке провода по допустимому нагреву длительным расчетным током.
Iдоп=30А≥Iрасч=3А (3.37)
Условие выполняется, значит принимаем выбранный ранее провод.
Для защиты осветительной сети от токов коротких замыканий, а также для распределения электроэнергии в осветительной сети принимаем 2 осветительных щита, серии ЯРН 8501-3813 ХЛЗБП с вводным автоматом серии ВА5131 с Iн=100А и 3 автоматами на отходящих линиях серии ВА1426 с Iн=32А. Выбранные щиты будут питать осветительную сеть стойлового помещения. Для питания осветительной сети остальных помещений принимаем аналогичный щит. В сумме выбрано три осветительных щита серии ЯРН 8501-3813 ХЛЗБП.
3.5.3 Расчет осветительных установок молочного блока
Молочный блок предназначен для сбора очистки и охлаждения молока, освещение играет немаловажную роль в технологическом процессе, от уровня освещенности зависит производительность и здоровье персонала.
Таблица 3.5. Характеристики здания.
Наименование помещения
площадь
ширина
длина
среда
Молочная
78,6
5,7
13,8
сыр.
Электрощитовая
10
2,4
4,2
сух
Лаборатория
5,67
2,1
2,7
сух
Моечная
5,13
1,9
2,7
сыр.
Комната персонала
16,8
4
4,2    продолжение
--PAGE_BREAK--
сух
Уборная
1,35
0,9
1,5
сыр.
Вакуумнасосная
13,02
3,1
4,2
сух
Тамбур
7,6
1,9
4
сыр
Коридор
30,26
1,7
17,8
сыр
Высота помещений молочного блока Н=3м
3.5.3.1 Расчет мощности осветительной установки электрощитовой
Согласно (л-4) принимаем рабочее, общее равномерное освещение, нормированная освещенность составляет Ен=100Лк на вертикальной плоскости, на высоте 1,5м от пола стр.38 (л-4), т.к. помещение электрощитовой сухое то выбираем светильник ЛСП02 со степенью защиты IР20. Расчетная высота осветительной установки.
Нр=Н-Нс-Нр. п. =3-0-1,5=1,5м (3.38)
высоту свеса принимаем равной нулю, т.к подвесные кронштейны устанавливаться не будут.
Расчет мощности осветительной установки электрощитовой производим точечным методом, т.к в ней нормируется освещенность на вертикальной плоскости.
0,5·Нр=0,5·1,5=0,75
поэтому будем считать источник света линейный.
Расстояние от точки проекции светильника до контрольной точки в центре щита.
Р=в/2-Сщ=2,4/2-0,38=0,82м (3.118)
где, в — ширина помещения, м
Сщ — ширина щита, м
Расстояние от светильника до контрольной точки
dл=√Нр²+Р²=√1,5²+0,82²=1,7 (3.39)
Угол между вертикалью и линией силы света к контрольной точке.
γ=arctgР/Нр=arctg0,82/1,5=28º (3.40)
Угол под которым видна светящееся линия.
α=arctgLл/dа=arctg1,2/1,7=57,7º=1рад (3.41)
Условная освещенность в контрольной точке.
Еа=Iγ·cos²γ/2·Нр· (α+1/2sin2α) =135·cos²28º/2·1,5· (1+sin2·1/2) =48,3Лк (3.42)
где, Iγ=135кд сила света светильника в поперечной плоскости под углом γ=28º. Перейдем к вертикальной освещенности.
Еа. в. =Еа (cosΘ+Р/НрsinΘ) =48,3 (cos90º+0,82/1,5·sin90º) =26,4Лк (3.43)
где, Θ=90º-угол наклона поверхности.
Световой поток светильника.
Фс=1000·Ен·Кз·Нр/η·Еа. в. =1000·100·1,3·1,5/1·26,4=7386Лм (3.44)
где, η-коэффициент учитывающий дополнительную освещенность от удаленных светильников, т.к этих светильников нет то η=1
1000-световой поток условной лампы.
Световой поток одной лампы.
Фл=Фс/nс=7386/2=3693 (3.45)
Принимаем лампу ЛД-65 с Фк=4000Лм отклонение светового потока лампы, от расчетного потока находится в пределах -10%…+20%, и окончательно принимаем светильник ЛСП02 с 2 лампами ЛД-65
3.5.3.2 Расчет мощности осветительной установки молочной
Принимаем рабочее, общее равномерное освещение, нормированная освещенность составляет Ен=100Лк на высоте 0,8м от пола, т.к. помещение сырое то принимаем светильник ЛСП15 со степенью защиты IР54. Расчетная высота осветительной установки.
Нр=Н-Нс-Нр. п. =3-0-0,8=2,2м (3.46)
высота свеса равняется нулю, т.к крепежные кронштейны использоваться не будут.
Расстояние между светильниками.
L=Нр·λс=2,2·1,4=3,08 (3.47)
Количество светильников.
nс=а/Lс=13,8/3,08=5св. (3.48)
Количество рядов светильников.
nр=в/L=5,7/3,03=1ряд (3.49)
Расчет производится методом коэффициента использования светового потока, т.к. нормируется горизонтальная освещенность, помещение со светлыми ограждающими конструкциями. Индекс помещения:
i=а·в/Нр· (а+в) =13,8·5,7/2,2· (13,8+5,7) =1,8 (3.50)
по полученному индексу, а также типу светильника выбираем коэффициент использования светового потока Uоу=0,41. Световой поток светильника.
Фс=А·Ен·Кз·z/nс·Uоу=78,6·100·1,3·1,1/5·0,41=5482,4Лм (3.51)
Световой поток лампы
Фл=Фс/2=5482,4/2=2741,2Лм (3.52)
По полученному значению светового потока принимаем лампу ЛБ-40-1 с Фк=3200Лм, отклонение светового потока. Лампы от расчетного находится в пределах -10%…+20% и окончательно принимаем пять светильников ЛСП15 с 2 лампами ЛБ-40-1.
Расчет оставшихся помещений производим методом удельной мощности, т.к этим методом разрешается рассчитывать, когда расчет освещения не входит в основную часть задания.
3.5.3.3 Расчет мощности осветительной установки коридора
Принимаем рабочее общее равномерное освещение, освещение нормируется на высоте 0м от пола стр36 (л-4), т.к помещение сырое то принимаем светильник НСР01 со степенью защиты IР54
Расчетная высота осветительной установки.
Нр=Н-Нс-Нр. п. =3-0,2-0=2,8м (3.53)
т.к в коридоре будут устанавливаться крепежные кронштейны то Нс=0,2м
Расстояние между светильниками.
L=2,8·1,4=3,9м (3.54)
Количество светильников.
nс=а/L=17,8/3,9=4св. (3.55)
Количество рядов
nр=в/L=1,7/3,9=1ряд (3.56
Мощность лампы
Рл=А·Руд/nс=30,2·23,5/4=177,4Вт (3.57)
Руд=23,5 при кривой силе света «Д», h=3м, А=30,2м²
Окончательно принимаем 4 светильника НСР01 с лампой Б-215-225-200 с Рн=200Вт
3.5.3.4 Расчет мощности осветительной установки тамбура
Система освещения, нормированная освещенность, выбор светильника и расстояние между ними аналогично помещению коридора.
Количество светильников
nс=а/L=4/3,9=1св. (3.58)
т.к. при расчете тамбура в него была включена часть коридора и принимая в расчет что между ними установлена дверь, принимаем количество светильников равное 2
Количество рядов.
nр=в/L=1,9/3,9=1ряд
Мощность лампы.
Рл=А·Руд/nс=7,6·25,4/2=96,7Вт (3.59)
Руд=25,4 при кривой силе света «Д» h=3м, А=7,6м²
Принимаем 2 светильника НСР01 с лампой Б-215-225-100 с Рн=100Вт.
3.5.3.5 Расчет мощности осветительной установки вакуум-насосной
Принимаем общее равномерное рабочее освещение, освещение нормируется на высоте 0,8м от пола стр.35 (л-4), т.к помещение сухое то принимаем светильник ЛСП02 со степенью защиты IР20
Расчетная высота осветительной установки.
Нр=Н-Нс-Нр. п. =3-0-0,8=2,2м (3.60)
Расстояние между светильниками.
L=Нр·λс=2,2·1,4=3,08м (3.61)
Количество светильников.
nс=а/L=4,2/3,08=1шт (3.62)
Количество рядов.
nр=в/L=3,1/3,08=1ряд (3.63)
Мощность светильника
Рс=А·Руд/nс=13,02·12/1=156,2Вт (3.64)
Руд=12 при кривой силе света «Д» h=3м А=13,02м²    продолжение
--PAGE_BREAK--
Мощность лампы.
Рл=Рс/2=156,2/2=78,1Вт (3.65)
Для освещения вакуум-насосной принимаем 1 светильник ЛСП02 с двумя лампами ЛД-80 с Рн=80Вт стр54 (л-4)
3.5.3.6 Расчет мощности осветительной установки лаборатории
Принимаем рабочее общее, равномерное освещение, т.к. помещение сухое то принимаем светильник ЛСП02 со степенью защиты IР20
Мощность светильника.
Рс=А·Руд/nс=5,67·5,2/1=32,4Вт (3.66)
Руд=5,2 Вт/м² при кривой силе света «Д» h=3м А=5,67м²
Мощность лампы.
Рл=Рс/2=32,4/2=16,2Вт (3.67)
Для освещения лаборатории принимаем светильник ЛСП02 с 2 лампами ЛД-40
с Рн=40Вт (3.68)
3.5.3.7 Расчет мощности осветительной установки моечной
Принимаем рабочее, общее равномерное освещение, т.к. помещение сырое то принимаем светильник НСР01 со степенью защиты IР54
Мощность лампы.
Рл=А·Руд/nс=5,13·25,4/1=130,3Вт (3.69)
Руд=25,4 Вт/м² при кривой силе света «Д» h=3м А=5,13м²
Принимаем светильник НСР01 с лампой Б-215-225-150 с Рн=150Вт
3.5.3.8 Расчет мощности осветительной установки уборной
Принимаем рабочее общее равномерное помещение, т.к. помещение сырое то принимаем светильник НСП03 со степенью защиты IР54
Мощность лампы.
Рл=А·Руд/nс=1,35·25,4/1=34,29Вт (3.70)
Руд=25,4 Вт/м² при кривой силе света «Д» h=3м А=1,35м²
Для освещения уборной принимаем светильник НСП03 с лампой БК-215-225-40 с Рн=40Вт
Таблица 3.6. Выбранное световое оборудование молочного блока.
Наименование
помещения
тип
светильника
тип лампы
кол-во
свет.
Уст. мощ.
Вт
Молочная
ЛСП15
ЛБ-40-1
5
400
Электрощитовая
ЛСП02
ЛД-40-1


