Реферат по предмету "Разное"


А. И. Музыкантский Когда речь заходит о самых выдающихся открытиях XX в., обычно называют теорию относительности Эйнштейна, квантовую механику, принцип неопределенности Гейзенберга. Однако многие крупные ученые матема

Теория противоречивости бытия1А.И. МузыкантскийКогда речь заходит о самых выдающихся открытиях XX в., обычно называют теорию относительности Эйнштейна, квантовую механику, принцип неопределенности Гейзенберга. Однако многие крупные ученые - математики и философы - к числу величайших достижений научной мысли минувшего столетия относят и теорему Гёделя. Ведь если эпохальные прорывы в области физики дали воз­можность человеческому разуму постичь новые законы природы, то работа Гёделя позволила лучше понять принципы действия самого человеческого разума и оказала глубокое влияние на мировоззрение и культуру нашей эпохи.^ Кто же такой Гёдель? Курт Гёдель родился 28 апреля 1906 г. в Австро-Венгрии, в моравском городе Брно (в ту пору он назывался Брюнн). В 18 лет он поступил в Венский университет, где сначала изучал физику, но через два года переключился на математику. Из­вестно, что такая смена научных интересов произошла во многом под влиянием книги Бертрана Рассела «Введение в философию ма­тематики». Ещё одним источником, оказавшим существенное влия­ние на формирование Гёделя как ученого, было его участие в работе «Венского кружка». Под этим именем в историю науки вошло собра­ние блестящих ученых - математиков, логиков, философов, которые регулярно собирались в Вене с конца 20-х и до середины 30-х годов XX в. В работе «Венского кружка» в разное время участвовали такие ученые, как Рудольф Карнап, Отто Нейрат, Герберт Фейгль, Мориц Шлик. С их деятельностью связывают становление философского позитивизма. Но фактически тематика кружка охватывала осмысле­ние общего места научного знания в познании природы и общества. Несколько международных конференций, организованных в разных европейских научных центрах, позволяют говорить о выдающейся роли, которую сыграл «Венский кружок» в становлении фунда­ментального научного знания ХХ в. К. Гёдель принимал участие практически во всех «четверговых» заседаниях кружка и в органи­зованных им международных конференциях. Деятельность кружка в Австрии прервалась в 1936 г., когда его руководитель Мориц Шлик был убит студентом-нацистом на ступенях Венского университета. Большинство членов кружка эмигрировали в США. Туда же пере­брался и К. Гёдель. Со временем он получил американское граж­данство, работал в Институте высших исследований в Принстоне. В том же городе он и умер в 1978 г. Такова была внешняя канва его жизни. Знакомые и коллеги по работе запомнили его как человека замкнутого, болезненно ранимого, отрешенного от окружающего мира, полностью погруженного в свои мысли. О том, что логическое постижение мира занимало главное ме­сто в жизни ученого, говорит любопытная деталь его биографии. В 1948 г., когда решался вопрос о получении им американского граж­данства, Гёдель должен был в соответствии с принятой процедурой сдать что-то вроде устного экзамена по азам американской консти­туции. Подойдя к вопросу со всей научной добросовестностью, он досконально изучил документ, и пришел к выводу, что в США законным путем, без нарушения конституции может быть установ­лена диктатура. Подобное открытие чуть не стоило ему провала на испытаниях, когда он вступил в дискуссию с принимавшим зачет чиновником, который, разумеется, считал основной закон своего го­сударства величайшим достижением политической мысли. Друзья, среди которых был Альберт Эйнштейн, выступивший одним из двух поручителей Гёделя при получении им гражданства, уговорили его повременить с развертыванием своей аргументации хотя бы до при­несения присяги. Позднее история получила любопытный эпилог: четверть века спустя другой американец, Кеннет Эрроу, удостоился Нобелевской премии за доказательство в общем виде утверждения, к которому пришел Гёдель, изучив американскую конституцию.