Реферат по предмету "Разное"


«Свойства, характеристика и область применения электроизоляционной бумаги»

СодержаниеВведение .............................................................................................................3 раздел 1. Основные определения и классификация диэлектриков ..................................................................................................5 раздел 2. Характеристики электроизоляционных материалов .......................................................................................................8 Заключение ....................................................................................................17 Список использованной литературы .............................................18ВведениеТема реферата – «Свойства, характеристика и область применения электроизоляционной бумаги». В зависимости от характера действия на тела электрического поля их можно разделить на проводники, диэлектрики и полупроводники. Свойства тел и поведение их в электрическом поле определяются строением и расположением атомов в телах. В состав атомов входят электрически заряженные частицы: положительные – протоны, отрицательные – электроны. В нормальном состоянии атом электрически нейтрален, так как число протонов, входящих в состав ядра атома, равно числу электронов, вращающихся вокруг ядра и образующих «электронные оболочки» атома. Электроны внешней валентной оболочки определяют электропроводность вещества. Энергетические уровни внешних валентных электронов образуют валентную, или заполненную зону. В этой зоне электроны находятся в устойчивом связанном состоянии. Чтобы освободить какой-либо электрон этой зоны, необходимо затратить некоторую энергию. Следовательно, электроны, находящиеся в свободном состоянии, занимают более высокие энергетические уровни. Зона более высоких энергетических уровней, расположенная выше валентной зоны и отделенная от нее запрещенной зоной, объединяет незаполненные, или свободные, энергетические уровни и называется зоной проводимости или зоной возбуждения. Чтобы электрон перенести из валентной зоны в зону проводимости, необходимо ему сообщить извне энергию. Ширина запретной зоны, которую должен преодолеть электрон, чтобы перейти из устойчивого состояния в свободное состояние (в зону проводимости), является одним из главных критериев разделения тел на проводники, полупроводники и диэлектрики. Целью данной работы является исследование свойств, характеристик и области применения электроизоляционной бумаги. Объектом наблюдения является электроизоляционная бумага. Предметом наблюдения являются свойства, характеристика и область применения электроизоляционной бумаги. Задания исследования: Раскрыть основные определения и классификация диэлектриков. Показать характеристики электроизоляционных материалов. Пользоваться вспомогательной критической литературой. Методы исследований, используемые в работе: метод изучение литературных источников и документов, теоретический анализ и синтез исследуемого материала, логический метод, метод наблюдения, сравнительный метод, количественные методы (в том числе статистические), методы моделирования, исторический метод.РАЗДЕЛ 1Основные определения и классификация диэлектриковЭлектроизоляционными материалами или диэлектриками называются вещества, с помощью которых осуществляется изоляция элементов или частей электрооборудования, находящихся под разными электрическими потенциалами. По сравнению с проводниковыми материалами диэлектрики обладают значительно большим электрическим сопротивлением. Характерным свойством диэлектриков является возможность создания в них сильных электрических полей и накопления электрической энергии. Это свойство диэлектриков используется в электрических конденсаторах и других устройствах [6, с. 119]. Согласно агрегатному состоянию диэлектрики делятся на газообразные, жидкие и твердые. Особенно большой является группа твердых диэлектриков (высокополимеры, пластмассы, керамика и др.). Согласно химическому составу диэлектрики делятся на органические и неорганические. Основным элементом в молекулах всех органических диэлектриков является углерод. В неорганических диэлектриках углерода не содержится. Наибольшей нагревостойкостью обладают неорганические диэлектрики (слюда, керамика