МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образованияНациональный исследовательский ядерный университет «МИФИ» ИНСТИТУТ МЕЖДУНАРОДНЫХ ОТНОШЕНИЙ Факультет: «^ УПРАВЛЕНИЯ И ЭКОНОМИКИ ВЫСОКИХ ТЕХНОЛОГИЙ» Специальность: 350200 «Международные отношения» Дисциплина Физические основы современных технологий ^ РЕФЕРАТ НА ТЕМУ: «ЯМР томограф» Студент Дыченко Н.В. Подпись Фамилия И.О. Факультет: 1Специальность: 1Дисциплина 1Студент 1Дыченко Н.В. 1Подпись 1Фамилия И.О. 1Предисловие 3ЯМР или МРТ 4Почему МРТ 8Что такое ядерный магнитный резонанс 9Как осуществляется визуализация внутренних органов посредством ЯМР 11Исследование МР томографии и устройство МР томографа 13Физические основы явления ЯМР 17Энергетические уровни 17Переходы 18Диаграммы энергетических уровней 19Стационарный МР метод 19Статистика Больцмана 20Спиновые пакеты 20T1-процессы 22T2-процессы 23Вращающаяся система координат 24Импульсные магнитные поля 25Спиновая релаксация 26Уравнения Блоха 28Сбор данных 29Вычисление и вывод на экран 31Аппаратное обеспечение 31Типы магнитов 33РЧ катушки 37Техническая и физическая суть ЯМР-томографии 40Функциональная МРТ 43Измерение температуры с помощью МРТ 43Особенности применения медицинского оборудования в помещениях, где проводится МРТ 43Противопоказания 44Достоинства 45ЯМР-томография имеет и обратную сторону: 46Портативное устройство для диагностики рака 48Заключение 49Список литературы 50 Предисловие За последние годы метод магнитно-резонансной томографии (МРТ) стал популярным методом формирования послойных изображений внутренней структуры органов. Это не случайно; метод МРТ прошел стремительный поэтапный цикл развития, начиная со дня открытия. Сегодня почти каждая больница или клиника для диагностики патологии имеет один или несколько МР сканеров, позволяющих получать более точные и четкие изображения внутренних органов. В настоящее время метод продолжает активно развиваться. В сочетании с превосходным контрастным разрешением изображения, МРТ безопасна для человека, в пределах разумного, за счет использования радиоволн и магнитного поля, в отличие от рентгеновских и КТ исследований, применяющих рентгеновское излучение. По мере распространения МРТ повышается потребность в более квалифицированном персонале. С разработкой каждого нового программного обеспечения управление МР сканером упрощается, но необходимость надлежащего понимания принципов работы МРТ остается. В МРТ используются такие совокупности параметров, как время повторения, время эхо, угол переворота, фазовое кодирование и др. Понимание этих параметров важно для получения качественных МР изображений.^ ЯМР или МРТ В классической трактовке под томографией понимается метод рентгенологического исследования, с помощью которого можно производить снимок слоя, лежащего на определённой глубине исследуемого объекта. Он был предложен Бокажем через несколько лет после открытия рентгеновских лучей и был основан на перемещении двух из трёх компонентов (рентгеновская трубка, рентгеновская плёнка, объект исследования) ЯМР – общепризнанное сокращение словосочетания «ядерный магнитный резонанс». ЯМР – томография (или МРТ) – это относительно новый вид получения изображения внутренних органов, который начал входить в медицинскую практику в 80-х годах прошлого столетия. Магнитно-резонансная томография (ядерно-магнитная резонансная томография, МРТ, ЯМРТ, NMR, MRI) – нерентгенологический метод исследования внутренних органов и тканей человека. Здесь не используются Х-лучи, что делает данный метод безопасным для большинства людей. Годом основания магнитно-резонансной томографии принято считать 1973, когда профессор химии Пол Лотербур опубликовал в журнале Nature статью «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса». Позже Питер Мэнсфилд усовершенствовал математические алгоритмы получения изображения. В действительности же ЯМР-томографию (МРТ) изобрёл в 1960 г. В. А. Иванов (и способ, и устройство), что удостоверено патентом СССР с такой датой приоритета. Некоторое время существовал термин ЯМР-томография, который был заменён на МРТ в 1986 году в связи с развитием радиофобии у людей после Чернобыльской аварии. В новом термине исчезло упоминание на «ядерность» происхождения