80
Лаборатория
ЛСП02
ЛД-40-1
1
80
Моечная
НСР01
Б-215-225-150
1
150
Лаборатория
молочной
ЛСП02
ЛД-40-1
1
80
Помещение для
моющих средств
НСР01
Б-215-225-150
1
150
Комната персонала
ЛСП02
ЛД-40-1
1
80
Вакуумнасосная
ЛСП02
ЛД-80
2
160
Тамбур
НСР01
Б-215-225-100
2
200
Коридор
НСР01
Б-215-225-200
4
800
Уборная
НСПО3
БК-215-225-40
1
40
3.5.4 Расчет осветительной сети молочного блока
3.5.4.1 Выбор сечения проводов ввода
Суммарная нагрузка между силовым и осветительным щитом.
РΣ=ΣРлн+1,2ΣРлл=1340+1152=2,5кВт (3.71)
ΣРлн=150+150+200+40+800=1340Вт (3.169)
1,2ΣРлл=1,2· (400+80+160+80+80+160) =1152Вт (3.72)
Момент нагрузки между силовым и осветительным щитом.
Мсщ-ощ=2,5·1,2=3кВт·м
Сечение проводов между щитами.
S=Мсщ-ощ/С·ΔU=3/50·0,2=0,3мм² (3.73)
значение коэффициента С и допустимых потерь напряжения аналогично что и при расчетах осветительной сети животноводческого комплекса.
Принимаем провод АППВ (3·2,5) с сечением токоведущей жилы S=2,5мм²
Ток на вводе в осветительный щит
Iсщ-ощ=РΣ/ U·cosφ=2,5/0,38·0,98=6,7А (3.74)
согласно стр.210 (л-6) допустимая токовая нагрузка на выбранное сечение составляет
Iдоп=23А
Iдоп=23А>Iсщ-ощ=6,7
Т.к. по условию допустимого нагрева провод проходит, то принимаем выбранный ранее провод окончательно.
Выбор сечение проводов на каждой группе.    продолжение
--PAGE_BREAK--
Моменты нагрузки на каждой группе.
М1=Σ (Р·L) =1,2· (80·4,7+80·6,7+80·9,7+80·12,7+80·15,3) =4,7кВт·м
М2=200·6,45+200·5,7+200·9,15+200·12,1=6,7кВт·м
М3=1,2· (80·1,5+160·4,5+80·8,2+80·10,2) =2,7кВт
М4=1,2· (80·8,1) +150·10,1+1,2· (80·10,5) +150·13,5=5,3кВт
М5=1,2· (80·4,2) +40·2,1+40·2,8=0,6кВт·м
М6=100·6,2+100·6,2+100·7,2=1,9кВт·м
Сечение проводов на каждой группе.
S1=М1/С·ΔU=4,7/8,3·2,3=0,2мм² (3.75)
С=8,3 при однофазной линии U=220В и алюминиевой токоведущей жилы стр211 (л-5) ΔU аналогично, что и при расчетах животноводческого комплекса.
S2=6,7/8,3·2,3=0,3 мм²
S3=2,7/8,3·2,3=0,1 мм²
S4=5,3/8,3·2,3=0,2 мм²
S5=0,6/8,3·2,3=0,03 мм²
S6=1,9/8,3·2,3=0,1 мм²
На всех 6 группах принимаем провод АППВ (2·2,5) с сечением токоведущей жилы S=2,5мм², выбранный провод проверяем по условию допустимого нагрева.
Расчетные токи в группах
I1=Р1/U·cosφ=1,2·400/220·0,97=2,2А (3.76)
I2=400/220·0,97=1,8А
I3=1,2·400/220·0,97=2,2А
I4=1,2· (160) +300/220·0,97=2,3А
I5=1,2· (80) +80/220·0,97=0,8А
I6=300/220·0,97=1,4А
Наибольший расчетный ток вышел в 4 группе и составил I=2,3А, допустимая токовая нагрузка на двужильный провод сечением 2,5мм² Iдоп. =33А
Iдоп=33А>Iр=2,3
выбранный провод проходит по условию нагрева, а значит, окончательно принимаем именно его.
Для защиты осветительной сети от токов коротких замыканий, а также для распределения электроэнергии между осветительными приборами выбираем осветительный щит ЯОУ8501 укомплектованным вводным рубильником ПВЗ-60 и 6 однополюсными автоматами ВА1426-14 с Iн=32А
3.6 Расчет электропривода вакуумных насосов доильной установки
Для нормальной работы доильных установок в вакуумопроводе должен
поддерживаться вакуум 50000 Па (380 мм рт. ст). В предыдущих расчетах для доильной установки был выбран вакуум-насос марки УВУ-60/45 с подачей Q=60м³/ч и вакуумом р=10,8 Н/м²
Необходимая мощность электродвигателя для вакуум-насоса
Р=Q·р/1000·ηн·ηп=60·10,8/1000·0,25·0,72=3,7 кВт (3.23)
где, Q-подача вакуума насосом
р — давление вакуума
ηп-КПД передачи (ηп=0,72 стр. 207 (л-2)) (3.77)
ηн-КПД вакуум насоса (ηн=0,25 стр207 (л-2)) (3.76)
Для вакуум-насоса УВУ-60/45 выбираем электродвигатель серии RA112М4 с
Рн=4кВт n2=1430 об/мин η=85,5 КiIп=9 Кiп=2,2 Кimax=2,9
3.7 Расчет отопления и вентиляции
В воздушной среде производственных помещений, в которых находятся люди, животные, оборудование, продукты переработки всегда есть некоторое количество вредных примесей, а также происходит отклонение температуры от нормированных значений, что отрицательно влияет на состояние здоровья людей, продуктивность животных, долговечность электрооборудования. Вентиляционные установки применяют для поддержания в допустимых пределах температуры, влажности, запыленности и вредных газов в воздухе производственных, животноводческих и других помещений. Уравнение часового воздухообмена по удалению содержания углекислоты.
1,2·C+L·C1=L·C2 (3.78)
где, 1,2 — коэффициент учитывающий выделение углекислоты микроорганизмами в подстилке.
С — содержание СО2 в нужном воздухе, л/м³, для сельской местности С1=0,3л/м3, [л-1],
L-требуемое количество воздуха, подаваемое вентилятором, чтобы обеспечить в помещении допустимое содержание СО2 м³/ч,
С2 — допустимое содержание СО2 в воздухе внутри помещения, л/м³, принимаем по таблице 10.2, стр157, С2=2,5 л/м³, (л-2).
Определяем количество углекислого газа, выделяемого всеми животными.
С=С`·п=110·200=22000 л/ч. (3.79)
где, С` — количество СО2 выделяемого одним животным, л/ч, по таблице 10.1. принимаем С`=110л/ч [л-1],
п — количество поголовья животных, 200голов.
Требуемое количество воздуха подаваемого вентилятором.
L=1,2·С/ (С2-С1) =1,2·22000/ (2,5-0,3) =12000 м³/ч (3.80)
Расчетная кратность воздухообмена.
К=L/V=12000/4057=3 (3.81)
V-объем вентилируемого помещения, равняется 4057м³
L-требуемое количество воздуха, подаваемого вентилятором
Часовой воздухообмен по удалению излишней влаги.
Lи=1,1·W1/ (d2-d1) =1,1·28600/ (7,52-3,42) =5200 г/м³ (3.82)
где, W1-влага выделяемая животными внутри помещения
d2 — допустимое влагосодержание воздуха.
d1 — влагосодержание наружного воздуха
Влага выделяемая животными
W1=w·N=143·200=28600 г/ч (3.83)
где, w — влага выделяемая одним животным w=143 г/ч стр75 (л-1)
N-количество животных
Допустимое влагосодержание внутри помещения
d2=d2нас·φ2=9,4·0,8=7,52 г/м³ (3.84)
где, d2нас-влагосодержание насыщенного воздуха внутри помещения при оптимальной температуре +10ºС по табл.10.3 (л-2) d2нас=9,4 г/м³
φ-допустимая относительная влажность внутри помещения, по табл.10.2 (л-2) φ=0,8
Влагосодержание наружного воздуха.
d1=d1нас·φ=3,81·0,9=3,42 (3.85)
где, d1нас-влагосодержание насыщенного наружного воздуха
φ-относительная влажность наружного воздуха.
Т. к. сведений значений расчетной температуры и относительной влажности наружного воздуха нет то ориентировочно расчетную температуру наружного воздуха можно принять равной — 3ºС и при такой температуре d1нас=3,81 φ=0.9
Давление вентилятора.
Р=Рд+Рс=105,6+1154,9=1260,5 Па (3.86)
где, Рд и Рс — динамические и статические составляющие давления вентилятора.
Динамическая составляющая давления
Рд=ρ·V²/2=1,25·13²/2=105,6 кг/м³ (3.87)
где, ρ-плотность воздуха
V-скорость воздуха, м/с V=10…15м/с (л-1)
Определяем плотность воздуха.
ρ=ρ0/ (1+α·U) =1,29/ (1+0,003·10) =1,25кг/м³ (3.88)
где, ρ0-плотность воздуха при 0ºС ρ0=1,29 кг/м³ стр34 [л-1]
U-температура воздуха
α — коэффициент учитывающий относительное увеличение объема воздуха при нагревание его на один градус α=0,003 стр.35 [л-1]
Статическая составляющая давления.
Рс=l·h+Рм=66,8·1.8+1035,1=1154,9 Па (3.89)
где, Lh-потеря давления, затрачиваемое на преодоление трения частиц воздуха о стенки трубопровода.
l-длина трубопроводов, равная 66,6м
h-потери давления на 1 метр трубопровода, Па/м
Рм — потери давления затрачиваемое на преодоление местных сопротивлений.
Потери напора на 1 метре трубопровода.
h=64,8·V ·/d · (ρ/1,29) =64,8·13· /750 · (1,25/1,29) =1,8 Па/м (3.90)
где, V-скорость воздуха в трубопроводе, м/с
d-диаметр трубопровода
d=2·а·в/ (а+в) =2·1000·600/ (1000+600) =750 мм (3.91)
где, а и в стороны прямоугольного сечения трубопровода а=1000мм в=600мм (л-5). Потери напора в местных сопротивлениях.
Рм=Σξ·Рд=Σξ·ρ·U²/2=9,8·1,25·13²/2=1035 Па/м (3.92)    продолжение
--PAGE_BREAK--
где, ξ-коэффициент местного сопротивления, Σξ=9,8 стр.75 (л-2)
Вентилятор подбираем по их аэродинамическим характеристикам. По наибольшему значению L и расчетному значению Р.
С учетом равномерного распределения вентиляторов в коровнике выбираем вентилятор Ц4-70 с подачей L=6000 м³/ч, при давлении 630 Па.
Ц4-70 N5 n=1350 об/мин η=0,8
Определяем число вентиляторов.
n=L/Lв=12000/6000=2 (3.93)
где, Lв — подача воздуха одним вентилятором.
Принимаем 2 вентилятора один из которых будет располагаться в начале здания другой в конце здания.
Масса воздуха проходящего через вентилятор.
m1=ρ·S·V=1,29·0,6·13=10 кг/с (3.94)
