Министерство образованияРоссийской Федерации
Новосибирский ГосударственныйТехнический Университет
Утверждаю
Доцент к.т.н.
___________Стернина С.Л.
___________________2006г
Реферат
На тему: Синхронные двигатели с постоянными магнитами.
Разработал
СтудентМаксимов Р.С.
ГруппаТМ-402
ФакультетМеханико-технологический
Титульныйлист выполнен по ГОСТ 2.105-95.ЕСКД. Общие требования к текстовым документам
Содержание
1. Введение.
2. Назначение и область применения.
3. Устройство.
4. Принцип работы синхронной машины.
5. Особенности пуска двигателей спостоянными магнитами.
6. Уравнение ЭДС и моментдвигателя в синхронном режиме.
7. Двигатели с радиальнымрасположением магнитов.
8. Характеристики магнитотвердых материалов, применяемых в магнитныхсистемах Синхронных машин.
9. Заключение.
10. Список литературы.
Введение
Применениепостоянных магнитов в магнитных системах синхронных машин так же, как и вдругих типах электрических машин, обусловлено стремлением уменьшить габариты ивес машины, упростить конструкцию, увеличить к.п.д., повысить надежность вэксплуатации.
Постоянныемагниты в синхронных машинах предназначены для создания магнитного поля возбуждения, причем для этого могутприменяться постоянные магниты, комбинированные с электромагнитами, по катушкамкоторых протекает постоянный ток. Использование комбинированного возбужденияпозволяет получить требуемые регулировочные характеристики по напряжению ичастоте вращения при значительно уменьшенной мощности возбуждения и объемемагнитной системы по сравнению с классическими электромагнитными системамивозбуждения синхронных машин.
В настоящее время постоянные магниты применяютсяпри мощности синхронных машин до одного или нескольких киловольт-ампер. По мересоздания с постоянных магнитов с улучшенными характеристиками, мощности машинвозрастают.
Назначение и область применения.
Синхронные машины, являются машинами переменноготока. Применяются в качестве двигателя и генератора.
Синхронные двигатели применяются в основном вприводах большой мощности. Мощность их достигает нескольких десятков мегаватт.На тепловых станциях, металлургических заводах, шахтах, Холодильниках приводятв движение насосы, и другие механизмы, работающие с неизменной скоростью.Синхронные двигатели могут работать с различной реактивной мощностью. Такимобразом, Эти двигатели позволяют улучшить коэффициент мощности предприятия.Однако стоимость приводов с синхронным двигателями выше, чем с асинхронными.
Специальные двигатели малой мощности используют вустройствах, где строгое постоянство скорости, электрочасы, автоматическиесамопишущие приборы, устройства с программным управлением и др.
На крупных подстанциях электрических системустанавливают специальные синхронные машины, работающие в режиме холостого ходаи отдающие в сеть только реактивную мощность, которая необходима дляасинхронных двигателей. Эти машины называют синхронными компенсаторами.
Устройство синхронного двигателяс возбуждением от постоянных магнитов.
Изобретение относится к областииспользования трехфазных синхронных машин для выработки электроэнергии.Устройство состоит из расположенных на одном валу трехфазного синхронногодвигателя и трехфазного синхронного генератора, которые выполнены свозбуждением от постоянных магнитов. Ротор и статор двигателя и генератораимеют явно выраженные полюса. Обмотки статора намотаны вокруг полюсов статора. Постоянныемагниты возбуждения в двигателе и генераторе размещены в спинках ротора междуего полюсами. В центре полюсов ротора генератора находятся плоскиекомпенсационные постоянные магниты, размещенные в плоскостях, проходящих черезось генератора.