метода, что и позволило ему достаточно безболезненно войти в повседневную медицинскую практику, однако и первоначальное название также имеет хождение. За изобретение метода МРТ в 2003 Питер Мэнсфилд и Пол Лотербур получили Нобелевскую премию в области медицины. В создание магнитно-резонансной томографии известный вклад внёс также Реймонд Дамадьян, один из первых исследователей принципов МРТ, держатель патента на МРТ и создатель первого коммерческого МРТ-сканера. МРТ основана на принципах ядерно-магнитного резонанса (ЯМР), методе спектроскопии, используемом учеными для получения данных о химических и физических свойствах молекул. МРТ получила начало как метод томографического отображения, дающий изображения ЯМР-сигнала из тонких срезов, проходящих через человеческое тело. МРТ развивалась от метода томографического отображения к методу объемного отображения. Томография позволяет визуализировать с высоким качеством головной, спинной мозг и другие внутренние органы. Современные методики МРТ делают возможным неинвазивно (без вмешательства) исследовать функцию органов — измерять скорость кровотока, тока спинномозговой жидкости, определять уровень диффузии в тканях, видеть активацию коры головного мозга при функционировании органов, за которые отвечает данный участок коры (функциональная МРТ).ЯМР головного мозга Из истории МРТПервые сигналы, соответствующие ядерному магнитному резонансу, были получены более шестидесяти лет назад группами Феликса Блоха в Оксфорде и Эдварда Парселла в Гарварде. В те времена экспериментальные трудности были огромны. Все оборудование изготавливалось самими учеными прямо в лабораториях. Вид аппаратов того времени несопоставим с сегодняшними (использующими мощные сверхпроводящие соленоиды) приборами ЯМР, которые можно увидеть в больницах или поликлиниках. Достаточно сказать, что магнит в экспериментах Парселла был создан с использованием утиля, найденного на задворках Бостонской трамвайной компании. При этом он был калиброван настолько плохо, что магнитное поле в действительности имело величину большую, чем требовалось для переворота ядерных моментов при облучении радиоволнами с частотой ν = 30 МГц (частота радиогенератора) . Парселл со своими молодыми сотрудниками тщетно искали подтверждения того, что явление ядерного магнитного резонанса имело место в его экспериментах. После многих дней бесплодных попыток разочарованный и грустный Парселл решает, что ожидаемое им явление ЯМР не наблюдаемо, и дает указание выключить питающий электромагнит ток. Пока магнитное поле уменьшалось, разочарованные экспериментаторы продолжали глядеть на экран осциллографа, где все это время надеялись увидеть желанные сигналы. В некоторый момент магнитное поле достигло необходимой для резонанса величины, и на экране неожиданно появился соответствующий ЯМР сигнал. Если бы не счастливый случай, возможно прошли бы еще многие годы, прежде чем существование этого замечательного явления было бы подтверждено экспериментально. С этого момента техника ЯМР стала бурно развиваться. Она получила широкое применение в научных исследованиях в областях физики конденсированного состояния, химии, биологии, метрологии и медицины. Наиболее известным применением стало получение с помощью ЯМР изображения внутренних органов. Итак, история МРТ начинается приблизительно в 1946 году, когда ^ Феликс Блох открыл новые свойства атомного ядра, за что ему была присуждена Нобелевская премия. Он установил, что ядро ведет себя подобно магниту, а заряженная частица, такая как протон, вращающаяся вокруг собственной оси, имеет магнитное поле, известное как магнитный момент ядра. Открытие было сведено им в уравнение, названное уравнением Блоха. Теоретические исследования были подтверждены экспериментально в начале 1950-х годов. В 1960 году были разработаны спектрометры ядерно-магнитного резонанса для аналитических целей. На протяжении 1960 и 1970 годов ЯМР спектрометры широко использовались в академических и индустриальных исследованиях. Спектрометрия используется для анализа молекулярного строения вещества, основанного на его ЯМР спектре. В конце 1960 годов ^ Раймонд Дамадиан обнаружил, что злокачественная ткань отличается от нормальной