Реферат по предмету "Технология"


Струйная гидроабразивная обработка поверхностей

ОГЛАВЛЕНИЕ
 
 
ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ................................................................... .....3
1. СУЩНОСТЬ ПРОЦЕССА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ. ….4
2.МЕХАНИЗМ ПРОЦЕССА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ….  5
3.ОБЛАСТЬ ПРИМЕНЕНИЯ МЕТОДА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ……………………………………………………………………………………6
4. СРОК СЛУЖБЫ СУСПЕНЗИИ И РЕГЕНЕРАЦИЯ АБРАЗИВНОГО МАТЕРИАЛА………………………………………………………………………………...  10
5.ПРОИЗВОДИТЕЛЬНОСТЬ ПРОЦЕССА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ………………………………………………………………………………  …11
6.КАЧЕСТВО ПОВЕРХНОСТНОГО СЛОЯ ПОСЛЕ СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ……………………………………………………...14
7.СХЕМЫ ИКОНСТРУКЦИИ СТРУЙНЫХ АППАРАТОВ……………………..……26
7.1КЛАССИФИКАЦИЯ И ТРЕБОВАНИЯ К СТРУЙНЫМ АППАРАТАМ……...…26
7.2КОНСТРУКЦИИ СТРУЙНЫХ АППАРАТОВ………………………………...……..28
7.2.1СТРУЙНЫЕ АППАРАТЫ, ФОРМИРУЮЩИЕ СТРУИ КРУГЛОГО СЕЧЕНИЯ……………………………………………………………………………………...28
7.2.2СТРУЙНЫЕ АППАРАТЫ, ФОРМИРУЮЩИЕ ПЛОСКИЕ СТРУИ…………...33
8.ЗАКОН БЕРНУЛЛИ………………………………………………………..………..…….38
9.ВЫВОДЫ…………………………………………………………………....………..……..38
9.СПИСОК ЛИТЕРАТУРЫ…………………………………………………………..…….40
 
 
 
ПЕРЕЧЕНЬ УСЛОВНЫХ ОБОЗНАЧЕНИЙ
ГАО- гидроабразивная обработка
ГТД- газотурбинный двигатель
/>
 
 
 
 
 