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Изобретение связано с использованиемтрехфазных синхронных машин специальной конструкции с возбуждением отпостоянных магнитов, НО 2 К 21/27.В настоящее время широко известны конструкциитрехфазных синхронных машин (двигателей и генераторов), в том числе и свозбуждением от постоянных магнитов. Описание конструкции синхронных машин свозбуждением от постоянных магнитов могут быть приняты за прототип синхронныхмашин, предлагаемых в настоящем изобретении. Недостатком существующихсинхронных машин является то, что магнитный поток, создаваемый постояннымимагнитами полюсов ротора, пересекает проводники обмотки статора, располагаемыев пазах внутренней поверхности статора. При этом генерируемая электрическаямощность в генераторе равна требуемой механической мощности, подводимой кротору генератора (без учета потерь энергии в статоре и механических потерьэнергии в роторе). Точно также механическая мощность, развиваемая двигателем,равна мощности, потребляемой двигателем от источника питания (без учета потерьэнергии). В связи с изложенным эффективность существующих синхронных машин,принятых за прототипы, всегда меньше единицы. Технический результат, надостижение которого направлено настоящее изобретение, состоит в созданиитрехфазных электрических машин (двигателя и генератора) с эффективностью,большей единицы, объединяемых на одном валу в агрегат, позволяющий обеспечитьвыработку электроэнергии без затрат каких-либо энергоносителей. Устройствосинхронного двигателя-генератора (СДГ) состоит из трехфазного синхронногодвигателя (ТСД) и трехфазного синхронного генератора (ТСГ), находящихся наодном валу, помещенных в общий корпус. Двигатель и генератор выполнены с явновыраженными полюсами статора и ротора, с обмотками статора (ОС), намотанными“вокруг” полюсов статора. Статор, состоящий из полюсов статора (ПС) и “спинки”статора (СС), выполнен из листовой электротехнической стали. Ротор, состоящийиз полюсов ротора (ПР) и спинки ротора (СР), выполнен из монолитнойэлектротехнической стали. В спинке ротора размещены постоянные магнитывозбуждения (ПМВ).В центре полюсов ротора генератора дополнительно размещеныплоские небольшой толщины компенсационные постоянные магниты (ПМК),располагаемые в плоскости, содержащей ось генератора. Особенностью конструкциидвигателей ТСД является малая толщина постоянных магнитов возбуждения (2hПМП).Длинаполюсов статора вдоль внутренней поверхности статора (lПС)составляет 60 “электрических” градусов; длина полюсов ротора вдоль наружнойповерхности ротора (lПР ) составляет 120 “электрических” градусов. Числополюсов статора (mC) кратно трем и равно mC=3Р, где Р — число пар полюсов в машине. Число полюсов ротора (mP) равно: mP=2P.Всечасти магнитопроводов двигателя и генератора являются “ненасыщенными”, чтопозволяет учитывать магнитное сопротивление только постоянных магнитов ивоздушных зазоров. Схематические поперечные сечения ТСД и ТСГ приведены нафиг.1
На фиг.1 приняты следующие обозначения:
1 — “спинка” статора (СС)
2 — полюса статора (ПС)
3 — обмотки статора (ОС)
4 — полюса ротора (ПР)
5 — “спинка” ротора (СР)
6 — постоянные магниты возбуждения (ПМВ)
Принцип действия синхронноймашины.
Принцип действия синхронных машин основанна взаимодействии магнитных полей статора и ротора. Схематически вращающеесямагнитное поле статора можно изобразить полюсами магнитов вращающихся впространстве со скоростью вращения магнитного поля статора
При отсутствиивнешнего вращающего момента, приложенного к валу машины, оси полей статора иротора совпадают (рис. 1 а)). Силы притяжения F действуют на ротор вдольоси полюсов и взаимно компенсируют друг друга. Угол между осями полей статора иротора равен нулю.
Если на валмашины действует тормозной момент, то ротор смещается в сторону запаздывания наугол (рис. 1 б). В результате силыпритяжения F раскладываются на составляющие, направленные вдоль оси полюсовротора ,компенсирующий внешний момент, приложенный к валу (D — диаметр точекприложения тангенциальных сил). Машина при этом работает в режиме двигателя,компенсируя расходуемую на валу механическую мощность потреблением активноймощности из сети, питающей статор.
В случае еслик ротору прикладывается внешний момент, создающий ускорение, т.е. действующий внаправлении вращения вала, картина взаимодействия полей меняется на обратную.Направление углового смещения изменяется на противоположное,соответственно изменяется направление тангенциальных сил и направление действияэлектромагнитного момента. В этом случае он становится тормозным, а машинаработает генератором, преобразующим подводимую в валу машины механическуюэнергию, в электрическую энергию, отдаваемую в сеть, питающую статор.