ЯМР параметрами. Он предположил, что на основании этих различий можно характеризовать ткани. Опираясь на это открытие, в 1974 году он получил первое ЯМР изображение опухоли у крысы. В 1977 году Дамадиан и его помощники сконструировали первый сверхпроводящий ЯМР сканер и получили первое изображение тела человека, сканирование которого заняло почти 5 часов. Одновременно ^ Пол Лаутербур проводил подобные исследования в этой же области. Вопрос о том, кто же является родоначальником МРТ спорный, хотя, следует признать, что оба ученых внесли свой вклад. Годом основания магнитно-резонансной томографии принято считать 1973, когда профессор химии Пол Лотербур опубликовал в журнале Nature статью «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса». Позже Питер Мэнсфилд усовершенствовал математические алгоритмы получения изображения. Впоследствии в начале 1980 годов почти каждый производитель оборудования для получения медицинских изображений разрабатывал и производил МР сканеры. За изобретение метода МРТ в 2003 Питер Мэнсфилд и Пол Лотербур получили Нобелевскую премию в области медицины. Томография позволяет визуализировать с высоким качеством головной, спинной мозг и другие внутренние органы. Современные методики МРТ делают возможным неинвазивно (без вмешательства) исследовать функцию органов — измерять скорость кровотока, тока спинномозговой жидкости, определять уровень диффузии в тканях, видеть активацию коры головного мозга при функционировании органов, за которые отвечает данный участок коры (функциональная МРТ).^ Почему МРТ Изображение тела пациента, полученное с помощью рентгеновского излучения, малоинформативно, так как обладает низким общим контрастным разрешением. Чтобы увеличить контраст изображения, можно менять контраст среды, применяя контрастные вещества на основе бария или йода. С помощью КТ сканеров можно получить изображения с гораздо большим контрастом для обнаружения поражений мягких тканей. В большинстве случаев МРТ предоставляет гораздо более широкие возможности для диагностики, чем компьютерная томография. Так, магнитно-резонансная томография позволяет получить изображения высокой точности структуры головного и спинного мозга . Также магнитно-резонансная томография лучше, чем компьютерная диагностика, выполняет анализ состояния мягких тканей – мышц, связок, жировой ткани, и так далее. Заболевания и нарушения внутренних органов, суставов и костей также прекрасно определяются при МРТ диагностике, но вот состояние полых органов (легких, кишечника, желудка и т.д.) лучше проверять при помощи компьютерной томографии. Принцип МРТ основан на резонировании атомов водорода, а полости, таким образом, аппарату практически неподвластны. Однако при использовании специальной рентгеновской пленки пространственное разрешение рентгеновских изображений отличное. Это особенно полезно при исследовании структуры кости. В этом случае пространственное разрешение МРТ уступает рентгену. Вообще, рентген и КТ используются для визуализации структуры кости, тогда как МРТ полезна для обнаружения повреждений мягких тканей.^ Что такое ядерный магнитный резонанс Рассмотрим ядро атома водорода (протон) во внешнем магнитном поле . Протон может находиться только в двух стационарных квантовых состояниях: в одном из них проекция магнитного момента на направление магнитного поля положительна и равна а в другом — такая же по модулю, но отрицательная. В первом состоянии энергия ядра в магнитном поле равна –μzB, во втором +μzB. Изначально все ядра находятся в первом состоянии, а для перехода во второе состояние ядру надо сообщить энергию ΔE = 2μzB. Заставить ядро изменить направление своего магнитного момента можно, подействовав на него электромагнитным излучением с частотой ω, соответствующей переходу между этими состояниями:ћω = 2μzB. Подставляя сюда магнитный момент протона, получим откуда для ^ B = 1 Тл находим частоту волны: ν ≈ 4·107 Гц и соответствующую длину волны: λ = с/ν ≈ 7 м — типичные частота и длина волны радиовещательного диапазона. Фотоны именно этой длины волны поглощаются ядрами с переворотом магнитных моментов по отношению к направлению поля. При этом их энергия в поле повышается как раз на величину, соответствующую