Реферат по предмету "Физика"


Алгоритмы обнаружения и сопровождения траекторий целей по дискретным измерениям

--PAGE_BREAK--
Сопровождение траекторий целей по данным обзорной РЛС

Процесс обработки информации о цели на этапе обнаружения траектории заканчивается, как только выполняется установленный критерий ее обнаружения. После ЭТОГО ВЫЧИСЛЯЮТСЯ начальные значения параметров обнаруженной траектории, и она передается на автосопровождение. Автосопровождение цели понимается в дальнейшем в смысле автоматического продолжения траектории ее движения и уточнения параметров этой траектории, так что термины «автосопровожденде цели» и «автосопровождение (или просто сопровождение) траектории» понимаются в одинаковом смысле. Более предпочтительным является термин «сопровождение траектории», которым и будем пользоваться в дальнейшем. Логическая схема алгоритма сопровождения траектории. В процессе сопровождения каждой траектории решаются две основные задачи: стробирование и отбор новых отметок для продолжения траектории, оценивание параметров траектории и построение функции, описывающей изменение этих параметров во времени.

Принципиально выполнение обеих перечисленных задач может быть реализовано с помощью одного алгоритма. В этом случае требуемое качество решения задачи оценивания параметров траектории должно быть согласовано с потребителями информации. Однако возможени такой вариант построения системы, когда на алгоритм сопровождения возлагается только задача слежения за траекторией цели, а для высококачественного оценивания параметров траектории в интересах потребителей информации создается отдельный алгоритм, который в дальнейшем будем называть алгоритмом траекторных расчетов.

Целесообразность выделения специального алгоритма траекторных расчетов следует из таких соображений.

1. Операции оценки и экстраполяции параметров траектории для обеспечения непрерывности ее сопровождения должны производиться в системе координат, измеряемых РЛС, по ходу обновления информации. К точности выполнения этих операций не предъявляется особо жестких требований, что позволяет производить вычисления по упрощенным формулам, исходя из гипотезы прямолинейного движения цели.

2. Вычисление параметров траектории в интересах потребителей радиолокационной информации должно производиться с учетом всех доступных сведений о характере движения цели (воздушная или космическая цель, маневрирующая или неманеврирующая цель и т. д.) по точным формулам. Выдаваемые параметры при этом могут быть представлены в другой, отличной от радиолокационной, системе координат (например, в прямоугольной системе координат с центром в точке расположения пункта сбора информации). Более того, в интересах потребителей или по соображениям более доступного сопряжения

с другими алгоритмами системы для оценивания могут быть выбраны совсем не те параметры, которые необходимы при сопровождении траектории (например, курс и модуль вектора скорости при  сопровождении самолетов и т. д.).

3. Потребителей интересует в первую очередь информация о целях, представляющих наибольшую важность для системы (например, самолеты, следующие на аэродром посадки в АСУ крупного аэродрома). Именно по таким целям и необходимо рассчитывать точные значения параметров траектории. Естественно, не все обнаруживаемые в зоне обзора РЛС цели одинаково важны, а некоторые из них, вообще не представляют интереса для системы (удаляющиеся цели, пролетающие цели и т. д.). Следовательно, оценивание параметров с высокой точностью необходимо только для части сопровождаемых целей. Выделение отдельного алгоритма траекторных расчетов позволяет в данном случае уменьшить требования к производительности вычислительных средств.



С учетом высказанных соображений логическая схема алгоритма сопровождения траектории приведена на

рис. 3.11. В блоке 1 решается задача отбора и селекции отметки для продолжения траектории. Алгоритм стробирования и селекции отметок и стробе строится и соответствии с теоретическими предпосылками, изложенными в § 3.1. Отселектированной отметке присваивается номер сопровождаемой траектории и она передается на вход блока траекторных расчетов (блок 6). Одновременно новая отметка используется для оценивания параметров и экстраполяции координат цели на следующий обзор, т.е. для подготовки следующего цикла стробирования и селекции. Для этого последовательно производятся:

1. Оценивание параметров траектории при упрощенных предпосылках о законе движения цели и погрешностях измерения координат (блок 2).