и др.). По способу получения диэлектрики делятся на естественные (природные) и синтетические. Наиболее многочисленной является группа синтетических изоляционных материалов. Многочисленную группу твердых диэлектриков обычно делят на ряд подгрупп в зависимости от их состава, структуры и технологических особенностей этих материалов. Так, выделяют керамические диэлектрики, воскообразные, пленочные, минеральные и др. [14, с. 17] Все диэлектрики, хотя и в незначительной степени, обладают электропроводностью. В отличии от проводников у диэлектриков наблюдается изменение тока со временем вследствие спадания тока абсорбции. С некоторого момента под воздействием постоянного тока в диэлектрике устанавливается только ток проводимости. Величина последнего определяет проводимость диэлектрика. При напряженности электрического поля, превосходящей предел электрической прочности диэлектрика, наступает пробой. Пробой представляет собой процесс разрушения диэлектрика, в результате чего диэлектрик теряет электроизоляционные свойства в месте пробоя. Величину напряжения, при котором происходит пробой диэлектрика, называют пробивным напряжением Uпр, а соответствующее значение напряженности электрического поля называется электрической прочностью диэлектрика Eпр [1, с. 155]. Пробой твердых диэлектриков представляет собой или чисто электрический процесс (электрическая форма пробоя), или тепловой процесс (тепловая форма пробоя). В основе электрического пробоя лежат явления, в результате которых в твердых диэлектриках имеет место лавинное возрастание электронного тока. Характерными признаками электрического пробоя твердых диэлектриков являются: независимость или очень слабая зависимость электрической прочности диэлектрика от температуры и длительности приложенного напряжения; электрическая прочность твердого диэлектрика в однородном поле не зависит от толщины диэлектрика (до толщин 10־− 10־см); электрическая прочность твердых диэлектриков находится в сравнительно узких пределах: 10–10 В/см; причем она больше, чем при тепловой форме пробоя; перед пробоем ток в твердом диэлектрике увеличивается по экспоненциальному закону, а непосредственно перед наступлением пробоя наблюдается скачкообразное возрастание тока; при наличии неоднородного поля электрический пробой происходит в месте наибольшей напряженности поля (краевой эффект) [11, с. 109]. Тепловой пробой имеет место при повышенной проводимости твердых диэлектриков и больших диэлектрических потерях, а также при подогреве диэлектрика посторонними источниками тепла или при плохом теплоотводе. Вследствие неоднородности состава отдельные части объема диэлектрика обладают повышенной проводимостью. Они представляют собой тонкие каналы, проходящие через всю толщина диэлектрика. Вследствие повышенной плотности тока в одном из таких каналов будут выделяться значительное количество тепла. Это повлечет за собой еще большее нарастание тока вследствие резкого уменьшения сопротивления этого участка в диэлектрике. Процесс нарастания тепла будет продолжаться до тех пор, пока не произойдет тепловое разрушение материала (расплавление, науглероживание) по всей его толщине – по ослабленному месту. Характерными признаками теплового пробоя твердых диэлектриков являются: пробой наблюдается в месте наихудшего теплоотвода от диэлектрика в окружающую среду; пробивное напряжение диэлектрика снижается с повышением температуры окружающей среды; пробивное напряжение снижается с увеличением длительности приложенного напряжения; электрическая прочность уменьшается с увеличением толщины диэлектрика; электрическая прочность твердого диэлектрика уменьшается с ростом частоты приложенного переменного напряжения [9, с. 107].