где, ρ-плотность наружного воздуха, ρ=1,29кг/м³ стр45 (л-1)
S-площадь сечения трубопроводов S=0,6м² стр45 (л-2)
Полезная мощность вентилятора.
Рпол=m1·V²/2=10·13²/2=845Вт (3.95)
Мощность электродвигателя для вентилятора.
Р=Q·Р/1000·ηв·ηп=1,6·630/1000·0,8·0,95=1,3 кВт (3.96)
где, Q-подача вентилятора Q=1,6м³
Р — давление создаваемое вентилятором Р=630Па
ηв-КПД вентилятора ηв=0,8
ηп-КПД передачи ηп=0,95, для ременной передачи стр80 (л-1)
Расчетная мощность двигателя для вентилятора.
Рр=Кз·Р=1,15·1,3=1,5 кВт (3.97)
где, Кз — коэффициент запаса Кз=1,15 стр80 (л-1)
Для вентилятора выбираем электродвигатель серии RA100L4 с Рн=1,5 кВт Iн=4А
Расчет калорифера.
Определяем мощность калорифера.
Рк=Qк/860·ηк=16191/860·0,9=20,9 кВт (3.98)
где, Q-требуемая калорифера, ккал/ч
ηк-КПД установки ηк=0,9
Теплопередачу установки находят из уравнения теплового баланса помещения.
Qк+Qп=Qо+Qв (3.99)
отсюда
Qк=Qо+Qв-Qп=114744+26047-124600=16191 ккал/ч
где, Qо — теплопотери через ограждения, ккал/ч
Qв-тепло уносимое с вентилируемым воздухом
Теплопотери через ограждения
Qо=ΣК·F· (Vп·Qм) =8·2049· (10-3) =114744 ккал/ч (3.100)
где, К-коэффициент теплопередачи ограждения, ккал/ч К=8 (л-2)
F-площадь ограждений, м² F=2049 (л-3)
Uп — температура воздуха, подведенная в помещение, Uп=+10ºС
Uн — расчетная температура наружного воздуха, Uнм=-3ºС
Тепло, уносимое с вентилируемым воздухом.
Qв=0,237·ν·V (Qп-Uм) =0,239·1,29·12171· (10-3) =26047 ккал/ч (3.101)
где, ν-плотность воздуха, принимаемая равной 1,29 кг/м³ стр.56 (л-1)
V — обьем обогащаемого воздуха за 1 час
V=Vп·Коб=4057·3=12171м³ (3.102)
где, Vп — объем помещения равный 4057м³
Коб — часовая кратность воздухообмена
Тепловыделение в помещение
Qп=g·N=623·200=124600 ккал/ч (3.103)
где, g-количество тепла выделяемого одним животным за 1 час, для коров весом до 500 кг g=623 ккал/ч стр89 (л-1)
N-число коров.
Считаем, что в каждую фазу включены по два нагревательных элемента.
Определяем мощность одного нагревательного элемента.
Рэ=Рк/μ·n=10,4/3·2=1,6 кВт (3.104)
где, n — число нагревателей.
μ — число фаз.
Рабочий ток нагревательного элемента
Iраб=Рэ/Uф=1,6/0,22=7,2 А (3.105)
где, Uф — фазное напряжение.
Принимаем 6 ТЭН мощностью 2 кВт: ТЭН-15/0,5 Т220
Принимаем 2 калорифера СФОЦ-15/0,5Т один из которых устанавливаем в начале комплекса другой в конце
Таблица 3.7. Технические данные калорифера.
Тип
калорифера
Мощность
калорифера, кВт
Число секций
Число
нагревателей
СФОЦ-15/0,5Т
15
2
6
3.8 Выбор (описание) холодного и горячего водоснабжения
3.8.1 Выбор оборудования
При автоматизации водоснабжения значительно сокращаются затраты на подачу воды потребителям и улучшаются условия труда обслуживающего персонала. Проанализируем водоподъемные установки и выберем наиболее подходящую.
Водоподъемная установка ВУ-5-3ОА.
Предназначена для водоснабжения животноводческих ферм и т.д. с учетом потреблением воды 75…. .90 м3.
В качестве водоисточников могут использоваться шахтные колодцы, открытые и закрытые водоисточники, скважины диаметром не менее 150 мм и динамическим уровнем воды не более 5 м.
Основные узлы: вихревой консольный насос ВК-2/26, гидроаккумулятор, система управления. Станция управления совместно с реле давления обеспечивает работу установки в автоматическом режиме, защиту от токов короткого замыкания, технологических перегрузок и перегрузок, вызванных потерей напряжения в одной из фаз питающей сети, ручное управление работой установки.
Установка снабжена предохранительным клапаном, предназначенным для сброса воды из трубопровода при повышении давления в гидроаккумуляторе выше 0,45 мПа. Водоподъемная установка ВУ-5-ЗОА имеет степень снижения затрат труда 33,3 и эксплуатационные издержки 27,17%.
Водоподъемная установка ВУ-10-ЗОА.
назначение аналогично ВУ-5-ЗОА и водоисточник тоже.
Основные узлы: два вихревых консольных насоса ВК-2/26, все остальные узлы такие же, как и у ВУ-5-ЗОА. Степень снижения затрат труда 27,3 и эксплуатационные издержки 17,47%.
Водоподъемная установка ВУ-16-28.
Предназначена для водоснабжения животноводческих ферм, жилых зданий, учреждений, суточная потребность которых не превышает 190 м3.
Требования к источникам и скважин остаются стандартными.
Основные узлы: центробежный консольный насос 2К-20/30, два гидроаккумулятора вместимостью 0,3 м3, станция управления манометр.
Комплектация станции стандартная, в том числе и защита.
Предохранительный клапан срабатывает также выше 0,45 мПа.
Водоподъемная установка ВУ-10-80.
Назначение аналогично, с суточным потреблением до 150 м3. Водоисточник аналогичен, динамический уровень воды до 60 м.
Основные узлы: электронасос ЭЦВ-10-80, гидроаккумулятор, станция управления. Работа станции и комплектация такая же.
Установка снабжена предохранительным клапаном, срабатывает при повышении давления в гидроаккумуляторе выше 0,45 мПа.
Достоинства конструкции ВУ-10-80 это простота обслуживания, малые габаритные размеры, хорошая монтажная пригодность, надежность работы автоматики, наличие в гидроаккумуляторе разделяющей диафрагмы между водой и воздушной подушкой, что препятствует насыщению воды воздухом. Также можно отнести сюда и достоинство это стоимость подачи воды этими установками в 1,5…2 раза меньше, чем водонапорными башнями.
К недостаткам можно отнести лишь то, что пневматические безбашенные водоподъемные установки могут применяться только при бесперебойном электроснабжении, т.к запас воды в пневмоаккумуляторе мал. (Белянчинков; Смирнов)
Водоподъемник винтовой 1ВЭ-20/3.
Предназначен для водоснабжения животноводческих ферм, пастбищ из шахтных колодцев и скважин с обсадными трубами диаметром не менее 6″ уровнем воды в водоисточнике не менее 700 мм.
Основные узлы: насос, трансмиссия, водоподъемные трубы, электродвигатель, колонка, сливной патрубок.
Одновинтовой насос объемного действия состоит из хромированного однозаходного левого винта с эксцентриситетом 10,8 и шагом 72 мм, корпуса и приемника, навинчивающегося на нижний конец корпуса. В приемнике расположен клапан, удерживающий воду в трубах, находящихся ниже сливного устройства.    продолжение
--PAGE_BREAK--
Верхняя крышка насоса соединяет его с колонной водоподъемных труб.
Трансмиссия водоподъемника выполнена из валов длиной 1,5 и 1 м, резиновых подшипников и соединительных муфт.
Колонка, предназначена для крепления насоса с водоподъемными трубами и трансмиссией на раме и передачи крутящего момента от электродвигателя, состоит из корпуса, шкива, трубчатого и ведущего валов, мало удерживающие трубки.
Привод органов водоподъемника от асинхронного короткозамкнутого электродвигателя.
Обслуживает рабочий.
Башни водонапорные стальные БР-15У; БР-25У и БР-50У
Предназначены для применения в системах сельскохозяйственного водоснабжения, а также в водопроводах населенных пунктах и небольших предприятиях.
Каждая водонапорная башня сварена в виде ствола и бака, которые в период эксплуатации постоянно заполнены водой.
Башни не отапливаемые, снабжены на внутренних стенках баков скобами, удерживающими образующуюся зимой ледяную малотеплопроводную рубашку, являющуюся теплоизоляцией. Используются также эффект выделения скрытой теплоты льдообразования, вследствие чего темп намерзания слоя льда замедлен и к концу зимы не превышает 300мм. Башни рассчитаны на температуру воздуха до — 400С.
При использовании станции автоматического управления типа ПЭТ и ШЭТ в баке башни устанавливают датчики верхнего и нижнего уровня воды.
Расстояние между ними образует высоту регулирующего объемом бака. Внутри бака имеется водоподъемная труба, которая выведена из башни в
нижней части ствола. Здесь же установлены смотровые люки и напорный трубопровод от водоподъемника.
Башни устанавливают на фундаменте, бетонированную площадку. Напорный и водозаборный трубопроводы вместе прохода их к башне утепляют.
К недостаткам бесшатровых башен можно отнести образование большого количества заледенения на стенках бака и ее сложность в установке, что приводит к большим затратам, также могут отказать датчики уровня воды.
Все проанализированные водоподъемные установки и их технические характеристики сводим в таблицу.
Таблица 3.8. Технические характеристики водоподъемных установок.
показатели
Типы водоподъемных установок