энергии такого кванта. В экспериментах по ЯМР, т. е. для типичных частот среднего радио-вещательного диапазона, электромагнитные волны используются вовсе не в том виде, к которому мы привыкли при обсуждении распространения света или поглощения и излучения света атомами. В простейшем случае мы имеем дело с катушкой, по которой протекает созданный генератором переменный ток радиочастоты. Образец, содержащий исследуемые ядра, которые мы хотим подвергнуть воздействию электромагнитного поля, помещается на оси катушки. Ось катушки, в свою очередь, направлена перпендикулярно статическому магнитному полю B0 (последнее создается с помощью электромагнита или сверхпроводящего соленоида). При протекании по катушке переменного тока на ее оси индуцируется переменное магнитное поле B1, амплитуда которого выбирается гораздо меньшей величины B0 (обычно в 10000 раз). Это поле осциллирует с той же частотой, что и ток, т. е. с радиочастотой генератора. Если частота генератора близка к вычисленной частоте, то происходит интенсивное поглощение ядрами водорода квантов света с переходом ядер в состояние с отрицательной проекцией μz (поворот ядер). Если же частота генератора отличается от вычисленной, то поглощения квантов не происходит. Именно в связи с резкой (резонансной) зависимостью от частоты переменного магнитного поля интенсивности процесса передачи энергии от этого поля ядрам атомов, сопровождаемое поворотом их магнитных моментов, явление получило название ядерного магнитного резонанса (ЯМР). Как же можно заметить такие перевороты ядерных моментов по отношению к статическому магнитному полю? Будучи вооруженными современной техникой ЯМР, это оказывается совсем нетрудно: выключив создающий поле B1 генератор радиочастоты, следует одновременно включить приемник, использующий ту же катушку в качестве антенны. При этом он будет регистрировать радиоволны, излучаемые ядрами по мере их возвращения к первоначальной ориентации вдоль поля B0. Этот сигнал индуцируется в той же катушке, посредством которой ранее возбуждались магнитные моменты. Его временная зависимость обрабатывается компьютером и представляется в виде соответствующего спектрального распределения. Из этого описания можно представить, что ЯМР-спектрометр весьма существенно отличается от привычных спектрометров, проводящих измерения в диапазоне видимого света.^ Как осуществляется визуализация внутренних органов посредством ЯМР В 1973 году Пол Латербур предложил проводить ЯМР-исследования, помещая образец в магнитное поле, меняющееся от точки к точке. В этом случае и резонансная частота для исследуемых ядер изменяется от точки к точке, что позволяет судить об их пространственном расположении. А поскольку интенсивность сигнала от определенной области пространства пропорциональна числу атомов водорода в этой области, мы получаем информацию о распределении плотности вещества по пространству. Собственно, в этом и заключается принцип техники ЯМР-исследования. Принцип прост, хотя для получения реальных изображений внутренних органов на практике следовало получить в распоряжение мощные компьютеры для управления радиочастотными импульсами и еще долго совершенствовать методологию создания необходимых профилей магнитного поля и обработки сигналов ЯМР, получаемых с катушек. Представим себе, что вдоль оси х расположены маленькие заполненные водой сферы (рис. 1). Если магнитное поле не зависит от х, то возникает одиночный сигнал (см. рис. 1, а). Далее предположим, что посредством дополнительных катушек (по отношению к той, которая создает основное, направленное по оси z, магнитное поле) мы создаем дополнительное, меняющееся вдоль оси х, магнитное поле B0, причем его величина возрастает слева направо. При этом понятно, что для сфер с различными координатами сигнал ЯМР теперь будет соответствовать различным частотам и измеряемый спектр будет содержать в себе пять характерных пиков (см. рис. 1, б). Высота этих пиков будет пропорциональна количеству сфер (т. е. массе воды), имеющих соответствующую координату, и, таким образом, в рассматриваемом случае интенсивности пиков будут относиться как 3:1:3:1:1. Зная величину градиента магнитного поля (т. е. скорость его изменения вдоль оси х), можно