Реферат по предмету "Разное"


«Принципиально новые струйные энергетические технологии»

«Принципиально новые - струйные энергетические технологии»Б. М. Кондрашов (Москва, Россия.) Уважаемые дамы и господа! Прежде всего, разрешите мне выразить благодарность оргкомитету конференции за то, что он обратил внимание на разработки в области струйных энергетических технологий и предоставил мне возможность довести их основные положения до столь авторитетной аудитории.Каждая новая идея, как правило, проходит три стадии: этого не может быть, а в этом что-то есть и — кто же этого не знал?.. Данное высказывание Макса Планка может служить шкалой оценки состояния общественного восприятия и понимания конкретной идеи. Не тратя время на социально-экономические аспекты, предлагаемых энергетических технологий (о них упомянуто в опубликованных тезисах доклада), акцентирую Ваше внимание на физической сущности процессов преобразования даровой, общедоступной и экологически чистой низкопотенциальной энергии внешней среды. Делаю это для того, чтобы показать, что идеи, лежащие в их основе, известны всем и очень давно, а предлагаемые способы преобразования этой не востребованной сегодня энергии в виды энергии, необходимые для полезного использования, уже прошли первую и вторую стадию данной «шкалы Планка» и находятся между второй и третьей. Т. е. скоро о них можно будет сказать – а кто же этого не знал? А самое главное этот акцент на физической сущности необходим для того, чтобы Вам была понятна не только реальность и простота струйных энергетических технологий, но и возможность их быстрого эффективного внедрения и использования во всех производственных и социальных сферах современного общества. Струйные энергетические технологии основаны на законах классической термодинамики (без каких-либо так называемых «теорий» торсионных полей, энергии вакуума и прочего шаманства). Самым простым и наглядным примером возможности преобразования низкопотенциальной энергии внешней среды могут послужить уже существующие способы полезного использования энергии атмосферы. Атмосфера поистине неисчерпаемый источник низкопотенциальной энергии. Она аккумулирует тепловую и потенциальную энергию газов, нагреваемых лучистой энергией солнца и сжатых под действием гравитации (т. е. представляет собой этакий «глобальный аккумулятор» низкопотенциальной теплоты сжатых газов, постоянно «подзаряжаемый» солнечной энергией). Неравномерный нагрев этих газов вызывает изменения давления в атмосфере, нарушающие её равновесное состояние, при восстановлении которого потенциальная и тепловая энергия воздуха преобразуются в кинетическую энергию воздушных потоков. Природа сама демонстрирует нам способ преобразования энергии атмосферы, находящейся в равновесном состоянии, в вид, доступный для её использования. Первой машиной, выполняющей полезную работу за счёт использования кинетической энергии воздушных масс, стал парус. Следующей - ветродвигатель, который создаёт мощность на валу без потребления кислорода и выработки продуктов сгорания, чем выгодно отличается от традиционных тепловых двигателей. К сожалению, глобальный природный процесс преобразования энергии атмосферы неуправляем, а кинетическая энергия, с которой воздушные потоки воздействуют на единицу рабочей площади ветродвигателя, мала. Оба фактора снижают эффективность использования этих двигателей в энергетических установках и не позволяют их использовать для привода движителей транспортных средств. Однако уже давно на практике осуществляется управляемое преобразование и использование этой природной энергии, например, при эжекторном увеличении реактивной тяги. Ведь в эжекционном процессе присоединения дополнительных воздушных масс к активной струе рабочего тела равновесное состояние атмосферы нарушается за счёт управляемого локального воздействия этой активной струи, а при его восстановлении атмосфера совер­шает механическую работу, которая зависит от величины и способа воздействия, а также параметров эжекторных устройств и сферы их применения. В классическом эжекционном процессе - параллельного присоединения дополнительных масс к стационарной ре­активной струе тяга увеличи­вается без дополнительных затрат энергии топлива за счёт «неуравновешенной силы внешнего давления на входной раструб (заборник) эжектора, появление которой обусловлено понижением давления на стенках раструба при втекании в него эжектируемого воздуха». Данным утверждением, сформулированным при описании теории эжекторного увеличения тяги в 1969 г. Г.