ВУ-5-30А
ВУ-10-30А
ВУ-16-28
ВУ-10-80
1ВЭ-20/3
Тип
С т а ц и о н а р н ы й
Подача, м3/ч
7
14
22,5
10±0,4
5…6
Напор, мПа
0,29
0,29
28
80


Высота всасывания, м
5
5
5
5
До 30
Гидроаккумулятор
Вместимость, м3


0,3


0,3


2×0,3


0,3




Высота, мм
1100
1100
1100
1100


Диаметр, мм
915
915
915
915


Рабочее давление, мПа
min
max


,14
0,39


,14
0,39


,14
0,39


0,14
0,39




Установленная мощность, кВт
3
6
3
3
1
КПД,%
22
20
43
41


3.8.2 Определение мощности установки
Для расчета расхода воды учитывают вид, число, животных и индивидуальные нормы водопотребления. Кроме того, находят количество воды, требуемое для производственно-технических нужд и пожарной безопасности животноводческой фермы.
Норма водопотребления называется количество воды, расходуемое одним потребителем в единицу времени (сутки).
В нормы водопотребления для животных включает расходы воды на поение, мойку помещений, молочной посуды, приготовление кормов, охлаждение молока и др. Расходы воды на фермах очень неравномерен как в течение года так и в течение суток, поэтому выбираем среднесуточные нормы водопотребления за год. Белянчиков. Смирнов
Окончательно принимаем норму водопотребления на одно животное, дм3/сут; при механизированной дойке и при наличие внутреннего водопровода равное 120 дм3/сут. Белянчиков. Смирнов
Определяем среднесуточный расход воды (дм3/сут) на ферме находим
QСР. СУТ=N. q+Qпож. (3.106)    продолжение
--PAGE_BREAK--
Где: N-число животных 400;
q-среднесуточные нормы водопотребления 120 дм3/сут или 0,12м3;
Qпож. — расход воды на пожаротушение, м3
Согласно СНиП от 2.04.02года и СНиП 2.10 03-84* пункт 2.11 пункт 2.17 пункт 2.24 [таблица 7, " Наружные сети водоснабжения "] 10л/сек для категории Д.
Qпож. = (10.3600) /1000.2=72м3
Qср. сут. =400.0,12+72=120м3
Для расчета водопроводных сооружений необходимо знать максимальный суточный Qmax сут, максимальный часовой Qmax час и секундный qС расход воды. Максимальный суточный расход воды
Qmax сут=К сут. Qср. сут (3.107)
Где: К сут — коэффициент суточной неравномерности (1,3…. .1,5) принимаем 1,4
Qmax сут=1,4.120=168м3
Средне часовой расход воды
Qср. час= Qmax сут. /24 (3.108)
Qср. час=168/24=7м3
Максимальный часовой расход воды
Qmax час=Кч. Qср. час
Где: Кч — коэффициент часовой неравномерности (Кч=2…4)
Значение коэффициента неравномерности уточняют в каждом отдельном случае в зависимости от вида животных, способа их содержания и климатических условий.
Qmax час=3.7=21м3
Секундный расход воды
qС= Qmax час/3600 (3.109)
qС=21/3600=0,0058м3
Расчет водонагревателя.
Требуемая тепловая мощность нагревателя вычисляют по формуле:
Ртр = mc (t2 — t1),
где m — масса нагреваемого материала, кг;
с — удельная теплоемкость материала, кДж/кг * ºС;
t2, t1 — начальная и конечная температура нагрева, ºС.
Ртр= 50000 * 4,18 (37 — 10) = 19 кВт
Установленная мощность:
Руст = kз * Ртр,
где kз — коэффициент запаса учитывающий необходимость увеличения мощности из-за старения нагревателей (принимается 1,1-1,3) [2].
Руст= 1,15 * 19 = 22 кВт.
Диапазон регулирования электродных водогрейных котлов от 10% до 100% при номинальной мощности 100 кВт, для первоначального нагрева выберем водогрейный котел ЭПЗ — 25/0,4 с номинальной мощностью 25 кВт.
При известной мощности рассчитаем конструктивные размеры плоского электрода водонагревателя ЭПЗ-25/0,4.
Определим расстояние между электродами:
l=U/Eдоп,
где U — фазное напряжение;
Eдоп — допустимая напряженность поля между электродами принимают
15 * 10³ В/м [5].
l=380/15 * 10³ = 0,025м.
Определим расчетное сопротивление водонагревателя:
R= U²/Р∆,
где Р∆ — удельное сопротивление.
Р∆= Р/n,
где n — количество электродов.
Р∆= 25/6 = 4,1кВт.
Определяем удельное сопротивление воды при заданной температуре:
/>/>
ρ — удельное сопротивление воды при t= 90ºС; r=70 Ом*м.
Определим площадь сечения электродов:
/>
Нагревательным элементом исходного материала является труба, которая находится внутри резервуара, теплоносителем является вода, нагревающаяся от водонагревателя ЭПЗ-25/0,4
Площадь поверхности нагрева трубы определяем по формуле [6] ;
где Ртр — требуемая мощность теплоты на нагрев материала, Вт;
1,2 — коэффициент, учитывающий потери теплоты;
k-коэффициент теплопередачи от теплоносителя к воде, Вт/м2*°С;
tп и tо — начальная и конечная температура подающего материала, °С;
trи tх — расчетные температуры подающей и обратной воды, °С.
/>
3.9 Расчет силовой сети молочного блока
Таблица 3.9. Выбранное технологическое оборудование молочного блока.
Наименование
машины
Тип
токоприемника
количество
Рном
кВт
Iном
А
КjIп
АДМ-8
RA112М4
RA90S4
2
2
4
1,1
9
3
6,5
5,5
МХУ-8С
4АХ100L2У3
4АХ71А4У3
4АХ71В2У3
2
2
2
4,5
0,6
1,7
10
2
3
7,5
5,2
5,5
ТО2
4А100L4У3
4АА63В4У3
2
2
4
0,37
9
1
6
3,7
Всего