представить измеряемый частотный спектр в виде зависимости плотности атомов водорода от координаты х. При этом можно будет сказать, что там где пики выше, число атомов водорода больше: в нашем примере числа атомов водорода, соответствующих положениям сфер, действительно соотносятся как 3:1:3:1:1. Расположим теперь в постоянном магнитном поле B0 некоторую более сложную конфигурацию маленьких заполненных водой сфер и наложим дополнительное магнитное поле, изменяющееся вдоль всех трех осей координат. Измеряя радиочастотные спектры ЯМР и зная величины градиентов магнитного поля вдоль координат, можно создать трехмерную карту распределения сфер (а следовательно, и плотности водорода) в исследуемой конфигурации. Сделать это гораздо сложнее, чем в рассмотренном выше одномерном случае, однако интуитивно понятно, в чем этот процесс заключается. Техника восстановления образов, сходная с той, которую мы описали, и осуществляется при ЯМР-томографии. Закончив накопление данных, компьютер посредством весьма быстрых алгоритмов начинает «обработку» сигналов и устанавливает связь между интенсивностью измеренных сигналов при определенной частоте и плотностью резонирующих атомов в данной точке тела. В конце этой процедуры компьютер визуализирует на своем экране двумерное (или даже трехмерное) «изображение» определенного органа или части тела пациента.^ Рис. 1. В случае однородного магнитного поля имеется единственный ЯМР-сигнал (а). В случае же меняющегося в пространстве поля сигналы, соответствующие ядрам, расположенным в разных точках, имеют несколько отличающиеся частоты, и спектр позволяет определить их координаты (б). Изображение: «Квант»^ Исследование МР томографии и устройство МР томографа Прежде всего, пациента помещают внутрь большого магнита, где имеется довольно сильное постоянное (статическое) магнитное поле, ориентированное в большинстве аппаратов вдоль тела пациента. Под воздействием этого поля ядра атомов водорода в теле пациента, которые представляют собой маленькие магнитики, каждый со своим слабым магнитным полем, ориентируются определенным образом относительно сильного поля магнита. Добавляя слабое переменное магнитное поле к статическому магнитному полю, выбирают область, изображение к. надо получить. Затем пациента облучают радиоволнами, причем частоту радиоволн подстраивают таким образом, чтобы протоны в теле пациента могли поглотить часть энергии радиоволн и изменить ориентацию своих магнитных полей относительно направления статического магнитного поля. Сразу же после прекращения облучения пациента радиоволнами протоны станут возвращаться в свои первоначальные состояния, излучая полученную энергию, и это переизлучение будет вызывать появление электрического тока в приемных катушках томографа. Зарегистрированные токи являются МР сигналами, к. преобразуются компьютером и используются для построения (реконструкции) МРТ.Соответственно этапам исследования основными компонентами любого МР томографа являются: • магнит, создающий постоянное (статическое), так называемое внешнее, • магнитное поле, в которое помещают пациента • градиентные катушки, создающие слабое переменное магнитное поле в центральной части основного магнита, называемое градиентным, которое позволяет выбрать область исследования тела пациент • радиочастотные катушки - передающие, используемые для создания возбуждения в теле пациента, и приемные - для регистрации ответа возбужденных участков • компьютер, который управляет работой градиентной и радиочастотной катушек, регистрирует измеренные сигналы, обрабатывает их, записывает в свою память и использует для реконструкции МРТ. Всякое магнитное поле характеризуется индукцией магнитного поля, которую обозначают В. ( [B] = 1 Тл ) В МРТ в зависимости от величины постоянного магнитного поля различают несколько типов томографов:• со сверхслабым полем - ультранизкие томографы - ниже 0,1 Тл; • со слабым полем - низкие томографы - от 0,1 до 0,5 Тл; • с средним полем - средние томографы - от 0,5 до 1 Тл; • с сильным полем - высокие томографы - от 1 до 2 Тл; • со сверхсильным полем - ультравысокие томографы - свыше 2 Тл.