РАЗДЕЛ 2Характеристики электроизоляционных материаловЖидкие и полужидкие диэлектрики – к ним относятся минеральные масла (трансформаторное, конденсаторное и др.), растительные масла (касторовое) и синтетические жидкости (совол, совтол, ПЭС-Д и др.), вазелины [3, с. 157]. Минеральные масла являются продуктами перегонки нефти. Отдельные виды минеральных электроизоляционных масел отличаются друг от друга вязкостью и уровнем электрических характеристик в связи с лучшей очисткой некоторых из них (конденсаторное, кабельное). Остальные же характеристики масел находятся практически на одинаковом уровне. Касторовое масло получают из семян растения клещевины. Совол и совтол – негорючие синтетические жидкости. Совол получают в результате хлорирования кристаллического вещества – дифенила. Совол представляет собой прозрачную вязкую жидкость. Совол токсичен, раздражает слизистые оболочки, поэтому работа с ним требует соблюдения правил техники безопасности. Совтол является смесью совола и трихлорбензола, вследствие чего он имеет значительно меньшую вязкость. Совол и совтол применяются для пропитки бумажных конденсаторов для установок постоянного тока и переменного тока промышленной частоты. ПЭС-Д является жидким кремнийорганическим диэлектриком и обладает повышенной нагревостойкостью и морозостойкостью. Кремнийорганические жидкости нетоксичны, не обладают коррозионной активностью. Вазелины представляют собой полужидкие массы. Применяются для пропитки бумажных конденсаторов [8, с. 138]. Высокополимерные органические диэлектрики состоят из молекул, образованных десятками, сотнями тысяч молекул исходного вещества – мономера. Полимеры могут быть природными (натуральный каучук, янтарь и др.) и синтетическими. Характерной особенностью высокополимерных материалов являются их высокие диэлектрические свойства. Воскообразные диэлектрики: парафин, церезин и другие представляют собой вещества поликристаллического строения с отчетливо выраженной температурой плавления. Электротехнические пластмассы – пластические массы (пластмассы) представляют собой композиционные материалы, состоящие из какого-либо связывающего вещества (смолы, полимеры), наполнителей, пластифицирующих и стабилизирующих веществ и красителей [4, с. 148]. По отношению к нагреву различают термореактивные и термопластичные пластмассы. Первые в процессе горячего прессования или последующего нагрева становятся неплавкими и нерастворимыми. Термопластичные пластмассы (термопласты) после нагрева в процессе прессования способны размягчаться при последующем нагревании.^ Электроизоляционные бумаги и картоны относятся к волокнистым материалам, получаемым из химически обработанных растительных волокон: древесины и хлопка [5, с. 116]. Электрокартоны для работы в воздушной среде обладают более плотной структурой по сравнению с картонами, предназначенными для работы в масле.^ Фибра – монолитный материал, получаемый прессованием листов бумаги, предварительно обработанных раствором хлористого цинка. Фибра поддается всем видам механической обработки и штамповки. Листовая фибра поддается формированию после размягчения ее заготовок в горячей воде [13, с. 137]. Слоистые электроизоляционные пластмассы – к ним относятся гетинакс, текстолит и стеклотекстолит. Эти материалы представляют собой слоистые пластмассы, в которых в качестве связывающего вещества применяются бакелитовые (резольные) или кремнийорганические смолы, переведенные в неплавкое и нерастворимое состояние. В качестве наполнителей в слоистых электроизоляционных материалах применяют специальные сорта пропиточной бумаги (гетинакс), а также хлопчатобумажные ткани (текстолит) и бесщелочные стеклянные ткани (стеклотекстолит).Гетинакс получают горячей прессовкой бумаги, пропитанной феноло-формальдегидной смолой в стадии А или другими смолами этого же типа. Для производства используется прочная и нагревостойкая пропиточная бумага. Пропитку производят с помощью водной суспензии формальдегидной смолы. Листы бакелизированной бумаги после их сушки собирают в пакеты и эти пакеты прессуют на гидравлических прессах при температуре 160°С под давлением 10—12 МПа. Во время прессования смола сначала размягчается, заполняя поры между листами и волокнами, а затем затвердевает, переходя в неплавкую стадию резита. В результате волокнистая основа связывается в прочный монолитный материал. Гетинакс относится к числу сильнополярных диэлектриков, так как волокнистая основа и пропитывающее вещество обладают полярными свойствами [7, с. 98]. Гетинакс используется для изготовления различного рода плоских электроизоляционных деталей и оснований. Бывает следующих марок: А, Б, В, Г, Д, Вс – для работы при частоте 50 гц и АВ, БВ, ВВ, ГВ, ДВ – для работы на высокой частоте. Гетинакс марок А и Б – обладает повышенной электрической прочностью, Г – повышенной стойкостью к влаге, В – повышенной механической прочностью.