2. Вычисление экстраполированных значений координат на следующий обзор (блок 3). Экстраполяция производится по линейному закону.

3. Вычисление размеров строба (блок 4). При этом используются точностные характеристики измеренных и

экстраполированных координат, а также информация о пропуске отметок в стробе.

4. При отсутствии новой отметки для продолжения траектории проверяется критерий сброса этой траектории с сопровождения (блок 5). При выполнении критерия сброса сопровождение траектории прекращается, а предыдущая информация о ней стирается. Если же критерий сброса не выполняется, то в качестве координат новой отметки используются координаты экстраполированной точки и производится новый цикл вычислений. В общем случае при принятии решения о сбросе траектории с сопровождения необходимо учитывать не только наличие отметок для ее продолжения, но и ряд других факторов, к которым можно отнести: важность цели; возможности цели изменять свою траекторию в полете; текущие

координаты цели; направление ее полета и продолжительность пребывания в зоне обзора РЛС и т. д. Однако учет этих факторов чрезвычайно сложен и не всегда доступен из-за ограниченной производительности вычислительных средств. Поэтому основным критерием при принятии решения о сбросе траектории с сопровождения является появление некоторой пороговой серии fa пропусков отметок в стробах сопровождения. Такой критерий сброса не учитывает индивидуальные особенности каждой

траектории, а также не использует информацию о накопленном уровне точности к моменту появления серии пропусков. Единственное его достоинство — простота реализации на ЭВМ соответствующего алгоритма. При выборе fa необходимо исходить из следующих соображений. Чем больше кт, тем меньше вероятность принятия ложного решения о сбросе с сопровождения истинной траектории. С другой стороны, с увеличением fa увеличиваются число находящихся на сопровождении ложных траекторий и их средняя продолжительность. Поэтому при выборе fa необходимо учитывать статистические характеристики пропусков (необнаружений) истинных отметок. (Окончательный выбор значения fa обычно произ-

водится при испытании системы обработки.) С учетом критерия сброса по fa пропускам подряд

процесс сопровождения траектории описывается графом со случайными переходами (рис. 3.12). Характер состояний и переходов этого графа позволяет выделить следующие режимы сопровождения:

1) режим устойчивого сопровождения, характеризующийся тем, что граф находится в исходном состоянии (впервые это состояние достигается при выполнении критерия обнаружения траектории);

2) режим неустойчивого сопровождения, соответствующий одному из промежуточных состояний графа



3) режим сброса траектории с сопровождения, свидетельствующий о том, что число пропусков отметок подряд достигло порогового уровня и граф перешел в поглощающее состояние



В этом случае граф алгоритма сопровождения траектории аналогичен графу алгоритма фиксации конца пачки двоично-квантованных сигналов [21]. Поэтому полностью совпадает и методика анализа этих алгоритмов. При статистическом анализе алгоритмов сопровождения основной интерес представляет среднее время существования ложной траектории и связанное с этим временем среднее число ложных траекторий, находящихся на сопровождении в установившемся режиме работы. Кроме того, интересным является определение вероятности сброса с сопровождения истинной траектории при заданном,

значении вероятности обнаружения отметок. Установим здесь только зависимость между средним числом ложных траекторий, передаваемых на сопровождение в каждом обзоре, и средним числом ложных траекторий, находящихся на сопровождении в установившемся режиме работы. Для этого необходимо, прежде всего, определить вероятность окончания процесса сопровождения ложной траектории точно на μ-м шаге (обзоре) после передачи ее на сопровождение в момент μ=0. В случае критерия сброса по  пропускам подряд вероятность окончания сопровождения ложной траектории точно на μ*м шаге равна вероятности перехода графа (рис. 3.12) из состояния в состояние за μ шагов:





Средняя длительность ложной траектории, выраженная числом обзоров, определяется теперь по формуле



Далее, если известно среднее число передаваемых на сопровождение ложных траекторий, то среднее число находящихся на сопровождении ложных траекторий определяется из выражения