^ Любой МРТ томограф состоит из: основного магнита; магнитных градиентов; генератора (передатчика) радиоимпульсов; приемника радиоимпульсов; систем сбора и обработки данных; систем энергоснабжения и охлажденияПринципиальная схема мрт томографа, мрт, томограф, мрт аппарат, резонансный томограф.^ Типы МРТ аппаратов по виду используемых магнитов: Магнит в ЯМР томографе может быть постоянным, резистивным электрическим и сверхпроводящим электрическим.Постоянные магниты в МРТ аппаратах изготавливают из ферромагнитных сплавов. Ориентация магнитного поля обычно вертикальная. Магниты ЯМР томографов не требуют затрат электроэнергии и охлаждения. Величина индукции магнитного поля находится в пределах 0,2— 0,3 Тл. Интерес к постоянным магнитам в последнее время сильно возрос. Это связано с тем, что постоянные магниты томографов легко конфигурируются по МРТ открытого типа, т. е. обеспечивают доступ к больному и уменьшают клаустрофобию. Резистивный электромагнит томографа представляет собой соленоид из медной или железной проволоки. Охлаждается водой. Создаваемые МРТ аппаратом магнитные поля лежат в пределах 0,2—0,4 Тл, ориентация поля - вдоль отверстия соленоида. Все современные резистивные электромагниты делают открытыми для применения в открытых МРТ аппаратах. Интерес к ним в последнее время падает, так как содержание ЯМР томографов на их основе дороже, чем на магнитах постоянного типа.Сверхпроводящие электромагниты в ЯМР томографах представляют собой соленоид из ниобий-титанового сплава, который при охлаждении жидким гелием до -269°С (4 К) не имеет электрического сопротивления. Создаваемые МРТ аппаратом магнитные поля находятся в пределах от 0,35 до 4 Тл. Поле высокой напряженности, очевидно, служит большим достоинством сверхпроводящих магнитов. В последние годы удалось сконструировать открытые сверхпроводящие магниты для открытых МРТ аппаратов.Недостатком сверхпроводящих магнитов, используемых в ЯМР томографах, помимо высокой стоимости, является необходимость охлаждения жидким гелием.Качественное изображение на томограммах (МРТ снимках) можно получить только в очень однородном магнитном поле, которое недостижимо без дополнительного выравнивания. Для этого к основному магниту магнитно-резонансного томографа добавляют шиммирующие катушки, которые создают градиенты, компенсирующие техническую неоднородность магнита и влияние пациента на поле.Катушки ЯМР томографа, создающие градиентные импульсы в трех направлениях пространства, управляются посредством системы усилителей. Передатчик радиоимпульсов, или передающая катушка томографа, генерирует волны резонансной частоты и модулирует их в импульсы необходимой формы. Приемная катушка представляет собой чувствительную антенну, расположенную перпендикулярно направлению основного магнитного поля (плоскость X—У). Они бывают различной формы, что определяет глубину и однородность сбора ЯМР сигнала. Чтобы на слабые ЯМР сигналы не накладывались помехи, магнит МРТ аппарата помещают в специальное помещение («клетка» Фарадея), стенки которой изготовлены из медных или алюминиевых листов либо сетки. Полученный ЯМР сигнал с помощью аналого-цифрового преобразователя приобретает цифровую форму и передается в компьютер для реконструкции изображения и получения томограмм.Компьютер в магнитно-резонансном томографе выполняет многие функции: управление системой; быстрое преобразование Фурье; обработку изображения; получения томограмм (снимков МРТ).^ Физические основы явления ЯМР Водород – не единственный элемент, который можно использовать для формирования МРТ изображений. Почти каждый элемент периодической таблицы имеет изотоп с ядерным спином, отличным от нуля.ЯМР может быть представлен только на тех изотопах, чья встречаемость в природе достаточна велика для обнаружения. Можно применять любой элемент, который имеет нечетное число частиц в ядре. Вот некоторые элементы, которые могут использоваться.