Н. Абрамович констатирует факт управляемого использования энергии атмосферы для выполнения работы. Причём, необходимо подчеркнуть, что сферы применения эжекторов не ограничиваются увеличением тяги реактивного движителя. Теория процесса параллельного присоединения подтверждена практикой. Он уже давно применяется в различных отраслях промышленности. Однако, показатели его эффективности - КПД и коэффициент присоединения дополнительных масс m (равный отношению присое­диняемой воздушной массы к массе активной струи) низкие. Это объясняется характером присоединения дополнительных масс, основанного на турбулентном смешении и трении, уменьшающих также скорость активной струи Caj. В результате реактивная тяга увеличивается незначительно, а кинетическая энергия реактивной массы, в зависимости от параметров процесса, может быть значительно меньше, чем у активной струи. В другом эжекционном процессе - последовательного присоединения (имеющего иную физическую основу, которая не обязательно связана со смешением объединяемых масс) воздействие пульсирующей активной струи создаёт периодическое разрежение в эжекторном насадке, при котором вслед за каждым импульсом активной струи ускоряется воздух. А происходит ускорение присоединяемой воздушной массы не за счёт трения и смешения с активной струёй, а за счёт возникающей в насадке неуравновешенной силы атмосферного давления. Поэтому процесс последовательного присоединения может протекать без уменьшения скорости активной струи. Но возможно это лишь в узком диапазоне величин и соотноше­ний его основных параметров: расчётной частоты, формы, длительности и скоро­сти газовой массы импульсов активной струи, скорости набегающего потока, а также конструктивных параметров эжекторного устройства. Только при их определённом значении присоединение происходит за счёт после­довательного втекания воздушных масс вслед за газовой массой импульсов, при котором практически отсутствует их выталкивание из эжекторного насадка газовой массой следующего импульса и турбулентное смешение разделённых газовых масс, уменьшающие эффективность процесса. Этот процесс преобразования низкопотенциальной энергии внешней среды, в котором потенциальная и тепловая энергия атмосферы преобразуется в кинетическую энергию воздушной струи, также как и в стохастическом природном процессе, в отличие от природного управляемый, потому что величина присоединяемой воздушной массы и её скорость зависят от параметров, которые можно изменять. Необходимо отметить важность открытия СССР № 314, - «Явление аномально высокого прироста тяги в газовом эжекционном процессе с пульсирующей активной струей», зарегистрированного в 1951 г. для дальнейшего развития процессов управляемого преобразования энергии атмосферы. Его авторы: О. И. Кудрин, А. В. Квасников, В. Н. Челомей. Одним из его авторов - сегодня академиком РАЕН профессором МАИ О.И. Кудриным - были проведены теоретические и экспериментальные исследо­вания этого эжекционного процесса, (О.И. Кудрин Пульсирующее реактивное сопло с присоединением дополнительной массы. Труды МАИ. 1958 г. Выпуск 97), доказавшие его эффективность. К сожалению, открытие не получило широкого применения. Вероятно потому, что изначально исследования проводились в авиационной отрасли и были направлены только на получение реактивной тяги (дополнительной к тяге винтовых движителей поршневых авиационных двигателей). Следует отметить, что если процесс присоединения дополнительных масс, в котором происходит существенный прирост кинетической энергии реактивной струи, применяется для увеличения тяги реактивного движителя, то большая часть дополнительно полученной энергии не может быть использована для выполнения полезной работы и неизбежно рассеивается в атмосфере, создавая при этом иллюзию низкой эффективности и самого процесса присоединения. Это обстоятельство, наряду с недостатком информации об экспериментальных исследованиях, стало препятствием для его внедрения в других отраслях, где кинетическую энергию воздушной массы, получаемую в результате управляемого преобразования энергии атмосферы, можно использовать не только для получения реактивной тяги, а более эффективно. Кроме того, открытие было сделано в тот период, когда проблема уменьшения запасов традиционных энергоносителей и ухудшения экологической ситуации, обусловленного их применением, не были столь актуальны, как сейчас. Однако и сегодня в энергетических и транспортных системах оно «не работает» ещё и потому, что существует ряд причин, которые носят, отнюдь, не технический, а социально-экономический характер. Рассмотрим основные способы преобразования низкопотенциальной энергии с использованием процесса последовательного присоединения дополнительных масс. Для этого используем следующие понятия и показатели. В процессе присоединения получается объединённая реактивная массаTM = 1+m где 1 - масса активной струи; m - присоединённая масса, численно равная коэффициенту присоединения m. Эффективность процесса последовательного присоединения характери­зует также коэффициент скорости объединённой реактивной массы: wtm = Ctm/Cpj где Ctm– скорость объединённой реактивной массы (Ctmравна Caj, которая зависит от периодического изме­нения давления в эжекторном насадке); Cpj- скорость пульсирующей реактивной струи, образованной рабочим телом с такими же параметрами, как при образовании активной струи, но расширяющимся в объёме с неизменным давлением (т.