16,27

    продолжение
--PAGE_BREAK----PAGE_BREAK--
Электрокалорифер --PAGE_BREAK----PAGE_BREAK--
10
0,8
Вентпункт
4,7
0,8
насосная
16,5
1
Резервная артскважина
2,7
0,3
Родильное отделение
50
0,9
Доильное отделение
35
0,8
Водоподъёмная установка
3
1
Определяем установленную мощность потребителей с учетом коэффициента одновременности в дневной максимум.
Р=Руст·Ко·Кд (5.1)
где, Руст — установленная мощность потребителя, кВт
Ко — коэффициент одновременности
Кд — коэффициент
Мощность гаража
Рг=15·0,6·0,8=7,2 кВт
Мощность вентсанпропускника
Рв=10·0,8·0,8=6,4 кВт
Мощность ветпункта
Рве=4,7·0,8·0,8=3 кВт
Мощность артскважины
Ра=16,5·1·0,8=13,2 кВт
Мощность резервной артскважины
Рра=2,7·0,3·0,8=0,6 кВт
Мощность родильного отделения
Рр=50·0,9·0,8=36 кВт
Мощность животноводческого комплекса N1
Рж=52,5·0,7·0.8=37 кВт
Мощность животноводческого комплекса N2
Рж2=52,5·0,7·0,8=37 кВт
Мощность молочного блока
Рм=35·0,8·0,8=22,4 кВт
Мощность котельной.
Рк=30·0,9·0,8=21,6 кВт
Суммарная нагрузка в дневной максимум.
Рд=ΣР=7,2+6,4+3+13,2+0,6+36+37+37+22,4+21,6=184 кВт (5.2)
где, ΣР — сумма мощностей
Полная мощность в дневной максимум
S=Рд/cosφ=184/0,8=230 кВа (5.3)
Определяем активную мощность потребителей в вечерний максимум.
Рв=Руст·Ко·Кв (5.4)
где, Кв — коэффициент вечернего максимума Кв=0,7
Уличное освещение
Ру=12·1·0,7=8,4 кВт
Мощность артскважины
Ра=16,5·1·0,7=11,5 кВт
Мощность резервной артскважины
Рра=2,7·0,3·0,8=0,6 кВт
Мощность родильного отделения
Рр=50·0,9·0,7=31,5 кВт
Мощность животноводческого комплекса
Рж2=52,5·0,7·0,7=32,4 кВт
Мощность молочного блока
Рм=35·0,8·0,7=19,6 кВт
Мощность котельной
Рк=30·0,9·0,7=18,9 кВт
Суммарная нагрузка в вечерний максимум.
Рв=8,4+11,5+0,6+31,5+32,4+32,4+19,6+18,9=145,3 кВт
Полная вечерняя нагрузка.
Sв=Рв/cosφ=145,3/0,8=181,6 кВа (5.5)
Силовой трансформатор выбираем с учетом максимальной нагрузки потребителя, максимальная нагрузка вошла в дневной максимум, и составила 230 кВа Рд=230 кВа>Рв=181,6 кВа, поэтому принимаем силовой трансформатор с учетом дневного максимума.
Трансформатор выбираем согласно соотношению.
Sн≥Sрасч (5.6)
где, Sн — номинальная мощность трансформатора, кВа
Sрасч — расчетная мощность, кВа
Выбираем три силовые трансформаторы ТМ-630 с Sн=630 кВа
Sн= (2х630) кВа≥Sрасч=1260 кВа
условие выполняется, значит, трансформатор выбран верно.
Таблица 5.2. Технические характеристики силового трансформатора.


