Реферат по предмету "Теплотехника"


Измерение температуры

Министерство общего и профессионального образования Российской Федерации Новокузнецкий филиал – Институт Кемеровского Государственного Университета Кафедра технической кибернетики Факультет информационных технологий Выполнил: студент III курса ФИТ группы ИАС 98-1 Батенев А. А. Курсовая работа

По курсу "Метрология и измерения" Руководитель: ст. преп. Ельцов В. П. Курсовая работа защищена с оценкой “ ” (подпись руководителя) “ ” 2001 г. Оглавление ВВЕДЕНИЕ 3 ПОНЯТИЕ О ТЕМПЕРАТУРЕ И О ТЕМПЕРАТУРНЫХ ШКАЛАХ 4 УСТРОЙСТВА ДЛЯ ИЗМЕРЕНИЯ ТЕМПЕРАТУР 1. МЕТОДЫ И ТЕХНИЧЕСКИЕ СРЕДСТВА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ 7 1.1

ТЕРМОМЕТРЫ РАСШИРЕНИЯ И ТЕРМОМЕТРЫ МАНОМЕТРИЧЕСКИЕ 7 Жидкостные стеклянные термометры 7 Манометрические термометры 2. ТЕРМОЭЛЕКТРИЧЕСКИЕ ТЕРМОМЕТРЫ 11 Устройство термоэлектрических термометров 12 Стандартные и нестандартные термоэлектрические термометры 13 Поверка технических ТТ 3. ЭЛЕКТРИЧЕСКИЕ ТЕРМОМЕТРЫ

СОПРОТИВЛЕНИЯ 15 Типы и конструкции ТС 16 Мостовые схемы измерения сопротивления термометров 17 Уравновешенный мост 17 Неуравновешенный мост 18 Автоматические уравновешенные мосты 4. ИЗМЕРЕНИЕ ТЕРМО-ЭДС КОМПЕНСАЦИОННЫМ ПУТЕМ 5. АВТОМАТИЧЕСКИЕ ПОТЕНЦИОМЕТРЫ 6. БЕСКОНТАКТНОЕ ИЗМЕРЕНИЕ ТЕМПЕРАТУРЫ 22 Основные понятия и законы излучения 22 Пирометры частичного излучения 23

Оптические пирометры 23 Фотоэлектрические пирометры 24 Пирометры спектрального отношения 26 Пирометры суммарного излучения 2. РАСЧЕТНОЕ ЗАДАНИЕ 1. РАСЧЕТ ИЗМЕРИТЕЛЬНОЙ СХЕМЫ АВТОМАТИЧЕСКОГО УРАВНОВЕШЕННОГО МОСТА 2. РАСЧЕТ СОПРОТИВЛЕНИЙ ИЗМЕРИТЕЛЬНОЙ СХЕМЫ АВТОМАТИЧЕСКОГО ПОТЕНЦИОМЕТРА 32

ВЫВОД 35 СПИСОК ЛИТЕРАТУРЫ 36 ВВЕДЕНИЕ Высокопроизводительная, экономичная и безопасная работа технологических агрегатов металлургической промышленности требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования. Автоматический контроль является логически первой ступенью автоматизации, без успешного функционирования которых невозможно создание эффективных АСУ ТП. В истории развития мировой техники можно выделить три

основных направления: создание машин-двигателей (водяных, ветряных, паровых, внутреннего сгорания, электрических), которые освободили человека от тяжелого физического труда; создание машин-орудий, т.е. станков и технологического оборудования различного назначения; создание устройств для контроля и управления машинами-двигателями, машинами-орудиями и технологическими процессами. В современной техники для решения задач автоматического контроля все шире применяют полупроводники, лазеры, радиоактивные материалы,

ЭВМ. Металлургическая промышленность является одной из основных отраслей народного хозяйства, в ней занято большое количество трудящихся, обслуживающих мощные и сложные агрегаты. При высоких производительностях даже самые небольшие ошибки управления агрегатом приводят к большим абсолютным потерям металла, топлива, электроэнергии. По этому возрастает роль автоматического контроля и управления производственными процессами.