Что же доказал Гёдель? Прежде чем перейти к изложению теоремы, обессмертившей имя Гёделя, необходимо хотя бы вкрат­це рассказать о том, перед какими проблемами оказалась к концу 20-х годов ХХ в. математика, точнее, её раздел, выделившийся на ру­беже XIX-XX вв. и получивший название «основания математики». Но вначале, пожалуй, стоит остановиться на школьном курсе гео­метрии, который и сейчас во многом повторяет «Начала» Евклида, написанные более 2 тыс. лет тому назад. В традиционных учебниках сначала приводятся некоторые утверждения (аксиомы) о свойствах точек и прямых на плоскости, из них путем логического построения в соответствии с правилами «аристотелевской» логики выводится справедливость разных важных и полезных геометрических фактов (теорем). Например, одна из аксиом утверждает, что через две точки проходит одна и только одна прямая, другое утверждение - знаме­нитый пятый постулат, от которого отказался Лобачевский в своей неевклидовой геометрии, касается параллельных прямых и т.д. Ис­тинность аксиом принимается как нечто очевидное и не требующее доказательств. Заслуга греческого геометра в том, что он постарался изложить всю науку о пространственном расположении фигур как набор следствий, вытекающих из нескольких базовых положений. В конце XIX в. все пробелы евклидовых «Начал» (с точки зрения возросших требований математиков к строгости и точности своих рассуждений) были заполнены. Итогом новейших исследований стала книга немецкого математика Давида Гильберта «Основания геометрии». Успех методики Евклида побудил учёных распространить его принципы и на другие разделы математики. После геометрии наста­ла очередь арифметики. В 1889 г. итальянский математик Джузеппе Пеано впервые сформулировал аксиомы арифметики, казавшиеся до смешного очевидными (существует нуль; за каждым числом сле­дует ещё число и т.д.), но на самом деле абсолютно исчерпывающие. Они играли ту же роль, что и постулаты великого грека в геометрии. Исходя из подобных утверждений, с помощью логического рассуж­дения можно было получить основные арифметические теоремы. В тот же период немецкий математик Готлоб Фреге выдвинул ещё более амбициозную задачу. Он предложил не просто аксиома­тически утвердить основные свойства исследуемых объектов, но и формализовать, кодифицировать сами методы рассуждений, что позволяло записать любое математическое рассуждение по опре­деленным правилам в виде цепочки символов. Свои результаты Фреге опубликовал в труде «Основные законы арифметики», пер­вый том которого вышел в 1893 г., а второй потребовал ещё десяти лет напряженной работы и был полностью завершен лишь в 1902 г. С именем и научными изысканиями Фреге связана, пожалуй, одна из самых драматических историй в развитии науки о числах. Когда второй том был уже в печати, ученый получил письмо от мо­лодого английского математика Бертрана Рассела. Поздравив колле­гу с выдающимися результатами, Рассел, тем не менее, указал на одно обстоятельство, прошедшее мимо внимания автора. Коварным «обстоятельством» был получивший впоследствии широкую извест­ность «парадокс Рассела», представлявший собой вопрос: будет ли множество всех множеств, не являющихся своими элементами, сво­им элементом? Фреге не смог немедленно разрешить загадку. Ему не оставалось ничего другого, как только добавить в послесловии к выходящему из печати второму тому своей книги полные горечи слова: «Вряд ли что-нибудь может быть более нежелательным для ученого, чем обнаружить, что основания едва завершенной работы рухнули. Письмо, полученное мной от Бертрана Рассела, постави­ло меня именно в такое положение...» Огорченный математик взял академический отпуск в своем университете, потратил массу сил, пытаясь подправить свою теорию, но все было тщетно. Он прожил ещё более двадцати лет, но не написал больше ни одной работы по арифметике. Однако Расселу удалось вывести вариант формальной систе­мы, позволяющий охватить всю математику и свободный от всех известных к тому времени парадоксов, с опорой именно на идеи и работы Фреге. Полученный им результат, опубликованный в 1902 г. в книге «Principia Mathematica» (написанной совместно с А.