Вращение твердого тела
Для кинематического описания вращения твердого тела удобно использовать угловые величины: угловое перемещение Δφ,угловую скорость ω
/>
и угловое ускорение ε
/>
В этих формулах углы выражаются в радианах. При вращении твердого тела относительно неподвижной оси все его точки движутся с одинаковыми угловыми скоростями и одинаковыми угловыми ускорениями. За положительное направление вращения обычно принимают направление против часовой стрелки.
Физическая величина /> зависит от распределения масс вращающегося тела относительно оси вращения. Она называется моментом инерции I тела относительно данной оси:
/>
Числе степеней свободы - это число независимых величин, которые необходимо задать для того, чтобы однозначно определить положение тела в пространстве. В разных ситуациях число степеней свободы твердого тела может быть различным. Если диск, не вращаясь, может скользить вдоль неподвижное в данной системе отсчета оси (рис. 1.1а), то в данной системе отсчета он, очевидно, обладает только одной степенью свободы — положение диска однозначно определяется, скажем, координатой x его центра, отсчитываемой вдоль оси. Но если диск, кроме того, может еще и вращаться (рис. 1.1б), то он приобретает еще одну степень свободы - к координате x добавляется угол /> поворота диска вокруг оси. Если ось с диском зажата в рамке, которая может поворачиваться вокруг вертикальной оси (рис. 1.1в), то число степеней свободы становится равным трем — к x и /> добавляется угол /> поворота рамки.
В частности, для шарового волчка, когда все три главных момента инерции совпадают, имеем просто:
Μ = IΩ, (26,3)
т. е. вектор момента пропорционален вектору угловой скорости и имеет одинаковое с ним направление.
Векторное произведение радиуса-вектора /> материальной точки на ее импульс /> называется моментом импульса /> этой материальной точки относительно точки О:
/> .
Момент силы относительно точки О — это вектор, модуль которого равен произведению модуля силы на плечо — кратчайшее расстояние от точки О до линии действия силы. Направление вектора момента силы перпендикулярно плоскости, проходящей через точку и линию действия силы, так, что глядя по направлению вектора момента, вращение, совершаемое силой вокруг точки О, происходит по часовой
Если известен радиус-вектор r/> точки приложения силы F/> относительно точки О, то момент этой силы относительно О выражается следующим образом:
M
O/>(F/>)=r/>/>F/>/>
Момент силы относительно оси
Проекция момента силы относительно точки на некоторую ось, проходящую через эту точку называется моментов силы относительно оси.
Момент силы относительно оси вычисляется как момент проекции силы F/> на плоскость />, перпендикулярную оси, относительно точки пересечения оси с плоскостью />:
M
z(F/>)=M
z(F/>/>)=/>F/>h/>
При́нцип суперпози́ции — один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:
результат воздействия на частицу нескольких внешних сил есть просто сумма результатов воздействия каждой из сил.
Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что электростатический потенциал, создаваемый в данной точке системой зарядов, есть сумма потенциалов отдельных зарядов.
Принцип суперпозиции может принимать и иные формулировки, которые, подчеркнём, полностью эквивалентны приведённой выше:
Взаимодействие между двумя частицами не изменяется при внесении третьей частицы, также взаимодействующей с первыми двумя.
Энергия взаимодействия всех частиц в многочастичной системе есть просто сумма энергий парных взаимодействий между всеми возможными парами частиц. В системе нет многочастичных взаимодействий.
Уравнения, описывающие поведение многочастичной системы, являются линейными по количеству частиц.
Именно линейность фундаментальной теории в рассматриваемой области физики есть причина возникновения в ней принципа суперпозиции.