е. рабочим телом, истекающим не в эжекторный насадок, в котором изменяется давление в зависимости от степени ускорения в нём присоединяемых газовых масс, а в объём с постоянным давлением, например, атмосферным). Как же можно использовать низкопотенциальную энергию внешней среды, не для увеличения тяги реактивного движителя, а для её преобразования в те виды энергии, которые в большей степени необходимы для использования в повседневной жизни, такие как – мощность на силовом валу, «холод», высокопотенциальную теплоту? Рассмотрим первый способ, в котором преобразование энергии атмосферы в мощность на силовом валу осуществляется в комбинированных ГТД (т. е. с одновременным использованием для этого энергии от сжигания углеводородного топлива и энергии атмосферы). Кинетическую энергию газовой массы можно использовать для получения мощности на валу только в двигателях динамического принципа действия - газотурбинных двигателях. Современные ГТД по большинству своих технико-эксплуатационных характеристик превосходят двигатели объёмного принципа действия - поршневые, однако проигрывают им в топливной экономичности. В большей степени это относится к ГТД малой мощности с небольшим диаметром турбомашин и уменьшенным объёмом расхода рабочего тела, при котором возрастает уровень потерь за счёт относительного увеличения зазоров и уплотнений. Поэтому ГТД традиционных схем применяются в мощных стационарных энергетических установках и в авиации, а в автотранспорте используются лишь в большегрузных карьерных самосвалах и автопоездах. В данном способе низкопотенциальная энергия атмосферного воздуха преобразуется в струйном ГТД с эжекторным сопловым аппаратом и рабочим телом, получаемым при сгорании топлива в камере периодического сгорания (Пат. 2188960 RU). Процесс последовательного присоединения воздушных масс состоит из повторяющейся с заданной периодичностью пары последовательных, но разных термодинамических циклов - в каждом цикле свой источник энергии и рабочее тело. В первом цикле после сгорания топлива (при V=const) энергия продуктов сгорания, истекающих из реактивного сопла, преобразуется в кинетическую энергию первой части реактивной массы, которая движется в эжекторном насадке как газовый поршень и создаёт вслед за собой разрежение, а при истечении воздействует на лопатки турбины, создавая момент на валу. За счёт полученного в насадке разрежения, источником энергии во втором цикле становится потенциальная и тепловая энергия сжатого силой гравитации атмосферного воздуха, который под действием разности давлений втекает в насадок, расширяясь, охлаждаясь и ускоряясь как в стохастическом природном процессе, но в заданном направлении, образуя при истечении из эжекторного насадка вторую часть реактивной массы с расчётными термодинамическими параметрами, которая тоже воздействует на лопатки. При ускорении присоединяемого воздуха в насадке понижается давление, увеличивая разность потенциалов давлений перед истечением в него газовой массы импульса активной струи следующего периода и, соответственно, кинетическую энергию данной массы. Как следствие ускорения повышается степень разрежения в насадке во втором цикле этого периода и скорость присоединяемого в нём воздуха. Тем самым, в результате преобразования энергии низкопотенциального источника - атмосферы в предыдущем периоде создаются условия для повышения эффективности преобразования энергии высокопотенциального источника в следующем периоде. Т. е. в отличие от процесса параллельного присоединения, в котором уменьшается кинетическая энергия эжектирующего потока за счёт перераспределения его первоначальной энергии на большую массу газа, периодическое нарушение равновесного состояния атмосферы в эжекторном насадке воздействием пульсирующей активной струи создаёт в нём с заданной частотой разность потенциалов давлений, обеспечивающую при восстановлении равновесного состояния не только ускорение присоединяемых воздушных масс, но и увеличение кинетической энергии активной струи. А в результате этого дискретного процесса объединённая масса воздействует на лопатки турбины с возросшей (по сравнению с активной струёй) кинетической энергией, увеличивая момент на её валу без дополнительных затрат топлива. При этом для получения одинаковой мощности топлива затрачивается меньше (пропорционально коэффициенту m, скорректированному на величину коэффициента wtm), чем в ГТД традиционных схем. После начала