Н. Уайтхедом), фактически стал аксиоматизацией логики, а Д. Гильберт считал, что его «можно рассматривать как венец всех усилий по аксиоматизации науки». Была и ещё одна причина столь пристального интереса ма­тематиков к основаниям своей дисциплины. Дело в том, что на рубеже XIX и XX столетий в теории множеств были обнаружены противоречия, для обозначения которых был придуман эвфемизм «парадоксы теории множеств». Наиболее известный из них - зна­менитый парадокс Рассела - был, увы, не единственным. Более того, для большинства учёных было очевидно, что за открытием новых странностей дело не станет. Их появление оказало на ма­тематический мир, по выражению Гильберта, «катастрофическое воздействие», поскольку теория множеств играла роль фундамента, на котором возводилось всё здание науки о числах. «Перед лицом этих парадоксов надо признать, что положение, в котором мы пребы­ваем сейчас, на длительное время невыносимо. Подумайте: в мате­матике - этом образце надежности и истинности - понятия и умоза­ключения, как их всякий изучает, преподает и применяет, приводят к нелепостям. Где же тогда искать надежность и истинность, если даже само математическое мышление дает осечку?», - сокрушался Гильберт в своем докладе на съезде математиков в июне 1925 г. Таким образом, впервые за три тысячелетия математики вплот­ную подошли к изучению самых глубинных оснований своей дисцип­лины. Сложилась любопытная картина: любители цифр научились четко объяснять, по каким правилам они ведут свои вычисления, им оставалось лишь доказать «законность» принятых ими оснований с тем, чтобы исключить любые сомнения, порождаемые злополуч­ными парадоксами. И в первой половине 20-х годов великий Гиль­берт, вокруг которого сложилась к тому времени школа блестящих последователей, в целой серии работ наметил план исследований в области оснований математики, получивший впоследствии название «Гёттингенской программы». В максимально упрощенном виде её можно изложить следующим образом: математику можно предста­вить в виде набора следствий, выводимых из некоторой системы аксиом, и доказать, что: 1. Математика является полной, т.е. любое математическое утвер­ждение можно доказать или опровергнуть, основываясь на правилах самой дисциплины. 2. Математика является непротиворечивой, т.е. нельзя доказать и одновременно опровергнуть какое-либо утверждение, не нарушая принятых правил рассуждения. 3. Математика является разрешимой, т.е., пользуясь правилами, можно выяснить относительно любого математического утвержде­ния, доказуемо оно или опровержимо. Фактически программа Гильберта стремилась выработать не­кую общую процедуру для ответа на все математические вопросы или хотя бы доказать существование таковой. Сам учёный был уверен в утвердительном ответе на все три сформулированных им вопроса: по его мнению, математика действительно была полной, непротиворечивой и разрешимой. Оставалось только это доказать. Более того, Гильберт полагал, что аксиоматический метод может стать основой не только математики, но и науки в целом. В 1930 г. в статье «Познание природы и логика» он писал: «...даже в самых обширных по своему охвату областях знания нередко бывает доста­точно небольшого числа исходных положений, обычно называемых аксиомами, над которыми затем чисто логическим путем надстраи­вается всё здание рассматриваемой теории». Какими были бы для дальнейшего развития науки последствия успеха Гильберта и его школы? Если бы, как он считал, вся мате­матика (и наука в целом) сводилась к системе аксиом, то их можно было бы ввести в вычислительную машину, способную по про­грамме, следующей общим логическим правилам, обосновать лю­бое утверждение (т.е. доказать теорему), вытекающее из исходных утверждений. Будь теория Гильберта реализована, работающие в круглосуточ­ном режиме суперкомпьютеры непрерывно доказывали бы всё новые и новые теоремы, размещая их на бесчисленных сайтах «всемирной паутины». Вслед за математикой «аксиоматическая эпоха» наступи­ла бы в физике, химии, биологии и, наконец, очередь дошла бы и до науки о человеческом сознании. Согласитесь, окружающий нас мир, да и мы сами, выглядели бы в подобном случае несколько иначе. Однако «вселенская аксиоматизация» не состоялась. Вся супер­амбициозная, грандиозная программа, над которой несколько десятилетий работали крупнейшие математики мира, была опровергнута одной-единственной теоремой. Её автором был Курт Гёдель, которо­му к тому времени едва исполнилось 25 лет. В 1930 г. на конференции, организованной «Венским кружком» в Кёнигсберге, он сделал доклад «О полноте логического исчисле­ния», а в начале следующего года опубликовал статью «О принципи­ально неразрешимых положениях в системе Principia Mathematica и родственных ей системах». Центральным пунктом его работы