Среднее число находящихся на сопровождении ложных траекторий учитывается при расчетах загрузки ЭВМ, на которой реализуются алгоритмы сопровождения траекторий. Объединенный алгоритм обнаружения и сопровождения траекторий. До сих пор имелось в виду, что алгоритмы обнаружения и сопровождения траекторий реализуются раздельно, т. е. в отдельных вычислительных устройствах (ЦВМ). На практике в ряде случаев более удобной является такая организация вторичной обработки, когда оба эти алгоритма объединены в единый алгоритм обнаружения и сопровождения траектории, а реализация объединенного алгоритма производится с помощью одной ЭВМ. В дальнейшем имеется в виду именно такой вариант построения системы обработки. Если заданы критерий завязки начала траектории критерий подтверждения и критерий сброса траектории с сопровождения, например по критерию

пропусков подряд, то объединенный критерий обнаружения и сопровождения траектории можно символически записать в виде Граф объединенного алгоритма при обнаружении и сопровождении ложных траекторий по критерию приведен на рис. 3.13.

Граф объединенного алгоритма позволяет анализировать процесс обнаружения и сопровождения траекторий в целом вместо анализа по частям, проведенного выше. Не повторяя рассуждений и выводов предыдущих параграфов, уточним полученные там результаты. В частности,



уточнению подлежит полученное выражение для числа начальных точек ложных траекторий, образующих-

ся R установившемся режиме работы [(см. (3.30)].В объединенном алгоритме, реализующем критерий

число стробов равно . Поэтому верхний предел суммирования пов формуле (3.30) будет . Верхний предел суммирования по s будет теперь , так как число шагов при переходе из состояния

в данном случае может быть сколь угодно большим. Таким образом, в объединенном алгоритме число ложных отметок, принимаемых на начальные точки новых траекторий, определяется по формуле



Если критерий подтверждения имеет вид . Среднее число передаваемых на сопровождение ложных траекторий теперь будет



т. е. меньше, чем для случая раздельной реализации, так как число начальных точек уменьшилось. Соответственно уменьшится и число ложных траекторий, находящихся на сопровождении.
АЛГОРИТМЫ ФИЛЬТРАЦИИИ ЭКСТРАПОЛЯЦИИ ПАРАМЕТРОВ ТРАЕКТОРИЙ ЦЕЛЕЙ ПО ДАННЫМ РАДИОЛОКАЦИОННЫХ ИЗМЕРЕНИЙ
Представление фильтруемого процесса

Модель траектории цели. При решении задач фильтрации принципиальное значение имеет способ представления процесса изменения фильтруемых параметров цели во времени. В нашем случае это соответствует выбору модели траектории цели. В задачах вторичной обработки радиолокационной информации с учетом дискретности процесса измерения координат цели и возмущений модель траектории можно задать системой линейных разностных уравнений, которая в векторной форме записывается в виде



При полиномиальном представлении независимых координат цели прогнозирование параметров невозмущенной траектории, например по координате дальности r(t), производится по формулам:



При записи выражений (4.2) в векторно-матричномвиде



Выражения для невозмущенных параметров траектории по другим  независимым координатам записывается аналогично. Во втором слагаемом уравнения модели (4.1) в первую очередь должны быть учтены возмущения, обусловленные неоднородностью среды, в которой движется цель; атмосферными явлениями, а также неточностью и инерционностью системы управления и стабилизации параметров цели в полете. Назовем их шумом управления. Обычно шум управления представляется как дискретный

белый шум с математическим ожиданием, равным нулю, и корреляционной матрицей


где  — дисперсия шума  управления; , если  и 0, если  (символ Кронекера).



Кроме шумов управления в модели траектории необходимо учитывать специфические возмущения, обусловленные непредвиденными для наблюдателя изменениями параметров траектории, которые обусловлены маневром цели. Эти возмущения назовем шумом маневрирования. В общем случае шум маневрирования не является ни белым, ни гауссовским. Один из возможных примеров представления плотности распределения вероятности ускорения (интенсивности маневра) самолета по одной из координат приведен на рис. 4.1, где Ро — вероятность отсутствия маневра, Pi — вероятность маневра с максимальным ускорением , а вероятность любого промежуточного значения интенсивности маневра



Равновероятность промежуточных значений интенсивности маневра можно обосновать, например, тем, что проекция интенсивности маневра самолета по курсу (наиболее частый случай маневра) на произвольное направление принимает любое знамение в пределах , а при наличии множества маневров во времени и пространстве можно допустить, что все эти значения равновероятны.