Тип




Sн,
кВа
Напряжение, кВ
Схема и
группа
соединения
обмоток
Потери, Вт


Uк. з
% от



Iх. х.
% от







ВН


НН


ХХ
при

КЗ
при





ТМ-630
2х630
10
0,4
0,23
У/Ун-0
730
2650
4,5
3,85
Расчет линии 10 кВ
Расчет линии 0,4 кВ
Расчет производим методом экономических интервалов, начиная расчет с самого удаленного участка.
Расчетная схема ВЛ-0,4 кВ
Расчет производится по следующим формулам.
Мощность на участке
Руч=ΣР·Ко (5.14)
где, ΣР — сумма мощностей участка    продолжение
--PAGE_BREAK--
Ко — коэффициент одновременности зависящий от числа потребителей.
Полная мощность участка
Sуч=Руч/cosφ (5.15)
где, cosφ — коэффициент мощности
Эквивалентная мощность.
Sэкв=Sуч·Кд (5.16)
где, Кд — коэффициент динамики, Кд=0,7 стр.56 (л-7)
Расчет мощностей на участках. От подстанции отходит 3 питающих линий 0,4 кВ, расчет 1 отходящей линии.
Участок 1-2
Р1-2=Р2=4,7кВт
Sуч=4,7/0,8=5,8 кВа
Sэкв=5,8·0,7=4,1 кВа
Участок Р10-1
Руч= (Р1+Р2) ·Ко= (10+4,7) ·0,9=13,2 кВт
Sуч=13,2/0,8=16,5 кВа
Sэкв=16,5·0,7=11,5 кВа
Участок 4-7
Р4-7=Р7=30 кВт
Sуч=30/0,8=37,5 кВа
Sэкв=37,5·0,7=26,2 кВа
Участок 5-6
Р5-6=Р6=2,7 кВт
Sуч=2,7/0,8=3,3 кВа
Sэкв=3,3·0,7=2,3 кВа
Участок 4-5
Р4-5= (Р5-6+Р6) ·Ко= (2,7+16,5) ·0,9=17,2 кВт
Sуч=17,2/0,8=21,6 кВа
Sэкв=21,6·0,7=15,1 кВа
Участок 3-4
Р3-4= (Р4-5+Р4-7) ·Ко= (17,2+30) ·0,9=42,4 кВт
Sуч=42,4/0,8=53,1 кВа
Sэкв=53,1·0,7=37,1 кВа
Участок 0-3
Р0-3= (Р3+Р3-4) ·Ко= (15+42,4) ·0,9=51,6 кВт
Sуч=51,6/0,8=64,5 кВа
Sэкв=64,5·0,7=45,2 кВа
Участок А-0
РА-0= (Р0-1+Р0-3) ·Ко= (13,2+51,6) ·0,9=58,3 кВт
Sуч=58,3/0,8=72,9 кВа
Sэкв=72,9·0,7=51 кВа
Провод выбирается по эквивалентной мощности с учетом климатического района, выбираем провод А-35 который может выдерживать нагрузку до 1035 кВа и ΔUтабл=0,876, наибольшая эквивалентная мощность вышла на участке А-0 и составила 51 кВа
Sпров=1035кВа≥Sэкв=51кВа
Согласно этому условию выбранный провод выдерживает расчетную нагрузку и окончательно принимаем именно его.
Проверка выбранного провода на потери напряжения, для этого находим потери напряжения на всех участках.
Uуч=Uтабл·Sуч·Lуч·10 (5.17)
где, Uтабл — табличные потери напряжения выбираются в зависимости от марки провода (Uтабл=0,876 стр.36 (л-7)
Lуч — длина участка, м
U1-2=0,876·5,8·140·10=0,6%
U0-1=0,876·16,5·85·10=1,2%
U4-7=0,876·37,5·35·10=1,1%
U5-6=0,876·3,3·20·10=0,02%
U4-5=0,876·21,6·15·10=0,2%
U3-4=0,876·53,1·45·10=2%
U0-3=0,876·64,5·40·10=2,2%
UА-0=0,876·72,9·3·10=0,19%
Производим суммирование потерь напряжения на участке А-2 и А-7
UА-2=U1-2+U0-1+UА-0=0,6+1,2+0, 19=1,9% (5.18)
UА-7=UА-0+U4-7+U5-6+U4-5+U3-4+U0-3=0, 19+1,1+0,02+0,2+2+2,2=5,7%
Согласно ПУЭ допустимая потеря напряжения на ВЛ-0,4кВ составляет 6% наибольшая потеря напряжения вышла на участке А-7 и составила 5,7% что удовлетворяет требованию ПУЭ и поэтому окончательно принимаем на всех участках провод марки А-35
Расчет 2 отходящей линии.
2 линия питает молочную и ферму на 200 голов.
Участок 8-9
Р8-9=Р9=35 кВт
S8-9=35/0,8=43,7 кВа
Sэкв=43,7·0,7=30,6 кВа
Участок А-8
РА-8= (Р8-9+Р8) ·Ко= (35+66,2) ·0,9=91,8 кВт
SА-8=91,8/0,8=113,8 кВа
Sэкв=113,8·0,7=79,6 кВа
Для второй отходящей линии принимаем провод А-35
Sпров=1035кВа>Sэкв=79,6кВа
условие выполняется, значит, провод выбран верно.
Проверка выбранного провода на потери напряжения.
U8-9=0,876·43,7·35·10=1,3%
UА-8=0,876·113,8·45·10=4,4%
Суммарная потеря напряжения на участках
UА-9=U8-9+UА-8=1,3+4,4=5,7%
Полученный процент потерь удовлетворяет требованиям ПУЭ и выбранный ранее провод принимаем окончательно.
Расчет 3 отходящей линии.
Третья линия питает родильное отделение и 2 животноводческий комплекс.
Участок 10-11
Р10-11=Р11=50 кВт
Sуч=50/0,8=62,5 кВа
Sэкв=62,5·0,7=43,7 кВа
Участок А-10
РА-10= (Р10-11+Р10) ·Ко= (50+66,2) ·0,9=104,5 кВт
Sуч=104,5/0,8=130,7 кВа
Sэкв=130,7·0.7=91,5 кВа
Т.к. протяженность линии и расчетная мощность вышла большая то принимаем провод марки А-70 с Uтабл=0,387
Потери напряжения на участках.
U10-11=0,387·62,5·30·10=0,72%
UА-10=0,387·130,7·90=4,5%
Потери напряжения на всей линии.
UА-11=U10-11+UА-10=0,72+4,5=5,2%
Отклонение напряжения находится в допустимых пределах значит окончательно принимаем выбранный ранее провод.
Расчет токов коротких замыканий.
Расчет производим методом именованных величин, этим методом пользуются при расчетах токов коротких замыканий (к. з) с одной ступенью напряжения, а также в сетях напряжением 380/220 В. В последнем случае учитывают: активное и реактивное сопротивление элементов схемы, сопротивление контактных поверхностей коммутационных аппаратов, сопротивление основных элементов сети — силовых трансформаторов, линий электропередачи. Напряжение, подведенное к силовому трансформатору, считают неизменным и равным номинальному.
Сопротивление силового трансформатора 10/0,4 кВ
Zт=Uк. з. ·U²ном/ (100·Sном. т) =4,5·0,4²·10³/ (100·250) =29 Ом (5.19)
где, Uк. з. — напряжение короткого замыкания, в предыдущих расчетах был выбран силовой трансформатор с Uк. з=4,5%
Uном — номинальное напряжение с низкой стороны, кВ
Sном — номинальная мощность силового трансформатора, кВа
Трехфазный ток к. з. в точке К1
Iк1=Uном/ (√3· (Zт+Zа)) =400/ (1,73· (29+15) =4,71 кА (5.20)
где, Zа — сопротивление контактных поверхностей коммутационных аппаратов принимают равным 15 Ом стр.34 (л-7)
Находим сопротивление первой отходящей линии ВЛ N1
Индуктивное сопротивление линии
Хл=Хо·l=0,35·380=133 Ом (5.22)
где, Хо — индуктивное сопротивление провода, для провода марки А-35 Хо=0,35 Ом/м
l — длина линии, м
Активное сопротивление линии
Rл=Rо·l=0,85·380=323 Ом (5.23)
где, Rо — активное сопротивление провода, для провода марки А-35 Rо=0,59 Ом/м
Результирующее сопротивление
Zрез=√ (Хл) ²+ (Rл) ²=√ (133) ²+ (323) ²=349 Ом (5.24)
Сопротивление второй отходящей линии, длина линии l=80м
Индуктивное сопротивление линии
Хл=0,35·80=28 Ом
Активное сопротивление линии
Rл=0,85·80=68 Ом
Результирующее сопротивление.
Zрез=√ (28) ²+ (68) ²=73,5 Ом
Сопротивление третьей отходящей линии, длина линии l=120м индуктивное и активное сопротивления выбранного провода Хо=0,35 Ом/м Rо=0,59 Ом/м стр 40 (л-7)
Индуктивное сопротивление линии.
Хл=0,35·120=42 Ом
Активное сопротивление линии
Rл=0,59·120=70,8 Ом
Результирующее сопротивление
Zрез=√ (42) ²+ (70,8) ²=82,3 Ом
Определяем токи коротких замыканий в точке К1
Трехфазный ток к. з. в точке К1
I³к2=Uном/ (√3· (Zт+Zл)) =400/ (1,73· (29+349)) =0,61 кА (5.25)
Двухфазный ток к. з.
I²к2=0,87·I³к2=0,87·0,61=0,53 кА (5.26)
Однофазный ток к. з.
Iк2=Uф/√ [ (2· (Rл) ²) + (2· (Хл) ²)] +1/3Zтр. =230/√ [ (2· (323) ²) + (2· (133) ²)] +104=0,38кА
где, Zтр. — сопротивление трансформатора приведенное к напряжению 400 В при однофазном к. з.    продолжение
--PAGE_BREAK--
Расчет токов коротких замыканий в точке К3. Трехфазный ток к. з.
I³к3=400/ (1,73· (29+73,5)) =2,2 кА
Двухфазный ток к. з.
I²к3=0,87·2,2=1,9 кА
Однофазный ток короткого замыкания
Iк3=230/√ [ (2· (68) ²) + (2· (28) ²)] +104=1,1 кА
Расчет токов коротких замыканий в точке К4
Трехфазный ток к. з.
I³к. з. =400/ (1,73· (29+82,3)) =2 кА
Двухфазный ток к. з.
I²к. з. =0,87·2=1,7 кА
Однофазный ток к. з.
Iк4=230/√ [ (2· (70,8) ²) + (2· (42) ²)] +104=1 кА
Выбор оборудования на питающую подстанцию.
Выбор автоматических выключателей на отходящих линиях.
Автоматические выключатели предназначены для автоматического отключения электрических цепей при коротких замыканий или ненормальных режимах работы, а также для нечастых оперативных включений и отключений. Автоматические выключатели выбираются по следующим условиям.
Uн. а≥Uн. у.
Iн. а≥Iн. у. (5.28)
Iн. р. ≥Кн. т. ·Iраб
Iпред. отк. ≥Iк. з.
где, Uн. а. — номинальное напряжение автомата
Uн. у. — номинальное напряжение установки
Iн. а. — номинальный ток автомата
Iн. у. — номинальный ток установки
Iраб — номинальный или рабочий ток установки.
Кн. т. — коэффициент надежности расцепителя.
Iпред. окл. — максимальный ток короткого замыкания который автомат может отключить без повреждения контактной системы
Iк. з. — максимально возможный ток короткого замыкания в месте установки автомата.
Выбор автомата для первой отходящей линии. Рабочий ток линии
Iраб=S/√3·Uн=65,2/1,73·0.4=94,4 А (5.29)
где, S — полная мощность первой линии, из предыдущих расчетов Sл=65,2 кВа
Определяем рабочий ток с учетом коэффициента теплового расцепителя
Кн. т. ·Iраб=1,1·94,4=103,8 (5.30)
Принимаем для первой питающей линии автомат серии А3710Б с Iн=160 А Iн. р. =120 А и Iпред. отк=32 кА
Uн. а. =440В≥Uн. у. =380В
Iн. а. =160А≥Iраб=94,4А (5.31)
Iпред. откл=32А≥Iк. з. =0,61кА
Максимальный ток короткого замыкания взят из предыдущих расчетах.
Все условия выполняются, значит, автомат выбран верно.
Выбор автомата на второй отходящей линии.
Рабочий ток линии.
Iраб=Sл/√3·Uн=92,8/1,73·0,4=134,6 А (5.32)
Расчетный ток теплового расцепителя
Кн. р. ·Iраб=1,1·134,6=148,2 А (5.33)
Для второй линии принимаем автомат серии А3134 с Iн=200А Iн. р. =150А и Iпред. отк. =38А
Выбор автомата на второй отходящей линии.
Рабочий ток линии
Iраб=114,1/1,73·0,4=165,3 А (5.34)
Расчетный ток теплового расцепителя.
Кн. р. ·Iраб=1,1·165.3=181,8 (5.35)
Для третьей линии принимаем автомат серии А3134 с Iн=200А Iн. р. =200 А и Iпред. окл=38 А
Таблица 5.3 Технические данные выбранных автоматических выключателей.
Тип
выключателя
Номинальный
Ток выключателя, А
Номинальный
ток расцепителя. А
Предельный
ток отключения
при напряжении
380В, А
А3710Б
160
120
32
А3134
200
150
38
А3134
200
200
38
Выбор трансформатора тока.
Выбор трансформатора тока сводится к сравнению тока в первичной цепи к току в форсированном режиме.
Номинальный первичный ток.
Iн1=Sн. т. /√3·Uн=250/1,73·0,4=362,3 А (5.31)
где, Sн. т. — номинальная мощность выбранного трансформатора
Uн — номинальное напряжение с низкой стороны.
Ток в цепи в форсированном режиме.
Iраб. фор. =1,2·362,3=434,7 А (5.32)
Выбираем трансформатор тока серии ТК-20 у которого Uном=660В Iном=400А стр 112 (л-6)
I1=500А≥Iраб. фор. =434,7А (5.33)
У выбранного трансформатора тока выполняется условие по первичному току, значит, окончательно принимаем именно его.
Выбор рубильника.
Рубильник предназначен для нечастых включений и отключений вручную электроустановок до 660В. Выбор рубильника сводится к сравнению рабочего тока электроустановки к номинальному току на которое расчитана его контактная система. Из предыдущих расчетах Iраб=362,3А
Принимаем рубильник серии Р34 с Iн=400 А стр.112 (л-7)
Iн. руб=400А≥Iраб=362,3А (5.34)
Условие выполняется, значит, рубильник выбран верно.
Выбор оборудования с высокой стороны.
Выбор предохранителя с высокой стороны.
Высоковольтные предохранители в схемах электроснабжения потребителей применяют в основном для защиты силовых трансформаторов от токов коротких замыканий.
Ток номинальный трансформатора с высокой стороны.
Iн. тр. =Sн. тр. /√3·Uн=250/1,73·10=14,4 А (5.35)
где, Sн. тр. — номинальная мощность силового трансформатора
Uн — номинальное напряжение с высокой стороны
По номинальному току трансформатора выбираем плавкую вставку, обеспечивающую отстройку от бросков намагничивающего тока трансформатора.
Iв= (2…3) Iн. тр. =2,5·14,4=36 А (5.36)
Выбираем предохранитель ПК-10/40 с плавкой вставкой на 40 А
Выбор разъединителя
Разъединитель предназначен для включения и отключения электрических цепей под напряжением но без нагрузки а также он создает видимый разрыв. Выбор разъединителя производится по следующим условиям.
Uн. р. ≥Uн. у (5.37)
Iн. р. ≥Iраб
где, Uн. р. — номинальное напряжение разъединителя
Uн. у — номинальное напряжение установки
Iн. р. — ток номинальный разъединителя
Iраб — максимальный рабочий ток.
Из предыдущих расчетах Iраб=13,2 А, номинальное напряжение с высокой стороны Uн. у. =10 кВ
Принимаем разъединитель РЛН-10/200 с Iн. р. =200А и Uн. р. =10 кВ
Проверка выбранного разъединителя по условиям.
Uн. р. =10кВ≥Uн. у. =10кВ
Iн. р. =200А≥Iраб=13,2А
Все условия выполняются, значит, разъединитель выбран верно.
Таблица 5.4 Данные разъединителя заносим в таблицу.
Тип
разъединителя
Номинальный ток
разъединителя, А
Амплитуда
предельного сквозного
тока короткого замыкания, кА