 
1. СУЩНОСТЬ ПРОЦЕССА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ
       Обработка поверхностей заготовок точением, фрезерованием, протя­гиванием и шлифованием характеризуется тем, что режущие элементы металлического или абразивного инструмента в течение всего пронесен удаления металла соприкасаются с обрабатываемыми поверхностями. При этом образуется замкнутая технологическая система, включающая станок, приспособление, инструмент и заготовку, Обработка сопровож­дается нагревом и вибрацией всех составляющих этой системы и дефор­мацией металла в зоне действия режущей кромки. Обработка лезвийным инструментом требует значительных затрат энергии для удаления при­пуска металла с обрабатываемой заготовки.
       В авиадвигателестроении необходимость обработки сложных фасон­ных поверхностей привела к созданию новых методов обработки, харак­теризующихся отсутствием непосредственного механического контакта инструмента с заготовкой. В этих методах в роли инструмента высту­пает либо электрическое иоле (электрохимическая размерная обработка, электрополирование), либо направлений ударный поток различных мате­риалов (пескоструйная, дробеструйная обработки, обработка шариками и т. д.) на заготовку.
       Процессы, использующие эффект удара абразивных частиц об об­рабатываемую поверхность заготовки, осуществляются следующими спо­собами:
1) удар производится собственно абразивной частицей (пескоструй­ная обработка);
2) удар производится абразивно-жидкостной струей (струйная гидроабразивная обработка);
3) воздействие на обрабатываемую поверхность взвешенных абразив­ных частиц, распыляемых сжатым воздухом (турбоабразивная об­работка) или магнитным полем  (магнитоабразивная обработка).
       Пескоструйная обработка поверхностей заготовок применяется давно и осуществляется либо с использованием пескоструйного аппарата с пнев­матическим приводом и специальными соплами, либо с помощью песко­мета, бросающего песок вращающимися лопатками. Для пескоструйной обработки используется неочищенный песок любого состава и в редких случаях чистый кварцевый песок определенной зернистости. Значи­тельная запыленность, сопровождающая работу пескоструйных аппа­ратов, ограничила применение данного метода и производстве авиа­ционных двигателей.
       Процесс струйной гидроабразивной обработки (ГАО) заключается в направлении струи суспензии, состоящей из воды и частиц абразивных материалов, на обрабатываемую поверхность заготовки. Эта струя под­вергается воздействию потока сжатого воздуха, который увеличивает скорость истечения суспензии из сопла. В результате такой обработки образуются чистые матовые поверхности, без направленных рисок, ха­рактерных для лезвийной обработки материалом. Действие режущих кромок абразивных частиц на обрабатываемую поверхность непродол­жительно и имеет ударный характер.
       При высокой скорости струи суспензии этот способ имеет только то общее с пескоструйной обработкой, что в обоих случаях работа по удалению металла производится за счет кинетической энергии абразивной частицы.
       Химически активные вещества, добавленные в суспензию, облегчают воздействие абразивных частиц на обрабатываемую поверхность, про­цесс ускоряется и количество удаляемого металла увеличивается.
       Компактность струи суспензии определяет площадь сечения струи при встрече с обрабатываемой поверхностью и при прочих равных условиях является главным фактором, обеспечивающим наибольшее удельное дав­ление струи суспензии на заготовку. Движение струи сопровождается бомбардировкой обрабатываемой поверхности абразивными частицами. Количество ударов абразивных частиц колеблется в зависимости от условий обработки от 2·106 до 25·106 в секунду.
       В отличие от процессов резания, после которых на обработанной поверхности остаются риски и микротрещины, струйная гидроабразив­ная обработка не создаст направленной шероховатости, обеспечивает упрочнение обрабатываемой поверхности, вследствие чего повышается усталостная прочность обработанных деталей.
       Все процессы механической обработки металла сопровождаются раз­витием значительных усилий и выделением в зоне резания больших ко­личеств тепла, вызывающих пластическую деформацию поверхностного слоя. При струйной гидроабразивной обработке температура обраба­тываемых деталей не изменяется. Микронагрев  вызываемый отделением стружки абразивной частицей, устраняется потоком суспензии, сопровож­дающим эту абразивную частицу.
       Струйную гидроабразивную обработку целесообразно применять для обработки сложных поверхностей: помимо значительного снижения вре­мени обработки этот способ позволяет осуществить механизацию про­цесса отделочных операций и улучшить условия труда.
 