были формулировка и доказательство теоремы, которая сыграла фунда­ментальную роль во всем дальнейшем развитии математики, и не только её. Речь идет о знаменитой теореме Гёделя о неполноте. Наи­более распространенная, хотя и не вполне строгая её формулировка утверждает, что «для любой непротиворечивой системы аксиом су­ществует утверждение, которое в рамках принятой аксиоматической системы не может быть ни доказано, ни опровергнуто». Тем самым Гёдель дал отрицательный ответ на первое утверждение, сформули­рованное Гильбертом. Любопытно, что на этой же конференции с докладом на тему «Каузальное знание и квантовая механика» выступил Вернер Гей-зенберг. В этом докладе были намечены первые подходы к его зна­менитым «соотношениям неопределенности». Выводы Гёделя произвели в математическом сообществе эффект интеллектуальной бомбы, тем более что вскоре на их основе были получены опровержения двух других пунктов программы Гильбер­та. Оказалось, что математика неполна, неразрешима, и её непроти­воречивость нельзя доказать (в рамках той самой системы, непроти­воречивость которой доказывается).^ Теорема Гёделя. С тех пор прошло три четверти века, но споры о том, что же все-таки доказал Гёдель, не утихают. Особенно жаркие прения идут в околонаучных кругах. «Теорема Гёделя о неполноте является поистине уникальной. На неё ссылаются всякий раз, когда хотят доказать "всё на свете" - от наличия богов до отсутствия разу­ма», - пишет выдающийся современный математик В.А. Успенский. Если оставить в стороне многочисленные подобные спекуляции, то нужно отметить, что учёные разделились в вопросе оценки роли Гёделя на две группы. Одни вслед за Расселом считают, что знаме­нитая теорема, которая легла в основу современной математической логики, тем не менее, оказала весьма незначительное влияние на дальнейшую работу за пределами данной дисциплины - математики как доказывали свои теоремы в «догёделевскую» эпоху, так и про­должают доказывать их и по сей день. Что же касается фантасмагорического ввдения компьютеров, непрерывно доказывающих всё новые теоремы, то смысл подобной деятельности у многих специалистов вызывает большое сомнение. Ведь для математики важна не только формулировка доказанной тео­ремы, но и её понимание, поскольку именно оно позволяет выявить связь между различными объектами и понять, в каком направлении можно двигаться дальше. Без такого понимания теоремы, генери­руемые на основе правил формализованного вывода, представляют собой лишь своего рода «математический спам», - таково мнение сотрудника кафедры математической логики и теории алгоритмов мехмата МГУ Александра Шеня. Похожим образом рассуждал и сам Гёдель. Тем, кто упрекал его в разрушении целостности фундамента математики, он отвечал, что по сути ничего не изменилось, основы остались по-прежнему незыблемыми, а его теорема привела лишь к переоценке роли интуи­ции и личной инициативы в той области науки, которой управляют железные законы логики, оставляющие, казалось бы, мало места для подобных достоинств. Однако некоторые ученые придерживаются другого мнения. Действительно, если считать умение логически рассуждать основ­ной характеристикой человеческого разума или, по крайней мере, главным его инструментом, то теорема Гёделя прямо указывает на ограниченность возможностей нашего мозга. Согласитесь, что чело­веку, воспитанному на вере в бесконечное могущество мысли, очень трудно принять тезис о пределах её власти. Скорее уж речь может идти об ограниченности наших представ­лений о собственных ментальных возможностях. Многие специали­сты полагают, что формально-вычислительные, «аристотелевские» процессы, лежащие в основе логического мышления, составляют лишь часть человеческого сознания. Другая же его область, принци­пиально «невычислительная», отвечает за такие направления, как ин­туиция, творческие озарения и понимание. И если первая половина разума подпадает под гёделевские ограничения, то вторая от подоб­ных рамок свободна. Наиболее последовательный сторонник подобной точки зре­ния - крупнейший специалист в области математики и теоретиче­ской физики Роджер Пенроуз - пошел ещё дальше. Он предположил существование некоторых квантовых эффектов невычислительно­го характера, обеспечивающих реализацию творческих актов со­знания. И хотя многие его коллеги