Вращающий момент в синхронной машине можетвозникать и при отсутствии собственного магнитного поля у ротора. Пусть,например, обмотка возбуждения явнополюсного ротора отключена от питания. Тогдакартина магнитного поля машины будет иметь вид, представленный на рисунке 2.Здесь явнополюсный ротор связан с системой координат d-q таким образом,что ось d-d совмещена с осью симметрии в направлении максимальноймагнитной проводимости, а ось q-q с направлением минимальной магнитнойпроводимости. Ось d-d совпадает также с осью магнитного полявозбужденного ротора и называется продольной осью, а ось q-qсоответственно – поперечной.
При отсутствиивнешнего момента явнополюсный ротор займет положение, при котором продольнаяось будет совпадать с осью полюсов магнитного поля статора. Это положениесоответствует минимальному магнитному сопротивлению для магнитного потокастатора.
Если на валмашины будет действовать тормозной момент, то ротор отклонится на угол .При этом магнитное поле статора деформируется, т.к. магнитный поток будетстремиться замкнуться по пути наименьшего сопротивления. Магнитный потокопределяется через магнитные силовые линии, т.е. линии, направление которых вкаждой точке соответствует направлению действия силы, поэтому деформация поляприведет, также как и в случае возбужденного ротора, к появлению результирующейтангенциальной силы . Это отличие возникает вследствиетого, что у возбужденного ротора возможно только одно положение устойчивогоравновесия при
Вращающиймомент, возникающий в машине с невозбужденным ротором за счет тангенциальныхсил называется реактивным моментом и его зависимость от выражается функцией
Очевидно, чтонеобходимым условием возникновения реактивного момента является магнитнаяасимметрия ротора.
Рассмотренныевыше процессы в синхронной машине наглядно демонстрируют принцип обратимостиэлектрических машин, т.е. способность любой электрической машины изменятьнаправление преобразования энергии на противоположное. В синхронных машинах дляперехода от режима работы двигателем в режим генератора достаточно изменитьнаправление (знак) момента нагрузки на валу.
Особенности пуска двигателей с постояннымимагнитами.
Подавляющее большинство синхронныхдвигателей пускается как асинхронные, для чего они снабжаются пусковойобмоткой. Однако в отличие от двигателей с электромагнитным возбуждениемпостоянные магниты на время пуска невозможно «отключить». Поэтому впроцессе разгона поток постоянных магнитов индуцирует в обмотке статора ЭДС,под действием которой по обмотке через источник протекает ток (рис. 3.4). Этотток, взаимодействуя с полем постоянного магнита, создает момент по своейприроде аналогичный асинхронному моменту, развиваемому пусковой обмоткой.Однако этот момент является не движущим, а тормозящим.
Частота тока в пусковой обмоткепропорциональна скольжению (f2 = f1s), поэтому максимумасинхронного момента лежит в области малых скольжений. Частота тока в обмоткестатора от поля постоянных магнитов пропорциональна скорости ротора [n2= n1(1-s)], поэтому максимум тормозного момента лежит в областималых значений n, т.е. больших скольжений.
Тормозной момент образует провал впусковой характеристике двигателя, тем самым создает опасность застревания егона малой скорости вращения (рис. 3.5). Понятно, что с этой точки зрения надо быиметь небольшой поток постоянного магнита, т.е. небольшую ЭДС Е0,хотя винтересах работы в синхронном режиме должно быть наоборот. Оптимальное отношениеЕ0/U для двигателей мощностью 10 -120 Вт при f = 50 Гц,p = 2лежит впределах 0,5 — 0,8.
Уравнение ЭДС и момент двигателя всинхронном режиме. Изобщего курса электрических машин известно несколько форм уравнения напряжениясинхронного двигателя с явновыраженными возбужденными полюсами, например такая:
. Синхронные двигатели с постояннымимагнитами на роторе с радиальным (а) и аксиальным (б) расположением магнитов. 1– постоянный магнит; 2 – сердечник из электротехнической стали; 3 – стержнипусковой обмотки; 4 – короткозамыкающие кольца.
где: 0 — ЭДС, индуцированная в статоре полем ротора; d,q — ток статора по осям d и q; xd, xq — синхронныеиндуктивные сопротивления статора по продольной и поперечной осям; r1 — активное сопротивление статора.
Уравнению соответствует векторнаядиаграмма нарис.. Из диаграммы можно вывести выражения токов Idи Iq
. . Векторная диаграмма СМД.
где — степень возбужденности ротора.
Полный ток статора
Если пренебречь активнымсопротивлением статора (r1 = 0), формула момента
Вращающий момент двигателя являетсясуммой двух моментов: электромагнитного М1, обусловленноговзаимодействием полей статора и ротора и реактивного момента М2,обусловленного неодинаковой проводимостью по продольной и поперечной осям.
Не учет активного сопротивлениястатора в микромашинах приводит к значительным количественным ошибкам. Вместе стем его учет сильно усложняет математический анализ процессов, происходящих вмашине /см. [1], формула(4.24)/. Однако и в этом случае формула момента похожана
где: AЭ — амплитудаэлектромагнитного момента с учетом r1; Adq — амплитудареактивного момента с учетом r1; αЭ, αdq — углы сдвига первой и второй составляющих момента; MТ — тормозноймомент.
Рассматривая выражение (3.2'),приходим к выводу, что вращающий момент синхронного микродвигателя с учетом r1, так же как и без учета r1, является суммой двух синусоид, толькосмещенных влево на углы αЭ и αdq и вниз навеличину тормозного момента МТ.
Смещение синусоид влево (в сторонуменьших углов) можно пояснить с помощью векторной диаграммы рис. 3.2, накоторой пунктиром показан вектор напряжения, замыкающий диаграмму, и угол q приr1 = 0. Из диаграммы видно, что учет активного сопротивленияприводит к уменьшению угла между векторами ЭДС и напряжения сети. Это даетоснование утверждать, что момент наступает при меньшем угле. Смещение синусоидвниз объясняется потерями в обмотке статора, которые бы не учитывались при r1= 0, следовательно, меньшей полезной мощностью, а значит и меньшим моментомдвигателя.
Двигатели с радиальным расположениеммагнитов.Рольобмотки возбуждения здесь выполняет блок постоянных магнитов типа звездочки, накоторый напрессован кольцевой пакет из электротехнической стали. В пазах кольцарасполагается пусковая короткозамкнутая обмотка и имеются прорези, размерыкоторых выбираются из условия хорошего пуска и максимального использованияэнергии постоянных магнитов в синхронном режиме.
Свойства двигателя во многом зависятот того, насколько удачно выбраны размеры этих прорезей. В целях предохранениямагнитов от размагничивания и увеличения асинхронного пускового момента прорезидолжны быть минимальными. Однако не следует забывать о том, что это приводит кросту потоков рассеяния и ухудшению свойств двигателя в синхронном режиме.
Особенностью двигателей радиальнойконструкции является большое магнитное сопротивление по продольной оси по сравнениюс сопротивлением по поперечной оси. Объясняется это низкой проводимостьюпостоянного магнита, по которому проходит поток продольной реакции якоря(проводимость магнита лишь раз в 10 больше проводимости воздуха, тогда какпроводимость электротехнической стали в тысячи раз превышает ее).
Поток поперечной реакции якоряпроходит по полюсным наконечникам из электротехнической стали и, естественно,встречает малое магнитное сопротивление. Поэтому в данных двигателях ld
Стабилизация магнитовв этих двигателях происходит в режиме противовключения, что имеет место при частоте вращения, близкой к синхронной.
(Стабилизацией постоянного магнита называется воздействие на него внешней размагничивающей силой такой величины, больше которой в практике эксплуатации двигателя не встретится.)
В двигателях аксиальной конструкциимагнитные сопротивления по продольной и поперечной осям практически одинаковы,т.е. xd≈ xq, поэтому их можно рассматривать какмашины с неявновыраженными полюсами. Стабилизация магнитов в этих машинахпроисходит в режиме короткого замыкания.
Рис. 3.3. Зависимости моментов от угла&teta; при xd xq (б).
Положительными свойствами синхронныхдвигателей с постоянными магнитами являются: высокая стабильность скоростивращения в синхронном режиме, сравнительно высокие энергетические показатели(КПД и cosj), повышенная перегрузочная способность, большая удельная мощность(мощность на единицу массы), хорошая синфазность вращения, что часто требуетсяв групповых приводах. Недостатки – более высокая стоимость, меньший пусковоймомент и больший пусковой ток по сравнению с аналогичными реактивнымидвигателями.
Характеристики магнитотвердыхматериалов, применяемых в магнитных системах Синхронных машин.
Основные требования к магнитам:
1. Достаточновысокая остаточная индукция Вя, коэрцитивная сила Нс,энергетическое произведение ВdHD(ВdиHD–координаты экстремальной точки, определяющий максимум произведения) м тем,чтобы получить уменьшенную массу и объем машины.