2. МЕХАНИЗМ ПРОЦЕССА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ
 
       Струйная гидроабразивная обработка представляет собой процесс ударного воздействия на обрабатываемую поверхность высокоскоростной гидроабразивной струи. Характер взаимодействия абразивных частиц, находящихся в струе, с поверхностью определяет выходные параметры процесса производительность и качество обработки. В плане абразив­ного воздействия струйную гидроабразивную обработку можно рассмат­ривать как процесс эрозии потоком абразивных частиц обрабатываемой поверхности. Для установления физической картины явлений, происходя­щих при изнашивании пластичного материала потоком абразивных частиц, необходимо первоначально рассмотреть износ, вызываемый уда­ром одиночной частицы.
       Удар частицы о поверхность приводит к возникновению кратера. Исследование кратеров, образующихся при ударах частицы под  разными углами атаки, показало, что вытесненный из кратера материал течет в направлении падения частицы с образованием вала до тех нор, пока он не растрескивается из-за значительных быстродействующих накопленных деформаций. При ударах под углом 90° вал располагается вокруг кратера равномерно, при меньших углах атаки вал образуется по бокам кратера и по направлению движения частицы. Характер деформаций и образова­ние вала зависят от формы частицы, ее ориентации при контакте с по­верхностью, скорости частицы, угла ее падения, а также от свойств ма­териалов частицы и поверхности. Было обнаружено существование крити­ческой скорости частицы, выше которой материал обрабатываемой по­верхности вытесняется в вал кратера, а также наличие вокруг кратера, образовавшегося при ударе, зоны высокой плотности дислокаций (обычно толщиной а несколько микрометров).
       При ударе о поверхность угловатой частицы наблюдается процесс микрорезания материала. Микрорезание производится только вершинами абразивных частиц (зерен) и из-за скоротечности и направленности ударного воздействия оно носит очень специфический характер. Резуль­таты такого воздействия зависят от так называемого угла скоса частицы и угла ее падения. При ударах угловатые частицы либо вытесняют больше материала в вал кратера, где он становится уязвимым для дальнейшей эрозии, либо отделяют материал от поверхности (в зависимости от угла скоса частицы при контакте). Удаление материала наблюдается в преде­лах углов скоса от 0 до 17°. Такие условия удара редки и возможны лишь в одном из шести случаев.
       Изнашивание материала одиночной частицей характеризуется дефор­мациями пропахивания и резания. Пропахивание наблюдается при боль­ших отрицательных передних углах резания. При положительных перед­них углах имеет место процесс резания. При рассмотрении эрозии, вызванной одиночными частицами, необходимо учитывать возможность появления термически локализованной деформации (адиабатический сдвиг) как результата локального нагрева. Так, например, титан оказался чувствительным к локальным термическим эффектам, обусловленным вы­делением энергии частицы. В результате от пропаханного металла в районе кратера на поверхности образцов из титана откалываются чаще мелкие осколки, чем в случае стальных образцов.
Механизм эрозии пластичных материалов абразивными частицами ма­лых размеров (rр
       Удаление материала при воздействии на обрабатываемую поверх­ность потока абразивных частиц происходит в результате взаимо­действия нескольких одновременно протекающих процессов, обуслов­ленных отдельным или совместным влиянием компонентов потока этих частиц. При рассмотрении эрозии материала струей абразивных частиц необходимо учитывать: соударения частиц между собой внутри набегающего потока; дробление отдельных частиц; экранирование обра­батываемой поверхности отскакивающими от нее частицами; широкий диапазон углов падения частиц в определенный момент времени; влияние обрабатываемой поверхности на траекторию движения абразивных частиц; подповерхностное повреждение материала вследствие многократ­ных ударов абразивными частицами; адсорбционный эффект понижения прочности обрабатываемого материала на границе раздела обрабаты­ваемой поверхности и потока и т. д.
       Тонкости процессов деформации и разрушения материала, протекаю­щих при многократных ударах частиц по обрабатываемой поверхности, все еще. до конца не изучены. На основании отдельных исследований осколков, образовавшихся в результате эрозии пластичных материалов, было сделано предположение, что путем непосредственного срезания материала при ударе о него абразивной частицы перемещается лишь небольшое количество материала. Обширная пластическая деформация вызывается воздействиями пропахивающего типа (образование вала), при этом смещенный материал создаст топографию поверхности, с кото­рой металл может быть удален последующими ударами частиц .
       Наблюдается резкое количественное и качественное различие между процессами эрозии в присутствии жидкости и без нес. При удалении материала абразивной струей происходят следующие процессы: разру­шение обрабатываемой поверхности в результате высоких контактных напряжений; срезание микростружки с поверхности; образование клино­видных трещин в поверхностном слое обрабатываемой поверхности; гидроудар; контактная усталость; выплавление материала вследствие вы­сокой локальной температуры и т. д. Относительная роль каждого из этих явлений определяется физико-механическими свойствами материала обрабатываемой детали и абразивных частиц, скоростью и углом атаки абразивной струи.
       Следует отметить, что до настоящего времени теории струйной гидроабразивной обработки, охватывающей все стороны процесса, еще не существует. Эта теория должна базироваться на основе аэрогидро­динамики двухфазных и трехфазных сред, которая еще недостаточно изучена, а также на исследованиях многократных ударов остроконечной абразивной частицы о пластичный материал, к которому принадлежит большая часть металлов и сплавов, применяемых в авиадвигателестроении.
С точки зрения абразивного воздействия струйная ГАО имеет много общего с процессами эрозии материалов абразивными частицами.
       Впервые рассмотрение процессов эрозии пластичных материалов было выполнено Финни, использовавшим в качестве модели механизм микро­механической обработки. Он показал, что объем металла, удаляемого массой абразивных частиц, которую несет поток воздуха, расширяющийся в сопле данной формы, равен
 