Все основные металлургические агрегаты (доменные и мартеновские печи, прокатные станы) оснащены различными системами автоматического контроля и управления и в значительной степени механизированы. Основными параметрами (величинами), которые необходимо контролировать при работе металлургических агрегатов, является температура различных сред; расход, давление, состав газов и жидкостей; состав металлов; геометрические размеры проката. Автоматическими приборами измеряется температура: в рабочих пространствах металлургических

печей, выплавляемого и нагреваемого металла, элементов огнеупорной кладки, конструкции регенераторов и рекуператоров, а так же продуктов сгорания топлива. Понятие о температуре и о температурных шкалах Температурой называют величину, характеризующую тепловое состояние тела. Согласно кинетической теории температуру определяют как меру кинетической энергии поступательного движения молекул. Отсюда температурой называют условную статистическую величину, прямо пропорциональную

средней кинетической энергии молекул тела. Все предлагаемы температурные шкалы строились (за редким исключением) одинаковым путем: двум (по меньшей мере) постоянным точкам присваивались определенные числовые значения и предполагалось, что видимое термометрическое свойство используемого в термометре вещества линейно связанно с температурой t: , где k – коэффициент пропорциональности; E – термометрическое свойство; D – постоянная. Принимая для двух постоянных точек определенные значения

температур, можно вычислить постоянные k, D и на этой основе построить температурную шкалу. При изменении температуры коэффициент k меняется, при чем различно для разных термометрических веществ. Поэтому термометры, построенные на базе различных термометрических веществ с равномерной градусной шкалой, давали при температурах, отличающихся от температур постоянных точек, различные показания. Последние становились особенно заметными при высоких (много больших температуры кипения воды) и очень

низких температурах. Термодинамическая шкала тождественна шкале идеального газа, построенной на зависимости давления идеального газа от температуры. Законы изменения давления от температуры для реальных газов отклоняются от идеальных, но поправки на отклонения реальных газов невелики и могут быть установлены с высокой степенью точности. Поэтому, наблюдая за расширением реальных газов и вводя поправки, можно оценить температуру по термодинамической шкале. В начале

XX века широко применялись шкалы Цельсия и Реомюра, а в научных работах – также шкалы Кельвина и водородная. Пересчеты с одной шкалы на другую создавали большие трудности и приводили к ряду недоразумений. Поэтому в 1933 году было принято решение о введении Международной температурной шкалы (МТШ). Опыт применения МТШ показал необходимость внесения в нее ряда уточнений и дополнений, чтобы по возможности максимально

приблизить ее к термодинамической шкале. Поэтому МТШ была пересмотрена и приведена в соответствие с состоянием знаний того времени. В 1960 году было утверждено новое "Положение о международной практической температурной шкале 1948 года. Редакция 1960 г.". Устройства для измерения температур Температуру измеряют с помощью устройств, использующих различные термометрические свойства жидкостей,

газов и твердых тел. Существуют десятки различных устройств применяемых в промышленности, при научных исследованиях, для специальных целей. В таблице 1 приведены наиболее распространенные устройства для измерения температуры и практические пределы их применения. Таблица 1 Термометрическое свойство Наименование устройства Пределы длительного применения, 0С Нижний Верхний Тепловое расширение

Жидкостные стеклянные термометры -190 600 Изменение давления Манометрические термометры -160 60 Изменение электрического сопротивления Электрические термометры сопротивления. -200 500 Полупроводниковые термометры сопротивления -90 180 Термоэлектрические эффекты Термоэлектрические термометры (термопары) стандартизованные. -50 1600 Термоэлектрические термометры (термопары) специальные 1300 2500

Тепловое излучение Оптические пирометры. 700 6000 Радиационные пирометры. 20 3000 Фотоэлектрические пирометры. 600 4000 Цветовые пирометры 1400 2800 1. МЕТОДЫ И ТЕХНИЧЕСКИЕ СРЕДСТВА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ 1.1 Термометры расширения и термометры манометрические Жидкостные стеклянные термометры Самые старые устройства для измерения температуры – жидкостные стеклянные

термометры – используют термометрическое свойство теплового расширения тел. Действие термометров основано на различии коэффициентов теплового расширения термометрического вещества и оболочки, в которой она находится (термометрического стекла или реже кварца). Жидкостный термометр состоит из стеклянных баллона 1, капиллярной трубки 3 и запасного резервуара 4 (рис. 1). Термометрическое вещество 2 заполняет баллон и частично капиллярную трубку.

Свободное пространство в капиллярной трубке и в запасном резервуаре заполняется инертным газом или может находиться под вакуумом. Запасной резервуар или выступающая за верхним делением шкалы часть капиллярной трубки служит для предохранения термометра о порчи при чрезмерном перегреве. В качестве термометрического вещества чаще всего применяют химически чистую ртуть. Она не смачивает стекла и остается жидкой в широком интервале температур.