критически относятся к идее наделить человеческий мозг гипотетическими квантовыми ме­ханизмами, Р. Пенроуз со своими сотрудниками уже разработал схему эксперимента, который должен, по их мнению, подтвердить их наличие. Одним из многочисленных следствий гипотезы Пенроуза может стать, в частности, вывод о принципиальной невозможности созда­ния искусственного интеллекта на основе современных вычисли­тельных устройств, даже в том случае, если появление квантовых компьютеров приведёт к грандиозному прорыву в области вычисли­тельной техники. Дело в том, что любой компьютер может лишь всё более детально моделировать работу формально-логической, «вы­числительной» деятельности человеческого сознания, но «невычис­лительные» способности интеллекта ему не доступны. Такова лишь небольшая часть естественно-научных и философ­ских споров, вызванных опубликованной 75 лет назад математиче­ской теоремой молодого Гёделя. Вместе с другими великими совре­менниками он заставил человека иначе взглянуть на окружающий мир и на самого себя. Величайшие открытия первой трети XX в., в том числе теорема Гёделя, а также создание теории относительно­сти и квантовой теории, показали ограниченность механистически-детерминистской картины природы, созданной на основе научных исследований двух предшествующих столетий. Оказалось, что и пути развития мироздания, и нравственные императивы подчиня­ются принципиально другим закономерностям, где имеют место и неустранимая сложность, и неопределенность, и случайность, и необратимость. Однако последствия великого научного переворота не исчерпываются уже упомянутыми. К началу XX в. идеи лапласовско-ньютоновского детерминизма оказывали огромное влияние на развитие общественных наук. Вслед за корифеями классического естествознания, представлявшими природу в виде жесткой механи­ческой конструкции, где все элементы подчиняются строгим зако­нам, а будущее может быть однозначно предсказано, если известно текущее состояние, жрецы - деятели общественных наук - рисовали человеческое общество, подчиненное непреложным закономерно­стям и развивающееся в заранее заданном направлении. Одной из последних попыток сохранить подобную картину мира был, по-ви­димому, марксизм-ленинизм, приверженный концепции «един­ственно верного научного учения», составной частью которого было «материалистическое понимание истории». Достаточно вспомнить ленинскую идею построения социалистического общества по типу «большой фабрики». Постепенно с огромным трудом идеи о сложности, случайности, неопределенности, утвердившиеся в естественно-научной картине мироздания, стали проникать и в социальные и гуманитарные науки. В обществе непредрешенность реализуется через феномен личной свободы индивидуума. Именно присутствие в природе человека в качестве субъекта, осуществляющего вольный и непредсказуемый выбор, делает исторический процесс сложным и не подчиняющимся никаким непреложным законам вселенского развития. Однако нельзя не заметить, что обретение новой картины слож­ного мира в нашей стране происходило с огромным трудом. Господ­ствовавшая семь десятилетий идеология тяготела к детерминизму лапласовского типа как философии всеобщего авторитарного по­рядка. Именно такой принцип предопределенности лежал в основе мечты, никогда не покидавшей правящую советскую бюрократию, об обществе-фабрике, управляемой жесткими законами иерархии. И поэтому всякий раз, как речь заходила о сложности, плюрализме, разнообразии, будь то теория относительности, квантовая механика, генетика, кибернетика, социологические исследования, психоанализ и т.д., - сразу включался механизм идеологической цензуры, который имел своей целью изгнать все упоминания о свободе и из природы, и из общества. Увы, косное наследие до сих пор мрачной тенью до­влеет над умами многих наших соотечественников и современников. Свидетельством тому - инициируемые властью мучительные поиски новой «национальной идеологии», которая могла бы занять место, освободившееся в связи с кончиной коммунистической доктрины. Так Курт Гёдель и его великие современники заставили нас по-новому взглянуть и на «звездное небо над головой, и на нравст­венный закон внутри нас», и на общество, в котором мы живем. 1 Опубликовано в журнале «В мире науки», март 2007.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :