Реферат по предмету "Разное"


Аксиоматика

Муниципальное Общеобразовательное Учреждение Аргаяшская Средняя Общеобразовательная Школа № 1.Рефератна тему: АксиоматикаВыполнила: Мухаметова Эля. Проверила: Ческидова М.Г.Аргаяш 2008год.1Содержание1 Введение2 Геометрия Евклида3 Другие геометрии4 Геометрия Лобачевского5 Аксиоматика учебника «Геометрия 7-11» Атанасян Левон Сергеевич 6 Задачи7 Заключение8 Используемая литература2Введение«Геометрия была открыта египтянами, и возникла при измерении Земли. Это измерение было им необходимо вследствие разлития реки Нил, постоянно смывавший ей границы. Нет ничего удивительного, что эта наука, как и другие, возникла из потребности человека»- писал древнегреческий ученый Эвдем Родосский в IV веке до нашей эры.Геометрия – это одна из древнейших наук. Исследовать различные пространственные формы издавна побуждало людей их практическая деятельность. В своей работе я хочу показать, что кроме геометрии, которую изучают в школе (Геометрии Евклида или употребительной геометрии), существует еще одна геометрия, геометрия Лобачевского. В геометрии не обойтись без начальных понятий, поэтому в своей работе я хочу рассмотреть аксиоматический метод. Аксиоматический метод появился в Древней Греции, а сейчас применяется во всех теоретических науках, прежде всего в математике. Аксиоматический метод построения научной теории заключается в следующем: выделяются основные понятия, формулируются аксиомы теории, а все остальные утверждения выводятся логическим путём, опираясь на них. Основные понятия выделяются следующим образом. Известно, что одно понятие должно разъясняться с помощью других, которые, в свою очередь, тоже определяются с помощью каких-то известных понятий. Таким образом, мы приходим к элементарным понятиям, которые нельзя определить через другие. Эти понятия и называются основными.3^ Геометрия ЕвклидаМатематическая вселенная Евклида Как же выглядит в трактате Евклида математическая вселенная, составленная из фигур и чисел" С фигурами работать проще: каждый видел их на чертежах и может вообразить мысленно. Поэтому Евклид не дает строгих определений основных объектов геометрии: точки, линии, прямой, поверхности, плоскости. Вместо этого даны словесные описания важнейших свойств этих фигур. Например: "Точка есть то, что не имеет частей"; "Линия - это длина без ширины"; "Окружность - это кривая, которая около каждой точки устроена одинаково". Самые общие свойства фигур, которые многократно используются в рассуждениях и не выводятся из более глубоких фактов - эти свойства Евклид назвал аксиомами. Например: "Все прямые углы равны между собой", или "Целое больше части". Кроме аксиом, Евклид ввел ПОСТУЛАТЫ: это утверждения о свойствах основных геометрических конструкций. Например: "Через две точки проходит лишь одна прямая", или "Через точку вне прямой на плоскости проходит лишь одна прямая, не пересекающая эту прямую". Это последнее утверждение называют пятым постулатом Евклида. Конечно, представить всю геометрию в виде идеального здания из определений, аксиом, постулатов и теорем Евклид не сумел. Ведь каждое необходимое утверждение кому-то покажется скучной мелочью, а каждое интересное утверждение у кого-нибудь вызовет возражение. И это хорошо: в науке важнее всего те утверждения, которые сами интересны и не очевидны, и их отрицания обладают тем же свойством. Таков оказался пятый постулат Евклида о параллельных прямых на плоскости. Он имеет два возможных отрицания: Во-первых, можно предположить, что через точку вне прямой не проходит НИ ОДНА прямая, не пересекающая данную прямую; то есть, что параллельных прямых на плоскости вовсе нет! Во-вторых, можно предположить, что таких прямых через одну точку проходит НЕСКОЛЬКО; может быть, их бесконечно много. Евклид не рассматривал такие возможности. Он старался, сжато и полно описать единственно возможный ("плоский") геометрический мир. Только в 19 веке другие математики - Гаусс и Лобачевский, Больяи и Риман - задумались о возможном существовании многих разных геометрических миров. Тогда выяснилось, что новые миры отличаются от старого евклидова 4 мира всего одной - двумя аксиомами. Достаточно заменить пятый постулат Евклида одним из его возможных отрицаний - и мы попадаем в иной мир, носящий имя Лобачевского или Римана. Но Евклида больше беспокоило другое. Какие факты геометрии нужно включить в создаваемую энциклопедию, а какими придется пренебречь, поскольку они не совсем ясны. Например, в "Началах" используются всего две разные линии - прямая и окружность. Но в эпоху Евклида уже были известны эллипс, парабола и гипербола. Сам Евклид изучал эти кривые, даже написал о них особую книгу (которая не сохранилась - но послужила основой для сходной книги Аполлония). Почему он ни словом не упомянул о новых кривых в "Началах"" Видимо, потому, что Евклид и его современники не знали об этих линиях всего, что им хотелось знать. Например, как вычислить площадь, ограниченную эллипсом или параболой" Как провести касательную к эллипсу или гиперболе в данной точке" Это сумел сделать только Архимед - через полвека после Евклида. Автор "Начал" этого не умел - и предпочел умолчать о сложных кривых, чтобы не смущать умы новичков-геометров необоснованными рассуждениями. Видимо, Евклид был прав; так же поступают авторы современных учебников или той энциклопедии, которую вы читаете. Иначе получилось с арифметикой: здесь Евклид сам был первопроходцем. Но беда в том, что у эллинов не было удачной системы обозначений даже для натуральных чисел. Вместо цифр греки пользовались буквами; позиционной системы для записи больших чисел они не знали. Поэтому даже обычная (для нас) таблица умножения имела в Элладе вид довольно толстого свитка. А работать с числами, когда они изображены буквами, очень не просто! Этим занимается особая наука - алгебра; современники Евклида о ней не подозревали. В арифметике Евклид сделал три значительных открытия. Во-первых, он сформулировал (без доказательства) теорему о делении с остатком. Во-вторых, он придумал "алгоритм Евклида" - быстрый способ нахождения наибольшего общего делителя чисел или общей меры отрезков (если они соизмеримы). Наконец, Евклид первый начал изучать свойства простых чисел - и доказал, что их множество бесконечно. Но правда ли, что любое целое число разлагается в произведение простых чисел единственным способом" Доказать это Евклид не сумел - хотя располагал всеми необходимыми для этого средствами. Только через 5 веков после Евклида александриец Диофант заполнил 5 этот пробел строгим рассуждением. Он уже владел понятием отрицательного числа и "играл в арифметику" так же уверенно, как семью веками раньше Пифагор "играл в геометрию", работая с плоскими фигурами. Но создать богатую теорию чисел и уравнений эллины не успели вплоть до гибели Римской империи и гибели античной цивилизации в бурях 4-5 веков.^ Постулаты Евклида Евклид – автор первого дошедшего до нас строгого логического построения геометрии. В нем изложение настолько безупречно для своего времени, что в течение двух тысяч лет с момента появления его труда «Начал» оно было единственным руководством для изучающих геометрию. «Начала» состоят из 13 книг, посвященных геометрии и арифметике в геометрическом изложении. Каждая книга «Начал» начинается определением понятий, которые встречаются впервые. Так, например, первой книге предпосланы 23 определения. В частности,Определение 1. Точка есть то, что не имеет частей.Определение 2. Линия есть длины без шириныОпределение 3. Границы линии суть точки.Вслед за определениями Евклид приводит постулаты и аксиомы, то есть утверждения, принимаемые без доказательства. ПостулатыI. Требуется, чтобы от каждой точки ко всякой другой точке можно было провести прямую линию.II . И чтобы каждую прямую можно было неопределенно продолжить.III. И чтобы из любого центра можно было описать окружность любым радиусом.IV. И чтобы все прямые углы были равны.V. И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними односторонние внутренние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых.АксиомыI. Равные порознь третьему равны между собой.II. И если к ним прибавим равные, то получим равные.III. И если от равных отнимем равные, то получим равные.IV. И если к неравным прибавим равные, то получим неравные.V. И если удвоим равные, то получим равные.VI. И половины равных равны между собой.VII. И совмещающиеся равны.VIII. И целое больше части. 6IX. И две прямые не могут заключать пространства.Иногда IV и V постулаты относят к числу аксиом. Поэтому пятый постулат иногда называют XI аксиомой. По какому принципу одни утверждения относятся к постулатам, а другие к аксиомам, неизвестно.Никто не сомневался в истинности постулатов Евклида, что касается и V постулата. Между тем уже с древности именно постулат о параллельных привлек к себе особое внимание ряда геометров, считавших неестественным помещение его среди постулатов. Вероятно, это было связано с относительно меньшей очевидностью и наглядностью V постулата: в неявном виде он предполагает достижимость любых, как угодно далеких частей плоскости, выражая свойство, которое обнаруживается только при бесконечном продолжении прямых.«Начала» Евклид В III в. до н.