Текстолит. Наполнитель - пропитанная хлопчатобумажная ткань. Выпускается марками: А, Б и Г – на основе бязи и миткаля, ВЧ – на шифоне для высоких частот. Свойства идентичны свойствам гетинакса, только у текстолита предел прочности на раскалывание выше и удельная ударная вязкость, доходящая до 40 кг*см/см2. Текстолит – материал более дорогой, чем гетинакс, поэтому его следует применять там, где деталь может подвергаться ударам или истиранию [10, с. 105].Стеклотекстолит. Наполнитель – электроизоляционная бесщелочная стеклянная ткань. Обладают повышенной влагостойкостью и, по сравнению с текстолитом и гетинаксом, лучшими электрическими и механическими характеристиками. Изготавливается несколькими марками: СТ, СТУ на основе бесщелочной стеклянной ткани со связующим – фенолформальдегидной смолой и СТК – 41 и СТК – 41/ЭП на кремнийорганических смолах и с добавкой эпоксидных смол. Отличаются повышенной нагревостойкостью (180-200° С). Характеристики Гетинакс Текстолит А,В,Г Стеклотекстолит А,Б,В,Г,Д АВ,БВ,ВВ,ГВ,ДВ Фенолформальдегидная смола Кремнийорганическая смола Эпоксидная смола Удельный вес, г/см3 1,3 1,3 1,4 1,6 1,7 1,8 Предел прочности при изгибе, кГ/см2 800-1500 - 900-1400 1100-1300 1100-1200 2000-2500 Предел прочности при растяжении, кГ/см2 700-1500 800-1500 600-900 900-1300 1000-1500 1700-2400 Удельная ударная вязкость, кГ*см/см2 13-20 - 20-40 35-60 25-60 60-80 Теплостойкость, °С 150-180 125-180 125-160 185 200 250 Удельное объёмное сопротивление , Ом*см 1010-1012 1012-1014 109-1011 1010 1014 1013 Диэлектрическая проницаемость 5-6 5-6 5-6 6-8 6-7 6-7 Тангенс угла диэлектрических потерь , при 50 гц 0,06-0,10 0,01-0,03 0,07-0,15 0,06-0,08 0,022 0,025 Электрическая пробивная прочность, кв/мм 15-25 22-33 10-16 12-16 14-18 18-20 Заливочные и пропиточные электроизоляционные составы (компаунды). Компаундами называются электроизоляционные составы, жидкие в момент их применения, которые затем отверждаются и в конечном (рабочем) состоянии представляют собой твердые вещества [15, с. 96]. Согласно своему назначению компаунды делятся на пропиточные и заливочные. Первые применяются для пропитки обмоток электрических машин и аппаратов, вторые – для заливки полостей в кабельных муфтах, а также в корпусах электрических аппаратов и приборов (трансформаторы, дроссели и др.). Компаунды могут быть термореактивными, не размягчающимися после своего отвердения, или термопластичными, размягчающимися при последующих нагревах. К термопластичным относятся компаунды на основе эпоксидных, полиэфирных и некоторых других смол. К термопластичным – компаунды на основе битумов, воскообразных диэлектриков и термопластичных полимеров (полистирол, полиизобутилен и др.). Широкое применение получили компаунды на основе битумов как наиболее дешевые и химически инертные вещества, обладающие высокой стойкостью к воде и хорошими электрическими характеристиками. Электроизоляционные лаки и эмали. Лаки представляют собой растворы пленкообразующих веществ: смол, битумов, высыхающих масел (льняное, тунговое), эфиров целлюлозы или композиций этих материалов в органических растворителях. В процессе сушки лака из него испаряются растворители, а в лаковой основе происходят физико-химические процессы, приводящие к образованию лаковой пленки. Пропиточные лаки применяются для пропитки обмоток электрических машин и аппаратов с целью цементации их витков, увеличения коэффициента теплопроводности обмоток и повышения их влагостойкости. С помощью покровных лаков создают защитные влагостойкие, маслостойкие и другие покрытия на поверхности обмоток или пластмассовых и других изоляционных деталей. Клеящие лаки предназначаются для склеивания листочков слюды друг с другом или с бумагой и тканями (миканиты, микаленты), а также для склеивания пленочных материалов с бумагой, картоном, тканями и для других целей [2, с. 139]. Эмали представляют собой лаки с введенными в них пигментами – неорганическими наполнителями (окись цинка, двуокись титана, железный сурик). Пигментирующие вещества вводятся с целью повышения твердости, механической прочности, влагостойкости, дугостойкости и других свойств эмалевых пленок. Эмали являются покровными материалами. По способу сушки различают лаки и эмали горячей (печной) и холодной (воздушной) сушки. Первые