Кроме ртути в качестве термометрического вещества в стеклянных термометрах применяются и другие жидкости, преимущественно органического происхождения. Например: метиловый и этиловый спирт, керосин, пентан, толуол, галлий, амальгама таллия. Основные достоинства стеклянных жидкостных термометров – простота употребления и достаточно высокая точность измерения даже для термометров серийного изготовления. К недостаткам стеклянных термометров можно отнести: плохую видимость шкалы (если не применять специальной

увеличительной оптики) и невозможность автоматической записи показаний, передачи показаний на расстояние и ремонта. Стеклянные жидкостные термометры имеют весьма широкое применение и выпускаются следующих основных разновидностей: 1. технические ртутные, с вложенной шкалой, с погружаемой в измеряемую среду нижней частью, прямые и угловые; 2. лабораторные ртутные, палочные или с вложенной шкалой, погружаемые в измеряемую среду до отсчитываемой температурной отметки, прямые, небольшого наружного диаметра;

3. жидкостные термометры (не ртутные); 4. повышенной точности и образцовые ртутные термометры; 5. электроконтактные ртутные термометры с вложенной шкалой, с впаянными в капиллярную трубку контактами для разрывания (или замыкания) столбиком ртути электрической цепи; 6. специальные термометры, в том числе максимальные (медицинские и другие), минимальные, метеорологические и другого назначения. У лабораторных и других термометров, градуируемых и предназначенных для измерения

при погружении в измеряемую среду до отсчитываемого деления, могут возникать систематические погрешности за счет выступающего столбика термометра. Если капиллярная трубка будет погружена в измеряемую среду не полностью, то температура выступающей части капиллярной трубки будет отличаться от температуры измеряемой среды, в результате возникнет погрешность измерения. Поправку в градусах на выступающий столбик в показания термометра можно внести по уравнению: (1) где

- коэффициент видимого объемного теплового расширения термометрической жидкости в стекле , t – действительная температура измеряемой среды 0C, tв.с. – температура выступающего столбика, измеренная с помощью вспомогательного термометра 0С, n – число градусов в выступающем столбике. У термометров, предназначенных для работы с неполным погружением, может возникнуть аналогичная систематическая погрешность, если температура окружающей среды, а следовательно, и выступающего столбика будут отличаться

от его температуры при градуировке. Поправка , в этом случае (2) где - температура выступающего столбика при градуировке 0C (в первом приближении допустимо считать ), - средняя температура выступающего столбика 0С. Поправки по (1) и (2) могут иметь большие значения у термометров с органическими термометрическими жидкостями, для которых коэффициент примерно на порядок выше, чем у ртутных термометров. Манометрические термометры Действие манометрических термометров основано на использовании зависимости

давления вещества при постоянном объеме от температуры. Замкнутая измерительная система манометрического термометра состоит из (рис. 2) из чувствительного элемента, воспринимающего температуру измеряемой среды металлического термобаллона 1, рабочего элемента манометра 2, измеряющего давление в системе, длинного соединительного металлического капилляра 3. При изменении температуры измеряемой среды давление в системе изменяется, в результате

чего чувствительный элемент перемещает стрелку или перо по шкале манометра, отградуированного в градусах температуры. Манометрические термометры часто используют в системах автоматического регулирования температуры, как бесшкальные устройства информации (датчики). Манометрические термометры подразделяют на три основных разновидности: 1. жидкостные, в которых вся измерительная система (термобаллон, манометр и соединительный капилляр) заполнены жидкостью; 2. конденсационные, в которых термобаллон заполнен частично жидкостью

с низкой температурой кипения и частично – ее насыщенными парами, а соединительный капилляр и манометр – насыщенными парами жидкости или, чаще, специальной передаточной жидкостью; 3. газовые, в которых вся измерительная система заполнена инертным газом. Достоинствами манометрических термометров являются сравнительная простота конструкции и применения, возможность дистанционного измерения температуры и возможность автоматической записи показаний.

К недостаткам манометрических термометров относятся: относительно невысокая точность измерения (класс точности 1.6; 2.5; 4.0 и реже 1.0); небольшое расстояние дистанционной передачи показаний (не более 60 метров) и трудность ремонта при разгерметизации измерительной системы. Манометрические термометры не имеют большого применения на тепловых электрических станциях. В промышленной теплоэнергетике они встречаются чаще, особенно в случаях, когда по условиям взрыво –

или пожаробезопасности нельзя использовать электрические методы дистанционного измерения температуры. Поверка показаний манометрических термометров производится теми же методами и средствами, что и стеклянных жидкостных. 1.2. Термоэлектрические термометры Для измерения температуры в металлургии наиболее широкое распространение получили термоэлектрические термометры, работающие в интервале температур от -200 до +2500 0C и выше. Данный тип устройств характеризует высокая точность и надежность, возможность использования