^ Подходящие элементы для МРТ. Изотоп Обозначение Спиновое квантовое число Гиромагнитное отношение (MГц/T) Водород 1H 1/2 42.6 Углерод 13C 1/2 10.7 Кислород 17O 5/2 5.8 Фтор 19F 1/2 40.0 Натрий 23Na 3/2 11.3 Магний 25Mg 5/2 2.6 Фосфор 31P 1/2 17.2 Сера 33S 3/2 3.3 Железо 57Fe 1/2 1.4 ^ Энергетические уровни Для понимания того, как частицы со спином ведут себя в магнитном поле, представим протон. Этот протон обладает свойством, называемым спином. Представим, что спин этого протона, является вектором магнитного момента, который заставляет протон вести себя как очень маленький магнит с северным и южным полюсами. Когда протон помещен во внешнее магнитное поле, вектор спина располагается как магнит, по отношению ко внешнему полю. Состояние, когда полюса расположены N-S-N-S, является низкоэнергетическим , а N-N-S-S - высокоэнергетическим. Переходы Частица может подвергаться переходу между двумя энергетическими состояниями, поглощая фотон. Частица на нижнем энергетическом уровне поглощает фотон и оказывается на верхнем энергетическом уровне. Энергия данного фотона должна точно соответствовать разнице между этими двумя состояниями. Энергия протона, Е, связана с его частотой, , через постоянную Планка (h = 6.626x10-34 Дж с). E = h В ЯМР и МРТ величина называется резонансной или частотой Лармора.^ Диаграммы энергетических уровней Энергия двух состояний спина может быть представлена с помощью диаграммы энергетических уровней. Известно, что = B и E = h , поэтому, для того, чтобы вызвать переход между двумя спиновыми состояниями, фотон должен обладать энергией E = h B Когда энергия фотона соответствует разнице между двумя состояниями спина, происходит поглощение энергии. В ЯМР экспериментах частота фотона соответствует радиочастотному (РЧ) диапазону. Для ядер водорода в ЯМР-спектроскопии, находится в пределах 60 и 800 MГц. В клинической МРТ, для отображения водорода, как правило находится между 15 и 80 MГц.^ Стационарный МР метод Самым простым ЯМР исследованием является стационарный МР (или свип-МР) метод. Существуют два пути проведения этого эксперимента. При первом, непрерывное РЧ облучение с постоянной частотой, исследует энергетические уровни, в то время как магнитное поле варьируется. Энергия этой частоты представлена синей линией на диаграмме энергетических уровней. Стационарный метод может также быть проведен с постоянным магнитным полем, когда варьируется частота. Величина постоянного магнитного поля представлена положением вертикальной синей линией на диаграмме энергетических уровней.^ Статистика Больцмана Когда несколько спинов помещены в магнитное поле, каждый принимает одну из двух возможных ориентаций. При комнатной температуре количество спинов на нижнем энергетическом уровне, N+, незначительно превосходит количество на верхнем уровне N-. Статистика Больцмана показывает, чтоN-/N+ = e-E/kT.Е - разность энергии между спиновыми состояниями, k - постоянная Больцмана (1.3805x10-23 Дж/К) и Т - абсолютная температура. При уменьшении температуры уменьшается отношение N- /N+. При увеличении температуры отношение увеличивается. Сигнал в ЯМР-спектроскопии получается из разности между поглощенной энергией спинами, которые подверглись переходу с более низко энергетического уровня на более высокий и энергией, испускаемой спинами, которые одновременно перешли с более высокого энергетического уровня на более низкий. Сигнал пропорционален разности в заселенностях уровней. ЯМР является достаточно чувствительной спектроскопией, поскольку может различать такие небольшие различия в заселенностях. Резонанс или энергетический обмен между спинами и спектрометром на определенной частоте придают ЯМР такую чувствительность. ^ Спиновые пакеты Весьма обременительным является описание ЯМР на микроскопическом уровне. Макроскопическая картина более удобна. Первым шагом к созданию макроскопической картины определим спиновый пакет. Спиновый пакет - это группа спинов испытывающих на себе одну и ту же силу магнитного поля. В этом примере, спины внутри каждой секции решетки представляют собой спиновый пакет. В любой момент времени магнитное поле, соответствующее спинам в каждом спиновом пакете может быть представлено вектором намагниченности.Величина каждого вектора пропорциональна (N+ - N-). Сумма всех векторов намагниченности всех спиновых пакетов является суммарной (общей) намагниченностью. Для описания импульсного ЯМР необходимо пользоваться термином суммарной намагниченности.