 />
 
где m, v — масса абразивной частицы и ее скорость при ударе о поверх­ность м/с; к отношение вертикальной составляющей силы воздействия частицы на обрабатываемую поверхность к горизонтальной составляющей; d — глубина среза мм; σ1— предел пластичности обрабатываемого материала МПа; f(а) — функция, характеризующая влияние угла падения частицы на величину съема металла.
       При малых углах соударения частиц с поверхностью теория хорошо согласуется с экспериментальными данными; при этом отсутствует износ материала при углах соударения, близких к 90º.
       Согласно другой модели процесса эрозии пластичных материалом, полученной на основе теории внедрения и уравнения энергетического баланса, предложенной Шелдоном и Канером
 
/>
 
где к — коэффициент; d, ρ-диаметр(мм) и плотность частицы(кг/м3); v0-скорость удара        частицы м/c; Н— твердость материала но Виккерсу.
       Результаты расчетов, выполненные по этой формуле, отличаются от результатов, полученных но формуле Финни.
       При струйной гидроабразивной обработке наличие жидкой фазы зна­чительно изменяет характер протекания процесса взаимодействии абра­зивных частиц с поверхностью. Струйную ГАО можно рассматривать как эрозионно-коррозионный процесс, причем разрушающее действие жид­кости объясняется проявлением эффекта Ребиндера. Отсутствие информации об основных параметрах ударного воздействия гидро­абразивной струи на обрабатываемую поверхность, большинство из ко­торых взаимосвязаны и их трудно контролировать и измерить, препят­ствует созданию математической модели струйной ГAО. С. П. Козыревым сделана попытка теоретически описать процесс удаления металла под действием гидроабразивной струи. Рассматривая работу абразивной частицы при ее динамическом вдавливании в поверхность под прямым углом и силы гидродинамического сопротивления, он получил формулу для определения весового съема металла
 
/>
 
где к — постоянный коэффициент; а — коэффициент, учитывающий межзерновое пространство;γ1 γ2 — удельный вес абразивного материала и металла соответственно; V-объем струи воды, по которому ударяет образец; /> — содержание абразивных частиц в воде в процентах к объему; N— число ударов частиц по образцу; v1, k1-скорость абразив­ной частицы и коэффициент восстановления ее скорости; HM-динами­ческая твердость металла но Моосу.
       Результаты расчетов, выполненных по этой формуле, достаточно хо­рошо совпадают с экспериментальными данными. Однако эта формула не учитывает влияния па массовый съем металла таких параметров, как размеры абразивных частиц, углы атаки частиц, давление воздуха, длина струи и другие.
       А.Е. Проволоцкий предположил, что характер разрушения поверхно­сти гидроабразивной струей напоминает схему резания внедряющимся клином, а процесс удаления может быть описан согласно  сле­дующим дифференциальным уравнением:
/>
 
откуда
/>
где х — текущий линейный съем металла за время tмм; Q— общий линейный припуск мм; к — коэффициент разрушения металла; β— коэффициент убывания абразивной способности определенного объема суспензии.
       Последнее уравнение, хотя и согласуется с экспериментальными дан­ными, также не учитывает большинства параметров струйной гидро­абразивной обработки.
Рассмотренный выше механизм удаления пластичного материала под воздействием потока абразивных частиц позволяет качественно оценить процесс струйной гидроабразивной обработки деталей и теоретически исследовать его.
 