требуют для своего отвердения 80 – 180°C, а вторые высыхают при комнатной температуре. Электроизоляционные лакированные ткани (лакоткани) представляют собой гибкие материалы, состоящие из ткани, пропитанной лаком или каким-либо жидким электроизоляционным составом. Лак или другой пропиточный состав после отвердевания образует гибкую пленку, которая обеспечивает электроизоляционные свойства лакотканям. В зависимости от тканевой основы лакоткани делятся на хлопчатобумажные, шелковые, капроновые и стеклянные (стеклолакоткани). В качестве пропиточных составов для лакотканей применяются масляные, масляно-битумные, полиэфирные. Эскапоновые или кремнийорганические лаки, а также растворы латексов кремнийорганических каучуков или суспензии фторопластов [12, с. 80]. Липкие стеклоткани и резиностеклоткани, пропитанные термореактивными составами с повышенной липкостью, обеспечивают монолитность изоляции, выполненной из этих материалов. Основными областями применения лакотканей являются: электрические машины, аппвраты и приборы низкого напряжения. Лакоткани применяются для гибкой межвитковой и пазовой изоляции, а также в качестве различных электроизоляционных прокладок. Для изолирования лобовых частей обмоток и других токоведущих элементов неправильной формы применяют лакотканые ленты, вырезанные под углом 45° по отношению к основе лакоткани. Пленочные электроизоляционные материалы представляют собой тонкие (от 10 до 200 мкм) гибкие пленки, бесцветные или окрашенные. Применение пленочных материалов для пазовой изоляции в электрических машинах позволяет уменьшить толщину изоляции. Пленочные электроизоляционные материалы получают преимущественно из синтетических высокомолекулярных диэлектриков (лавсан, фторопласт-4 и др.) [6, с. 122]. Электроизоляционные слюды. Для электрической изоляции применяется преимущественно природная слюда. Из синтетических слюд находит применение фторфлогопит. Слюды представляют собой вещества с характерным листовым сложением. Это позволяет расщеплять кристаллы слюды на тонкие листочки – от 6 до 45 мкм и более. Из всех природных слюд в качестве диэлектриков применяются только мусковит и флогопит. Эти слюды хорошо расщепляются и обладают высокими электрическими свойствами. В электротехнике применяются следующие разновидности слюд. Щипаная слюда – тонкие листочки произвольного контура. В зависимости от площади прямоугольника, который можно вписать контур листочка, щипаная слюда делится на девять размеров. По толщине листочков щипаную слюду делят на четыре группы. Щипаная слюда применяется для изготовления клееных слюдяных электроизоляционных материалов (миканиты, микафолий, микаленты и др.). Конденсаторная слюда – листочки прямоугольной формы, получаемые штампованием (вырубкой) из пластинок слюды (полборы). Конденсаторная слюда применяется в производстве слюдяных конденсаторов в качестве основного диэлектрика, а также в качестве защитных пластин. Слюда для электровакуумных приборов – плоские детали разной формы, снабженные заданными отверстиями. Эти изделия получают вырубкой из пластинок слюды мусковит. Толщина слюдяных деталей находится в пределах 0,1 – 0,5 мм. Гильотиновая слюда – пластины прямоугольной формы различной площади и толщиной 0,08 – 0,6 мм. Этот род слюдяных изделий применяется в качестве различного рода электроизоляционных прокладок в электрических машинах и аппаратах малой мощности. Электроизоляционные материалы на основе слюды изготавливаются из щипаной слюды и связывающих веществ; миканиты, микафолий и микаленты. Они представляют собой композиционные материалы, состоящие их листочков слюды, склеенных друг с другом с помощью какой-либо смолы или лака. Основной областью применения клееных слюдяных материалов является изоляция обмоток электрических машин высокого напряжения (пазовая, витковая и др.), а также машин низкого напряжения нагревостойкого исполнения. Слюдинитовые и слюдопластовые электроизоляционные материалы – при разработке природной слюды и изготовлении электроизоляционных материалов на основе щипаной слюды образуется около 90% различных отходов. Утилизация отходов привела к получению новых электроизоляционных материалов – слюдинитов и слюдопластов [3, с. 118]. Слюдинитовые материалы получают из слюдинитовой бумаги или картона, предварительно