Масса, кг
РЛН-10/200
200
15    продолжение
--PAGE_BREAK----PAGE_BREAK--
21
2004
233
1
15
10,8
15
6.2 Защитные меры в электроустановках
Проектом предусмотрено, что все щиты: силовые, управления и осветительные размещены в специально отведенном месте. Для защиты людей от случайных прикосновений в момент включения электроустановок вся пускозащитная аппаратура применяется закрытого типа. Силовые шкафы запираются на замок.
Электрическая изоляция токоведущих частей электроустановок является важным фактором безопасности людей, поэтому периодически проводится контроль состояния изоляции.
На ферме применяется переносной электроинструмент и переносной источник освещения — светильник. Учитывая, что помещения фермы с повышенной опасностью поражения электрическим током, при использовании переносного электрического инструмента предусмотрено пользования изолирующими защитными средствами (диэлектрический коврик, калоши и перчатки). Питание переносного электроинструмента осуществляется через гибкий кабель.
Инструменты подключаются к сети через штепсельную розетку с заземляющим контактом (штырьком). Устройство розетки имеет конструкцию исключающую ошибочное включение заземляющего контакта в гнездо имеющее напряжение.
Предусмотрено не реже одного раза в месяц проверка мегомметром изоляцию ручного электроинструмента, а также проверка отсутствия обрыва заземляющей жилы. Линия 0,4 кВ питающая ферму выполняется проводом одинакового сечения. В трехфазных четырехпроходных сетях до 1000В с глухозаземленной нейтралью применяется зануление с повторным заземлением.
6.3 Безопасность жизнедеятельности в чрезвычайных ситуациях
Атмосферное электричество проявляется в виде разрядов молний. Прямой удар молнии в здание может поражать не только людей и животных, но и вызвать пожары и взрывы, разрушение каменных и бетонных сооружений, расщеплять деревянные опоры воздушных линий и повреждать изоляцию.
Согласно статьи 14 федерального закона все организации обязаны:
а) планировать и осуществлять необходимые меры в области защиты работников организаций и подведомственных объектов производственного и социального назначения от чрезвычайных ситуаций;
б) планировать и проводить мероприятия по повышению устойчивости функционирования организаций и обеспечиванию жизнедеятельности работников в чрезвычайных ситуациях;
в) обеспечить создание, подготовку и поддержание в готовности к применению сил и средств по предупреждению и ликвидации чрезвычайных ситуаций, обучение работников организации способам защиты и действиям, в чрезвычайных ситуациях в составе невоенизированных формирований;
г) создавать системы оповещения;
д) обеспечивать организацию и проведение спасательных и других неотложных работ;
е) создавать резервы финансовых и материальных ресурсов для ликвидации чрезвычайных ситуациях;
ЗАО " Агрофирма Луговская" распложено в районе реки Тура, при весеннем таянии снега часто наблюдается затопление пастбищ и полей, а также территории населенного пункта. Для этого в районе затопляемых мест возведятсмя дамбы, проводятся противопаводковые мероприятия.
7. Технико-экономические расчеты
Стратегическая задача предприятия на ближайший период — выработка больше продукции на существующих мощностях, что требует интенсивного ведения хозяйства.
Использование водоподъемной установки ВУ — 10/80 создать более благоприятные условия труда для рабочих предприятия, тем самым увеличить производительность их труда.
Смета дополнительных капитальных вложений [Л.22]
Таблица 7.1
№п/п
Наименование основных элементов
Единицы
измерения
Количество
Кап. затраты, тыс. руб.








на ед. продукции
всего
1
Электронасос ЭЦВ-10-80
(Водоподъемная установка ВУ-10-80)
Шт
1
9600
9600
2
Гидроаккумулятор
Шт
1
4200
4200
3
Станция управления
Шт
1
12300
12300
4
Предохранительный клапан
Шт
1
920
920