в системах автоматического контроля и регулирования параметра, в значительной мере определяющего ход технологического процесса в металлургических агрегатах. Сущность термоэлектрического метода заключается в возникновении ЭДС в проводнике, концы которого имеют различную температуру. Для того, чтобы измерить возникшую ЭДС, ее сравнивают с

ЭДС другого проводника, образующего с первым термоэлектрическую пару AB (рис. 3), в цепи которой потечет ток. Результирующая термо-ЭДС цепи, состоящей из двух разных проводников A и B (однородных по длине), равна или (1) где и - разности потенциалов проводников A и B соответственно при температурах t2 и t1, мВ.

Термо-ЭДС данной пары зависит только от температуры t1 и t2 и не зависит от размеров термоэлектродов (длины, диаметра), величин теплопроводности и удельного электросопротивления. Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, свободные при известной и постоянной температуре t1.

Устройство термоэлектрических термометров Термоэлектрический термометр (ТТ) – это измерительный преобразователь, чувствительный элемент которого (термопара) расположен в специальной защитной арматуре, обеспечивающий защиту термоэлектродов от механических повреждений и воздействия измеряемой среды. На (рис. 4) показана конструкция технического ТТ. Арматура включает защитный чехол 1, гладкий или с неподвижным штуцером 2, и головку 3, внутри которой

расположено контактное устройство 4 с зажимами для соединения термоэлектродов 5 с проводами, идущими от измерительного прибора к термометру. Термоэлектроды по всей длине изолированы друг от друга и от защитной арматуры керамическими трубками (бусами) 6. Защитные чехлы выполняются из газонепроницаемых материалов, выдерживающих высокие температуры и агрессивное воздействие среды. При температурах до 10000С применяют металлические чехлы из углеродистой или нержавеющей

стали, при более высоких температурах – керамические: фарфоровые, карбофраксовые, алундовые, из диборида циркония и т. п. В качестве термоэлектродов используется проволока диаметром 0.5 мм (благородные металлы) и до 3 мм (неблагородные металлы). Спай на рабочем конце 7 термопары образуется сваркой, пайкой или скручиванием. Последний способ используется для вольфрам-рениевых и вольфрам-молибденовых термопар. Термоэлектрические термометры выпускаются двух типов: погружаемые, поверхностные.

Промышленность изготавливает устройства различных модификаций, отличающихся по назначению и условиям эксплуатации, по материалу защитного чехла, по способу установки термометра в точке измерения, по герметичности и защищенности от действия измеряемой среды, по устойчивости к механическим воздействиям, по степени тепловой инерционности и т. п. Стандартные и нестандартные термоэлектрические термометры Для измерения в металлургии наиболее широко применяются

ТТ со стандартной градуировкой: платинородий-платиновые (ТПП), платинородий-платинородиевые (ТПР), хромель-алюмелевые (ТХА), хромель-капелевые (ТХК), вольфрамрений-вольфрамрениевые (ТВР). В ряде случаев используют также ТТ с нестандартной градуировкой: медь-константановые, вольфрам-молибденовые (ТВР) и др. На (рис. 5) приведены градуировочные кривые ряда термопар. В условиях длительной эксплуатации при высоких температурах и агрессивном воздействии сред появляется

нестабильность градуировочной характеристики, которая является следствием ряда причин: загрязнения материалов термоэлектродов примесями из защитных чехлов, керамических изоляторов и атмосферы печи; испарения одного из компонентов сплава; взаимной диффузии через спай. Величина отклонения может быть значительной и резко увеличивается с ростом температуры и длительностью эксплуатации. Указанные обстоятельства необходимо учитывать при оценке точности измерения температуры

в производственных условиях. Поверка технических ТТ Поверка ТТ сводится к определению температурной зависимости термо-ЭДС и сравнению полученной градуировки со стандартными значениями. Градуировка производится двумя методами: по постоянным точкам или сличениям. Градуировка по постоянным (реперным) точкам является наиболее точной и применяется для образцовых термопар.