э., в Александрии появилась книга Евклида с тем же названием, в русском переводе "Начала". От латинского названия "Начал" произошёл термин "элементарная геометрия". Несмотря на то, что сочинения предшественников Евклида до нас не дошли, мы можем составить некоторое мнение об этих сочинениях по "Началам" Евклида. В "Началах" имеются разделы, логически весьма мало связанные с другими разделами. Появление их объясняется только тем, что они внесены по традиции и копируют "Начала" предшественников Евклида. "Начала" Евклида состоят из 13 книг. 1 - 6 книги посвящены планиметрии, 7 - 10 книги - об арифметике и несоизмеримых величинах, которые можно построить с помощью циркуля и линейки. Книги с 11 по 13 были посвящены стереометрии. "Начала" начинаются с изложения 23 определений и 10 аксиом. Первые пять аксиом - "общие понятия", остальные называются "постулатами". Первые два постулата определяют действия с помощью идеальной линейки, третий - с помощью идеального циркуля. Четвёртый, "все прямые углы равны между собой", является излишним, так как его можно вывести из остальных аксиом. Последний, пятый постулат гласил : "Если прямая падает на две прямые и образует внутренние односторонние углы в сумме меньше двух прямых, то, при неограниченном продолжении этих двух прямых, они пересекутся с той стороны, где углы меньше двух прямых". Пять "общих понятий" Евклида являются принципами измерения длин, углов, площадей, объёмов : "равные одному и тому же равны между собой", "если к равным прибавить равные, суммы равны между собой", "если от равных отнять равные, остатки равны между собой", "совмещающиеся друг с другом равны между собой", "целое больше части". 7 Далее началась критика геометрии Евклида. Критиковали Евклида по трём причинам : за то, что он рассматривал только такие геометрические величины, которые можно построить с помощью циркуля и линейки; за то, что он разрывал геометрию и арифметику и доказывал для целых чисел то, что уже доказал для геометрических величин, и, наконец, за аксиомы Евклида. Наиболее сильно критиковали пятый постулат, самый сложный постулат Евклида. Многие считали его лишним, и что его можно и нужно вывести из других аксиом. Другие считали, что его следует заменить более простым и наглядным, равносильным ему : "Через точку вне прямой можно провести в их плоскости не более одной прямой, не пересекающей данную прямую". Критика разрыва между геометрией и арифметикой привела к расширению понятия числа до действительного числа. Споры о пятом постулате привели к тому, что в начале XIX века Н. И. Лобачевский, Я. Бойяи и К. Ф. Гаусс построили новую геометрию, в которой выполнялись все аксиомы геометрии Евклида, за исключением пятого постулата. Он был заменён противоположным утверждением : "В плоскости через точку вне прямой можно провести более одной прямой, не пересекающей данную". Эта геометрия была столь же непротиворечивой, как и геометрия Евклида.8^ Другие геометрии Исследования Гаусса по неевклидовой геометрии Высокая оценка гауссом открытия Лобачевского была связана с тем, что Гаусс, еще с 90-х годов XVIII в. занимавшийся теорией параллельности линий ,пришел к тем же выводам, что и Лобачевский. Свои взгляды по этому вопросу Гаусс не публиковал, они сохранились только в его черновых записках и в немногих письмам к друзьям. В 1818 г. в письме к австрийскому астроному Герлингу (1788-1864) он писал: «Я радуюсь, что вы имеете мужество высказаться так, как если бы Вы признавали ложность нашей теории параллельных, а вместе с тем и всей нашей геометрии. Но осы, гнездо которых Вы потревожите, полетят Вам на голову»; по-видимому, под «потревоженными осами» Гаусс имел в виду сторонников традиционных взглядов на геометрию, а также априоризма математических понятий.^ Исследования Яноша Бояй по неевклидовой геометри


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Европейская валютная система 2
Реферат Global Challenges And The Focus Of U.S.
Реферат Анализ себестоимости продукции 3
Реферат Анализ товарно материальных запасов
Реферат Синтаксические особенности научных текстов Л.В. Щербы
Реферат Ecommerce Essay Research Paper Many new and
Реферат Анализ использования трудовых ресурсов и фонда заработной платы
Реферат Анализ финансового состояния предприятия на примере ЗАО Тотус
Реферат Аналіз стану ПДВ на Україні
Реферат Анализ доходов и расходов предприятия ОАО Брянский хлебокомбинат Каравай
Реферат Социология: предмет, функции и законы
Реферат Анализ основных показателей эффективности предприятия общественного питания
Реферат Анализ состава бухгалтерской отчетности
Реферат Удосконалення управління підприємством за допомогою маркетингу
Реферат Анализ финансового состояния на примере ЗАО Промтэкс