Итого






27020
1. Произведем расчет эксплуатационных затрат [Л.23]
Ипр = Иа + Иэл. эн + Итр + Ипр, (7.1)
где Иа — амортизационные издержки;
Иэл. эн — издержки на электроэнергию;
Итр — издержки на текущий ремонт; Ипр — прочие издержки
Иа. пр= Σ Б · На/ 100, (7.2)
где На = 6,4% — норма амортизационного оборудования;
Иа. пр = 27020·6,4/ 100 = 1730 руб/год
Иэл. эн. пр= Σ Руст · tраб. год · Ц, (7.3)
где Σ Руст = 0,25 кВт — установленная мощность;
tраб. год = 1488 час — годовое рабочее время;
Ц = 0,64 руб — цена за 1 кВт·ч
Иэл. эн. пр = 0,25 · 1488 · 0,64 = 232 руб/год
Итр = 0,8 · Иа, (7.4)
Итр = 0,8 ·1730 = 1384 руб/год
Ипр = (Иа + Иэл. эн + Итр) ·0,1 = (1730 + 232 + 1384) ·0,1= 335 руб/год
И = 1730 + 232 + 1384+ 253 = 3599 руб/год
2. Годовая экономия
Эг = Дд — И, (7.5)
где Дд — дополнительный доход за счет использования водоподъемной установки
Дд = Ц · Дп, (7.6)
где Дп — дополнительная продукция, кг;
Ц — средняя цена 1 кг полученной дополнительно продукции;
Дд = 25 · 350 = 8750 руб/год
Эг = 8750 — 3599 = 5151 руб
3. Срок окупаемости
То= Δ К/ Эг, (7.7)
То = 27020/5151=3,5 года
Литература
Кондратенков Н.И., Грачев Г.М., Антони В.И., Курсовое проектирование по электроприводу в сельском хозяйстве: Учебное пособие, — Челябинск: ЧГАУ, 2002-236с.
Микроклимат производственных комплексов/ А.М. Зайцев, В.И. Жильцов, А.В. Шавров,. — М.: Агропромиздат, 1986 — 192с.
Отраслевые номы освещения сельскохозяйственных предприятий, зданий, сооружений. М.: 1980.    продолжение
--PAGE_BREAK--
Кондратенков Н.И., Антони В.И., Ермолин М.Я. «Электропривод сельскохозяйственных машин»: Учебное пособие. Челябинск, 1993. — 178 с. ил.
П.И. Савченко, И.А. Гаврилюк, И.Н. Земляной и др. — М.: Колос, 1996. — 224 с.: ил. — (Учебники и учеб. пособия для студентов вузов).
«Электропривод сельскохозяйственных машин, агрегатов и поточных линий». — 2-е изд., перераб. и доп. — М.: Колос, 1984. — 288 с., ил. — (Учебники и учеб. пособия для высш. с. — х. заведений).
Зоологические нормы производственных объектов. Справочник — М.: Агропромиздат, 1986-303с.
Электрооборудование и автоматизация сельскохозяйственных агрегатов и установок / И.Ф. Кудрявцев, Л.А. Калинин, В.А. Карасенко и др.: Под. ред.
Методические указания по расчету электрических нагрузок в сетях 0,38-
110 кВ сельскохозяйственного назначения. — Руководящие материалы по проектированию электроснабжения сельского хозяйства. М.: ноябрь 1981.
Будзко И.А., Лещинская Т.Б., Сукманов В.И. Электроснабжение сельского хозяйства. М.: Колос, 2000.
Инструкции по выбору установленной мощности подстанций
10/0,4 кВ в сетях сельскохозяйственного назначения. (РУМ). — М.: Сельэнергопроект, 1987. — 126 с.
Методические указания по сбору статистических материалов для анализа хозяйственной деятельности сельскохозяйственного предприятия. — М., 1999. — 54 с.
Доклад
На тему: «Электрификация животноводческой фермы КРС на 2700 голов ЗАО АФ „Луговская“ Тюменского района Тюменской области с разработкой горячего и холодного водоснабжения».
Уважаемый председатель Государственной аттестационной комиссии, уважаемые члены комиссии мною представлена квалификационная работа на выше указанную тему.
Развитие сельскохозяйственной промышленности базируется на современных технологиях, широко использующих электрическую энергию. В связи с этим возросли требования, к качеству электрической энергии, к ее экономному и рациональному расходованию. Электрификация, то есть производство, распределение и применение электроэнергии — основа устойчивого функционирования и развития всех отраслей промышленности и сельского хозяйства страны и комфортного быта населения. На базе электроэнергетике стали развиваться промышленность сельского хозяйства.
ЗАО АФ «Луговская» в современных границах организовано 28 января 1987 года в связи с ликвидацией совхоза «Новоторманский». Расположено в 20 км. от центральной части Тюменского района на северо-востоке от районного и областного центров г. Тюмени. (указкой водим по генплану лист №1)
Хозяйство размещено в ІІІ агроклиматическом районе, который характеризуется следующими данными: район теплый, умеренно увлажненный. Среднесуточная температура воздуха в период с температурой выше +10 колеблется в пределах. Средняя температура самого теплого месяца года (июль) равна +20, самого холодного (январь) — 18. Устойчивый снежный покров образуется 5-11 ноября.
Рельеф территории хозяйства представляет собой приподнятую равнину, рассеченную значительным количеством балок. Поросших лесом и кустарником, имеется большое количество блюдцеобразных западин, которые значительно затрудняют механизацию в растениеводстве. В северной части землепользование равнина круто обрывается и переходит в надпойменную террасу реки Тура.
Продукция, производимая в хозяйстве, реализуется и в магазинах города Тюмени.
ЗАО АФ «Луговская» имеет молочно-мясное направление. В структуре молочная продукция составляет основную прибыль хозяйства. (переходим к листу№2. где указана структуры: земель поголовья скота энерговооружённость и т.д.)
/>
2002 2003 2004
Общая (структура земельная площадь хозяйства 11639га, в т. ч.6505га сельскохозяйственных угодий, из них 3673га полей, 2057га сенокосов и 781га пастбищ. Распаханость сельскохозяйственных угодий довольно высока 57%. На начало 2005 гада имеется 2649 голов крупно рогатого скота, в т. ч.1021 коров, что составляет в структуре стада 39% и 115 голов лошадей.
В структуре посевных площадей зерновые занимают 1200га или 39%, кормовые 65,5%.
Урожайность зерновых 18ц/га. Материальное обеспечение осуществляется через ЗАО Тюменьагромаш и Ч.П. и др. поставщиков, Ремонт комбайнов, тракторов, автомашин и сельскохозяйственной техники производится в своем хозяйстве.
Стоимость товарной продукции в 2004г. (указкой водить по листу).
/>
Увеличилась на 24,3% по сравнению с 2003г., а в сравнение с 2002г. на 24,1%. Земельная площадь в хозяйстве осталась неизменной. Стоимость основных производственных фондов. (указкой водить по листу) увеличилась за все три анализируемых года. В хозяйстве наблюдается снижение численности работников. (указкой водить по листу).
/>
2002 2003 2004
И увеличение энергетических мощностей. В целом предприятие работает стабильно, т.к. увеличивается стоимость товарной продукции и основных производственных фондов. (указкой водить по листу). Условное поголовье скота находится почти на уровне.
Наибольший удельный вес в структуре товарной продукции за все 3
года занимает реализация молока. Товарная продукция крупно рогатого скота занимает вторую позицию в удельном весе. Продукция собственного производства, реализуемая в переработанном виде, занимает наибольший удельный вес 77,6%. (указкой водить по листу).
молоко по факту
/>
Данное предприятие специализируется на продукции животноводства, т.к молоко и мясо К.Р.С. доминируют в структуре товарной продукции. (указкой водить по листу). Имеется собственный цех переработки молока. Молочная продукция реализуется в торговую сеть г. Тюмень.
Наибольший удельный вес в структуре работников за все три года занимают постоянные рабочие. Сезонные рабочие 2004 и 2002 году в удельном весе по категориям занимают 34 и 32% соответственно, уступая лишь постоянным рабочим, численность временных рабочих 91 человек. Служащие, куда входят руководители, и специалисты занимают относительно небольшой удельный вес 12,8%. На предприятии идет уменьшение количества работников с каждым годом, однако производство молока и процент крупно рогатого скота ежегодно растет. В агрофирме на весенне-полевые и уборочные работы привлекаются сезонные рабочие.
Труд это целесообразное деятельность человека направленное на видоизменение и приспособления предметов для удовлетворения своих потребностей. Основные показатели трудовых ресурсов это коэффициент трудообеспеченности, использование годового фонда рабочего времени, среднесписочная численность работников, среднегодовая численность работников.
Трудообеспеченность в 2002 и 2004 году составила 68%, а в 2003 году 63%. Численность временных колхозных работников не снижается.100% использования фонда рабочего времени наблюдается в 2004 году, по составленным годам коэффициент перешагнул 100% барьер. Нормативный фонд рабочего времени был перерасходован в 2004 году. В 2003 и 2004гг, часам наблюдается перерасход вследствие сверхурочной работы.
Производительность труда это способность конкретного труда человека производить определенное количество потребительских стоимостей в единицу времени. Учет совокупных затрат труда в рабочем времени является основой для определения стоимости сельхоз продукции.
Наибольшая стоимость валовой продукции наблюдается в 2004 году и составляет 2711 тысяч рублей. В хозяйстве идет снижение затрат труда на производство зерна и мяса, молока. Для дальнейшего уменьшения показателя трудоемкости нужно проводить автоматизацию и механизацию технологических процессов. В целом производительность труда в 2004 году увеличивается по отношению к 2002 году на 3,4%. Для увеличения производительности труда нужно: повышать интенсивность использования основных фондов, углублять специализацию и усилить концентрацию производства, внедрять ресурсосберегающие и прогрессивные технологии, улучшать организацию труда и повышать его интенсивность. Оплата труда за 1 час ежегодно возрастает на 21,3%.
В хозяйстве идет увеличение показателя энергообеспеченности на 2%, увеличение энерговооруженности объясняется снижением количества работников. Наибольшая фондоотдача наблюдается в 2002 году. Наибольшая рентабельность вышла в 2004 году и составила 4,2% наименьшая, была в 2002 году и составила всего 0,07%. Оснащенность предприятия энергетическими мощностями увеличивается. В целом по хозяйству основные производственные фонды используются эффективно, т.к. их стоимость увеличивается с каждым годом.
От того, как будет реализована продукция, зависит нормальное функционирование производства. При производстве продукции нужно стремиться к уменьшению материальных затрат чтобы в итоге себестоимость продукции была ниже ее рыночной стоимости. Основными показателями при реализации являются прибыль и уровень рентабельности.
Прибыль это выручка от реализованной продукции без затрат на ее производство выраженная в денежной форме.
Уровень рентабельности это процентное отношение прибыли к выручке полученной при реализации определенного вида продукции.
Предприятие выгодно реализовало продукцию зерна и молока, прибыль соответственно составила 48 и 7821 тысяч рублей, а продукция мяса была продана со значительно меньшей стоимостью, чем ее себестоимость и убыток составил 6444 тысяч рублей. Прибыль вышла больше плана от реализации молочной продукции, убыток сократился от реализации мяса по сравнению с планом на 48,0 тысяч рублей. Для того, чтобы производство было более рентабельным нужно снижать себестоимость продукции и искать более выгодные рынки сбыта. В целом хозяйство сработало рентабельно, прибыль от реализации составила 1453 тысяч рублей.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.