обработанных каким-либо связывающим составом (смолы, лаки) [13, с. 107]. Для получения слюдинитовой бумаги отходы слюды в виде чистых обрезков подвергают термической обработке при 750 – 800°C. В результате этого они претерпевают значительное вспучивание и делятся на мелкие частицы. После промывания их водой образуется слюдяная суспензия, из которой изготавливают слюдяную бумагу и картон. Электрокерамические материалы представляют собой твердые вещества, получаемые в результате термической обработки – обжига исходных керамических масс, состоящих из различных минералов, взятых в определенном соотношении. Основной частью многих электрокерамических материалов (фарфор, стеатит и др.) являются природные глинистые вещества (глины, каолины). Кроме глинистых материалов в электрокерамические массы вводят кварц, полевой шпат (электрофарфор), а также тальк, углекислый барий или углекислый кальций (стеатит) и др. [10, с. 116].ЗаключениеДо создания квантовой механики проводимость веществ объясняли, рассматривая движение электронного газа. Частицы этого газа – электроны – сталкиваются с ионами кристаллической решетки вещества. По квантовой теории проводимости, которая рассматривает движение электронов сквозь кристаллическую решетку как распространение электронных волн де Бойля, узлы решетки не могут быть для электронной волны преградой. Квантовая теория проводимости твердых тел основывается на зонной теории. В твердых телах электроны принимают только определенные значения энергии. Каждое такое значение представлено энергетическим уровнем. Уровни группируются в зоны, отделенные друг от друга энергетическими промежутками, принадлежащими зоне. У металлов зоны либо перекрываются между собой, либо не целиком заполнены электронами. И в металле под действием электрического поля электрон свободно переходит с уровня на уровень. Легкая возможность перехода с уровня на уровень и означает свободное движение электрона. В полупроводниках и изоляторах заполненная зона отделяется от свободной энергетической щелью. Через эту запрещенную зону электроны могут переходить за счет тепловой энергии. Вероятность таких переходов увеличивается с ростом температуры. Поэтому с повышением температуры проводимость полупроводников и диэлектриков возрастает – это важнейшее их отличие от металлов.Список использованной литературы Белецкий О.В. Обслуживание электрических подстанций / БелецкийО.В., Лезнов С.И., Филатов А.А. – М.: Атомиздат, 1998. – 365с. Бондар В.М. Практична електротехніка / Бондар В.М., Духовний А.Х. – К.: Веселка, 1997. – 377 с. Гаврилюк В.А. Електротехніка з основами електроніки / Гаврилюк В.А. – СПб.: Питер, 2006. - 220 с. Герман-Галкин С.Г. Компьютерное моделирование полупроводниковых систем / Герман-Галкин С.Г. – СПб.: Корона принт, 2001. – 320 с. Геронимус Б.Е. Устройство, монтаж и эксплуатация тяговых подстанций / Геронимус Б.Е., Гурвич В.Г., Мазов В.В. – М.: Высшая школа, 1998. – 405с. Гуржій А.М. Електротехніка з основами промислової електроніки / Гуржій А.М., Бойкова В.О., Поворознюк Н.І. – К.: Форум, 1999. – 298 с. Китаев В.Е. Электротехника с основами промышленной электроники / Китаев В.Е. – СПб.: Питер, 2006. – 220 с. Князевский Б.А. Электроснабжение промышленных предприятий / Князевский Б.А., Липкин Б.Ю. – М.: 000 «Издательство Новая Волна»: Издатель Умеренков, 2002. – 300с. Коновалова Л.Л. Электроснабжение промышленных предприятий и установок / Коновалова Л.Л., Рожкова Л.Д. – М.: Технология, 1999. – 299с. Павлішин М.М. Электротехника с основами промышленной электроники / Павлішин М.М. – СПб.: Питер, 2006. – 220 с. Перельмутер Н.М. Электромонтер-обмотчик и изолировщик по ремонту электрических машин и трансформаторов / Перельмутер Н.М. – СПб.: Корона принт, 2005. – 280 с. Печеник М.В. Основи електротехніки / Печеник М.В. – СПб.: АСТ, 2001. – 322 с. Попов Ю.П. Основи електротехніки, радіо та мікроелектроніки / ПоповЮ.П., Шовкошитний І.І. – СПб.: Оріяна-Нова, 2001. – 322 с. Соколовский Г.Г. Электроприводы переменного тока с частотным регулированием / Соколовский Г.Г. – М.: Владос, 2001. – 265 с. Фёдоров А.А. Справочник по электроснабжению промышленных предприятий / Фёдоров А.А., Каменева В.В., Конюхова Е.А. – М.: «Издательство Астрель», 2000. – 276с.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.