2. Удовлетворительныетехнологические и механические свойства, обеспечивающие изготовление магнитовзаданной формы и размеров, их прочное сочленение с другими деталями и надежнуюработу во вращающихся конструкцияхроторов.
3. Эффективноепротиводействие размагничивающим полям при пусках и перегрузках двигателя.
4. Стабильностьмагнитных свойств во времени.
5. Стабильностьмагнитных свойств при изменении окружающей температуры в диапазоне: по крайнеймере от -40, -500С до +2000,2500С
6. Умереннаястоимость.
Из известных в настоящее время магнитотвердыхматериалов, в свете указанных требований, целесообразно рассматривать следующиегруппы:
1. не деформируемые сплавы на основе системы Fe-Al-Ni(Ални) иFe-Al-Ni-Co (Алнико): литые и металлокерамические.
2. Микропорошковые композиции, например, из порошков Feи Fe---Co, особенно с удлиненными частицами.
3. Микропорошковые композиции на основередкоземельных элементов, например, из порошков SmCo5
4. Ферриты.
Хорошие механические и магнитные свойства имеютсплавы на основе драгоценных металлов, например, сплавы платины, но они оченьдороги и их применение не целесообразно.
Литыесплавы типа Алико имеют хорошие магнитные свойства при магнитной текстуре ивысокие при направленной кристаллизации. В лучших образцах остаточная магнитнаяиндукция Вrравна
1.12-1,14 Тл при коэрцитивной силе до 15-125 кА/мэнергетическое произведение (ВdHd) достигает 96ТлкА/м. К недостаткам таких материалов относиться трудность обработки, невысокие механические свойства, в частности, малая механическая прочность: прделпрочности на разрыв 2.1-6.4 кгс/мм2, на из гиб – 5,4-16,8 кгс/мм2.Такаямеханическая прочность ограничивает диаметр вращающихся магнитов, частотувращения роторов электрических машин(до100м/с) и, следовательно диапазон мощностей, в которых могли бы применятьсяпостоянные магниты.
Кроме того, эти материалы имеют довольно сложнуютехнологию, что обуславливает их сравнительно высокую стоимость.
Металлокерамические материалы имеют несколькохудшие магнитные свойства, но часто не требуют обработки и имеют более высокиемеханические характеристики: придел прочности на растяжение до 21-33 кгс/мм2,предел прочности на изгиб до 50-60 кгс/мм2.
Металлокерамические магниты выдерживаютлинейную скорость вращения до 140 м/сек и выше, тогда как литые магниты приэтом разрушаются. Энергетическое произведение доходит до 38 тлкА/м.
Ряд магнитов из тонких порошков имеют хорошиемагнитные свойства: например, из порошка Fe-Coс удлиненными частицами, для которых коэрцитивная сила равна 78,4 кА/м,а остаточное индукция Вr=1,08тл.
Магниты из сплавов на основе редкоземельныхэлементов имеют наивысшие магнитные свойства: энергетическое произведениедостигает величины 160-240тлкА/м, а коэрцитивная сила 800кА/м.
Механические свойства этих сплавов исследованыслабо, но, во всяком случае, при использовании их в электрических машинахнеобходимо принимать меры для обеспечения механической прочности магнитов. Этисплавы имеют высокую стоимость. Вместе с тем, рекордные магнитные свойства этихсплавов обуславливают все более широкое их применение.
Ферритные магнитотвердые материалы имеют рядхороших характеристик, в частности, довольно высокую коэрцитивную силу(до240-270 кА/м), и они сравнительно дешевые, но в тоже время у них естьсущественный недостаток: значительное изменение магнитных свойств при изменениетемпературы. Так, для магнитов из ферритов бария температурный коэффициентостаточной индукции равен 0,2% на 10С в интервале температур от -700до +2000С. Несмотря на указанный недостаток, ферритныемагнитотвердые материалы могут быть рекомендованы для использования внеответственных электрических машинах.
Список литературы:
Исследование свойств постоянных магнитов1973г Берников
Синхронные машины (Специальный курс)1987г М.Г.Ахматов
Основы теории переходных процессовсинхронной машины. 1981г А.И Важнов
М.М.Кацман “Электрические машины итрансформаторы”, часть II, Москва, издательство “Высшая школа”, 1976 г.