Поверяемую термопару помещают в тигель с металлом высокой чистоты, установленной в печи, и регистрируют площадку на кривой изменения термо-ЭДС по мере повышения или понижения температуры металла. Данная площадка соответствует температуре плавления или кристаллизации металла, причем более предпочтительно вести градуировку по точке кристаллизации. В качестве реперных металлов используют золото, палладий, платину и др. Методом сличения проводится градуировка образцовых термопар второго разряда и технических

ТТ. Он заключается в непосредственном измерении термо-ЭДС градуируемой термопары при постоянной температуре свободных концов t0=0 0C и различных температурах t2 рабочего спая, причем последняя определяется с помощью образцового термометра (термопары, пирометра излучения). На (рис. 6) приведена схема установки для градуировки ТТ методом сличения с образцовой термопарой. Металлический блок служит для обеспечения равенства температур

рабочих спаев образцовой и поверяемой термопар. Измерения термо-ЭДС производят с помощью переносного потенциометра с точностью измерения (отсчета) не хуже 0.1 мВ. Отсчет проводится после 10 минут выдержки при данной температуре. 1.3. Электрические термометры сопротивления В металлургической практике для измерения температур до 6500С применяются термометры сопротивления (ТС), принцип действия которых основан на использовании зависимости

электрического сопротивления вещества от температуры. Зная данную зависимость, по изменению величины сопротивления термометра судят о температуре среды, в которую он погружен. Выходным параметром устройства является электрическая величина, которая может быть измерена с весьма высокой точностью (до 0.020С), передана на большие расстояния и непосредственно использована в системах автоматического контроля и регулирования.

В качестве материалов для изготовления чувствительных элементов ТС используются чистые металлы: платина, медь, никель, железо и полупроводники. Изменение электросопротивления данного материала при изменении температуры характеризуется температурным коэффициентом сопротивления , который вычисляется по формуле , (1) где t – температура материала, 0С; R0 и Rt – электросопротивление соответственно при 0 0С и температуре t,

Ом. Сопротивление полупроводников с увеличением температуры резко уменьшается, т. е. они имеют отрицательный температурный коэффициент сопротивления практически на порядок больше, чем у металлов. Полупроводниковые термометры сопротивления (ТСПП) в основном применяются для измерения низких температур (1.5  400 К). Достоинствами ТСПП являются небольшие габариты, малая инерционность, высокий коэффициент . Однако они имеют и существенные недостатки:

1) нелинейный характер зависимости сопротивления от температуры; 2) отсутствие воспроизводимости состава и градуировочной характеристики, что исключает взаимозаменяемость отдельных ТС данного типа. Это приводит к выпуску ТСПП с индивидуальной градуировкой. Типы и конструкции ТС Для решения различных задач ТС делятся на эталонные, образцовые и рабочие, которые в свою очередь подразделяются на лабораторные

и технические. Эталонные ТС предназначены для воспроизведения и передачи шкалы МПТШ в интервале 13.81  903.89 К. Технические ТС в зависимости от назначения и конструкции делятся на: погружаемые, поверхностные и комнатные; защищенные и не защищенные от действия агрессивной среды; стационарные и переносные; термометры 1-го, 2-го и 3-го классов точности и т. д. На (рис. 7) представлены конструкции промышленных

ТС с неподвижным (а) и подвижным (б) штуцерами. Термометр состоит из чувствительного элемента 1, расположенного в защитном стальном чехле 3, на котором приварен штуцер 2 с резьбой М27х2. Провода 4, армированные фарфоровыми бусами 6, соединяют выводы чувствительного элемента с клеммной колодкой 5, находящейся в корпусе головки 7. Сверху головка закрыта крышкой 8, снизу имеется сальниковый ввод 9, через который осуществляется подвод монтажного кабеля 10.

При измерении температуры сред с высоким давлением на чехол ТС устанавливается специальная защитная (монтажная) гильза 12. Чувствительный элемент ТС выполнен из металлической тонкой проволоки с безындукционной каркасной или бескаркасной намоткой. Значительно реже в металлургической практике встречаются полупроводниковые термометры сопротивления (ТСПП) для измерения тем



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Assisi Essay Research Paper Critical EvaluationAssisi
Реферат Оптимізація кредитування малого та середнього бізнесу України
Реферат Музеус, Иоганн Карл Август
Реферат Неопухолевые заболевания прямой кишки
Реферат Финансы местного самоуправления Финляндии
Реферат Мотивационная сфера современного предпринимателя
Реферат Чистый экспорт (укр.) аналитическая работа
Реферат Untitled Essay Research Paper By Jennifer CroweAlice
Реферат А. П. Груцо воспоминания и размышления о прожитом и пережитом
Реферат Идея государственного управления экономикой уроки истории
Реферат Константин Левин и Лев Толстой герой как выразитель взглядов автора роман Анна Каренина
Реферат Сравнительный анализ лингвистического наполнения концепта ЦВЕТ в русской и английской культурах
Реферат Золотой век Екатерины II. Россия во II половине XVIII века
Реферат Риск инновационных проектов
Реферат Выездная проверка: права и обязанности организации