Для преобразования в общепринятую ЯМР систему координат, внешнее магнитное поле и вектор общей намагниченности направляются вдоль оси Z. T1-процессы В состоянии равновесия, вектор суммарной намагниченности параллелен направлению примененного магнитного поля Bo и называется равновесной намагниченностью Mo. В этом состоянии, Z-составляющая намагниченности MZ равна Mo. Еще MZ называется продольной намагниченностью. В данном случае, поперечной (MX или MY) намагниченности нет. Суммарную намагниченность можно изменить, подвергнув ядерный спин воздействию энергией частоты равной разности энергии между спиновыми состояниями. Если в систему поступило достаточно энергии, можно насытить спиновую систему и сделать MZ=0. Временная константа, описывающая, как MZ возвращается к равновесному значению, называется временем спин-решеточной релаксации (T1). Это явление описывается уравнением, являющимся функцией от времени t, которое после преобразования имеет вид:Mz = Mo ( 1 - e-t/T1 )поэтому T1 определяется как время, необходимое для того, чтобы изменить Z-составляющую намагниченности коэффициентом е. Если суммарная намагниченность стала направлена вдоль отрицательного направления оси Z, она постепенно вернется в состояние своего равновесия вдоль положительного направления оси Z, со скоростью, определяемой T1. Это явление описывается уравнением, являющимся функцией от времени t, которое после преобразования имеет вид:Mz = Mo ( 1 - 2e-t/T1 )Время спин-решеточной релаксации (T1) - это время необходимое для уменьшения разности между продольной намагниченностью (MZ) и ее равновесным значением с коэффициентом е. Если суммарная намагниченность расположена в плоскости XY , она будет вращаться вокруг оси Z с частотой, равной частоте фотона, который вызывает переход между двумя энергетическими уровнями спина. Эта частота называется частотой Лармора. T2-процессы В дополнение к вращению вектор суммарной намагниченности начинает сдвигаться по фазе (расфазировываться) из-за того, что каждый спиновый пакет испытывает магнитное поле, немного отличающееся от магнитного поля, испытываемого другими пакетами, и вращается со своей собственной частотой Лармора. Чем больше проходит времени, тем больше фазовая разница. В данном случае, вектор суммарной намагниченности изначально направлен вдоль положительного направления оси Y. Для этого примера и других примеров расфазировок представим себе этот вектор, как несколько более тонких перекрывающихся векторов от отдельных спиновых пакетов. Временная константа, описывающая поведение поперечной намагниченности, MXY, называется спин-спиновым временем релаксации, T2. MXY =MXYo e-t/T2T2 всегда меньше чем T1. Суммарная намагниченность в плоскости XY стремится к нулю, и затем продольная намагниченность возрастает до тех пор пока Mo не будет вдоль Z. Любая поперечная намагниченность ведет себя таким же образом. Поперечный компонент вращается вокруг направления намагниченности и расфазировывается. Скорость возвращения продольной намагниченности определяется T1. Подводя итоги, время спин-спиновой релаксации, T2, это время необходимое для уменьшения поперечной намагниченности с коэффициентом е. До этого, T2-и T1-процессы для простоты рассматривались отдельно. Например, перед возрастанием вдоль оси Z, вектора намагниченности полностью заполняли плоскость XY . В действительности же, оба процесса имеют место одновременно, лишь с тем ограничением, что T2 меньше или равно T1. Два фактора приводящие к уменьшению поперечной намагниченности:1) молекулярные взаимодействия (приводят к чистому T2 молекулярному эффекту) 2) изменения в Bo (приводят эффекту неоднородности T2).Сочетание этих факторов приводит к уменьшению поперечной намагниченности. Объединенная временная постоянная носит название T2 со звездочкой и обозначается символом T2*. Зависимость T2 от молекулярных процессов и от неоднородностей магнитного поля имеет следующий вид:1/T2* = 1/T2 + 1/T2inhomo.^ Вращающаяся система координат Мы только что увидели поведение спинов в лабораторной системе координат. Удобнее было бы использовать вращающуюся систему координат, которая вращалась бы вокруг оси Z с частотой Лармора. Мы будем отличать эту систему координат от лабораторной системы по штрихам у обозначений осей X и Y, X'Y'. Вектор намагниченности, вращающейся с частотой Лармора в лабораторной системе координат, окажется н