Поскольку выполнение маневра обычно требует значительного времени (во всяком случае большего, чем интервал времени между двумя измерениями координат цели), то его интенсивность в некоторый момент наблюдения коррелирована с интенсивностью в предыдущие (последующие) моменты. Поэтому для статистической характеристики шума маневрирования необходимо знать его автокорреляционную функцию. Обычно автокорреляционную функцию интенсивности маневра представляют в виде экспоненциальной функции





Последующие значения интенсивности маневра могут быть выражены через предыдущие:



где  — белый шум с математическим ожиданием, равным нулю, и дисперсией, равной единице?

В практике проектирования и исследования систем обработки радиолокационной информации условно считают, что множество целей можно разделить на неманеврирующие и маневрирующие. Цель считается неманеврирующей, если она движется по прямой с постоянной скоростью (с точностью до влияния интенсивности шума управления), во всех других случаях — маневрирующей. Например, для

аэродинамических объектов в качестве основной принимается модель неманеврирующей цели, каждая из независимых координат которой описывается полиномом первой степени. Однако такая классификация имеет смысл только если в процессе обработки радиолокационной информации фильтруемые параметры представлены в декартовой системе координат. Если же фильтруемые параметры представлены в полярной (сферической) системе координат, то они изменяются нелинейно и при прямолинейном

и равномерном движении ноли. В этом случае для представления независимых координат должны быть использованы по крайней мере полиномы второй степени. Модель процесса измерения. При решении задач фильтрации кроме модели траектории необходимо задать связи между m-мерным вектором измеряемых координат Yn и s-мерным вектором оцениваемых параметров  в момент

n-го измерения. Эта связь обычно задается линейным алгебраическим соотношением



где Н„ — известная (mXs)-мерная матрица, устанавливающая связь между наблюдаемыми координатами и оцениваемыми параметрами; ΔΥn — погрешность измерения координат. В рассматриваемом случае наблюдаемыми являются текущие координаты целей в сферической системе координат (дальность , азимут , угол места ) или некоторые специфические для РЛС координаты —радиолокационные (например, дальность и косинусы углов между осью антенной решетки и направлением на цель). В не-

которых РЛС в качестве измеряемой координаты может быть также радиальная скорость .

Матрица  имеет простейший вид (состоит из нулей и единиц), если по наблюдаемым сферическим координатам оцениваются параметры траектории в той же системе координат. Например, если измеряются полярные координаты цели , а фильтруются параметры  (линейное приближение), матрицаимеет вид



Если же по измеренным полярным координатам фильтруются параметры траектории в декартовой системе координат , то вычисление элементов матрицы  производится дифференцированием формул пересчета координат из полярной системы в декартову:

    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Основа эпического театра
Реферат Информационные ресурсы internet применяющиеся в области права и законодательства
Реферат Предмет бухгалтерского учета
Реферат Роль Японии в Первой мировой войне
Реферат Математика в средние века
Реферат Тартюф Мольера проблематика и образы
Реферат Гидрогеохимическая проявленность ореолов техногенного замещения подземных вод в связи с Ларинским полигоном ТБО г. Донецка
Реферат Caesar Speeches Essay Research Paper Emotional Speech
Реферат Анализ эффективности использования оборотных средств и пути ее повышения на примере ОАО Яра
Реферат Сравнение произведений А Н Островского Бесприданница и Гроза
Реферат Отоларингология. Хронические гнойные отиты и их осложнения
Реферат Использование пенициллиназы в биотехнологии
Реферат Совершенствование системы информационной безопасности на предприятии ООО УК Ашатли
Реферат Авторский договор заказа на создание программных компонентов (с обеспечением исполнения обязательств заказчика банковской гарантией)
Реферат Углеродные нанотрубки 2