3. ОБЛАСТЬ ПРИМЕНЕНИЯ МЕТОДА СТРУЙНОЙ ГИДРОАБРАЗИВНОЙ ОБРАБОТКИ
 
       При производстве современных авиационных ГТД наиболее сложными в изготовлении, дорогостоящими и трудоемкими являются лопатки компрессора и турбины. Объясняется это тем, что они изготавливаются из труднообрабатываемых материалов, имеют сложную конструктивную форму, малую жесткость, повышенные требования к точности изготов­ления, шероховатости и физико-химическому состоянию поверхностного слоя. Лопатки, как правило, определяют ресурс и надежность работы двигателя. В технологических процессах изготовления и ремонта лопаток ГТД для обеспечения заданных показателей состояния поверхностного слоя профиля пера применяют отделочные операции, которые обычно сводятся к слесарно-полировальным операциям. Сложный профиль пера лопаток затрудняет применение традиционных высокопроизводительных методов обработки, и большинство операций но доводке профиля выпол­няется вручную, что приводит к большой трудоемкости обработки и не обеспечивает стабильности получения заданных параметров поверхност­ного слоя.
       Проблема снижения трудоемкости и повышения качества изготов­ления и ремонта лопаток ГТД является весьма актуальной и может быть решена путем применения высокопроизводительных методов обра­ботки, основанных на воздействии на поверхность свободных абразивных частиц. Одним из таких методов является струйная гидроабразивная обработка. Повышенный интерес к струйной ГАО объясняется широкими технологическими возможностями этого метода при обработке поверхно­стей сложного контура, а также его достоинствами, среди которых можно выделить: возможность обработки любого материала независимо от его физико-химических свойств; простоту регулирования степени воздействия на обрабатываемую поверхность; стабильность процесса обработки; вы­сокое качество поверхностного слоя после обработки (отсутствие прижогов, подповерхностных трещин и т. п.); возможность механизации и автоматизации; относительно малую стоимость оборудования и т. д. Анализ технологических процессов изготовления и ремонта лопаток ГТД показывает, что применение струйной гидроабразивной обработки позво­ляет решить многие проблемы, связанные с обработкой профиля пера и трактовых поверхностей.
/>
 
       Ремонт лопаток газотурбинных двигателей является сложным и тру­доемким процессом, представляющим собой последовательность техноло­гических операций, направленных на восстановление утраченных в про­цессе эксплуатации первоначальных прочностных свойств лопаток. Ре­монту могут подвергаться и лопатки, не работавшие на двигателе, если в процессе их изготовления обнаружены устранимые дефекты. Допусти­мые нормы износа (дефектов) лопаток, подлежащих ремонту, устанавли­ваются конструкторской документацией на ремонт.
       В общем случае дефекты лопаток турбины и компрессора, устраняе­мые в процессе ремонта, могут быть систематизированы следующим обра­зом: нагар, налет алюминия, графита на трактовых поверхностях пера и бандажных полок; нарушение теплозащитных и антикоррозионных покрытий; дефекты основного материала лопаток в виде потемнения и окисления, а также механические повреждения в виде изъязвлений, забоин, царапин и т. п.
       Области возможного применения струйной ГАО при изготовлении и ремонте лопаток компрессора и турбины авиационных двигателей показа­ны на рис. 1. Кроме обработки лопаток струйная ГАО может успешно применяться при обработке сложных поверхностей таких деталей, как диски турбины и компрессора, зубчатые колеса, крыльчатки и др. Целе­сообразно струйную ГАО применять и для окончательной обработки ка­навок режущих инструментов (сверл, зенкеров и др.), полостей матриц и т. п.
 
 
 
 
 
 
 
 
 
 
 
 
4. СРОК СЛУЖБЫ СУСПЕНЗИИ И РЕГЕНЕРАЦИЯ АБРАЗИВНОГО МАТЕРИАЛА
 
       Абразивные частицы в процессе ударного взаимодействия с обра­батываемой поверхностью изнашиваются, их рабочие грани скругляются, что приводит с течением времени к снижению общей абразивной способности. Хотя разрушение абразивных частиц при струйной ГАО протекает в десятки раз медленнее, чем при пескоструйной обработке, что объясняется демпфирующим действием рабочей жидкости, срок служ­бы суспензии имеет определенные пределы. При непрерывной обработке в зависимости от вида абразивного материала, схемы установки струйной ГАО и конфигурации обрабатываемых деталей срок службы суспен­зии составляет от 40 до 70 часов. Суспензию эксплуатируют до тех нор, пока в отстоявшейся пробе разрушенные абразивные частицы не пре­высят 10 % общего объема суспензии, в противном случае суспензию заменяют.
       Для нормального протекания процесса струйной ГАО суспензия в баке установки должна быть однородной, что обеспечивается постоян­ным барботированием осевших на дно бака абразивных частиц.
       Во избежание возврата в суспензию тех абразивных частиц, кото­рые в результате многократных ударов но обрабатываемой поверх­ности разрушились и изменили свои размеры, в некоторых установках имеются расширители и эксгаустеры. В расширителях струя, отражен­ная от обрабатываемой поверхности, теряет скорость, и раздроблен­ные абразивные частицы вместе с воздухом, насыщенным парами рабочей жидкости, отсасываются в фильтр. Периодически фильтр очи­щают и абразивные частицы сортируют для повтор


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.