истечения продуктов сгорания уменьшается их давление в камере, а также перед критическим сечением сопла и, соответственно, степень расширения «хвостовой» части газовой массы импульса в первом цикле и её скорость. Как следствие, происходит снижение степени разрежения в насадке, уменьшение присоединяемой во втором цикле воздушной массы и её скорости. В результате «головная» часть импульса продуктов сгорания следующего периода (имеющая скорость больше, чем Cpj) выталкивает из насадка «хвостовую» часть присоединяемой воздушной массы предыдущего периода, имеющую меньшую скорость. Это приводит к частичному смешению разделённых газовых масс и уменьшению коэффициента wtm (т. е. к снижению эффективности процесса и уменьшению возможного прироста кинетической энергии объединённой реактивной массы). В экспериментах, проведенных О.И. Кудриным при эжектировании атмосферного воздуха пульсирующей струёй продуктов сгорания, был получен прирост реактивной силы до 140% к исходной тяге, т.е. тяга увеличилась в 2.4 раза. Думаю, что основной причиной такого относительно небольшого прироста тяги для процесса последовательного присоединения являются используемые параметры, которые в эксперименте были максимально приближены к некоторым конструктивным параметрам выхлопного тракта и термодинамическим параметрам выхлопных газов реального поршневого авиационного двигателя с воздушным винтом. Причем В.И. Богданов (бывший докторант О.И. Кудрина) уже не так давно, продолжая исследования процесса последовательного присоединения, доказал, что прирост тяги реактивного движителя, в зависимости от параметров процесса, может быть значительно больше, чем прирост в 2.4 раза, полученный О.И. Кудриным экспериментально более полувека назад. Численное моделирование процесса последовательного присоединения дополнительных масс, проведённое в течение последних 5-ти лет в трёх различных местах высококвалифицированными специалистами (независимо друг от друга) подтвердило результаты проведенных теоретических и экспериментальных исследований. При этом использовались самые современные технические средства и программное обеспечение, учитывающее все нюансы нестационарных газовых течений. А уменьшение на полтора - два порядка скорости происходящего на экране монитора дало очень наглядную и доказательную картину физики процесса последовательного присоединения, а также возможность анализа динамики изменений давления, температуры, формы и скорости течений газовых масс как вне, так и внутри насадка на всех стадиях процесса, и возможность оптимизации этих параметров. Не буду описывать зависимость эффективности процесса от изменения значений геометрических и термодинамических параметров – она очень сложная и объёмная. Лишь коротко обрисую картину, наблюдаемую на экране монитора при их оптимальных значениях. При этом я намеренно повторю физику процесса последовательного присоединения, обеспечивающую значительный прирост кинетической энергии реактивной струи: Внешние газовые массы при восстановлении равновесного состояния, нарушенного «газовым поршнем», «вдавливаются» в насадок, ускоряясь вслед за ним. При этом тепловая энергии внешних газовых масс (находящихся вне насадка в равновесном состоянии) преобразуется в кинетическую энергию газового потока, состоящего из этих масс. Причём «газовый поршень» не тратит своей энергии на ускорение присоединяемых газовых масс, потому что при оптимальных геометрических пропорциях и термодинамических параметрах процесса они движутся раздельно - вслед друг за другом практически без смешения и трения. Кроме того, истечение газовой массы «поршней» происходит в область с пониженным давлением (по сравнению с давлением газовых масс вне насадка), которая образуется в насадке за счёт ускорения внешних газовых масс, уже присоединённых в предыдущем периоде, поэтому скорость «поршней» (всех кроме первого, выталкивающего из насадка воздух, находящийся в равновесном состоянии) не только не уменьшается, но и увеличивается. При моделировании становится совершенно очевидно, что в этом процессе нет и не может быть никаких причин для резкого снижения скорости газовой массы активной струи и, соответственно, кинетической энергии объединённой реактивной массы (если, конечно, не использовать заведомо не подходящие термодинамические параметры и не создавать специальные условия для увеличения турбулентного смешения и трения). Как уже отмечалось выше, эксперименты проводились с целью получения максимального прироста тяги авиационного движителя, однако, хотел этого О.И. Кудрин или нет, но получив увеличение реактивной тяги в 2,4 раза (при больших величинах коэффициента присоединения и отсутствии объективных причин для резкого снижения скорости активной струи), он экспериментально доказал также и возможность увеличения кинетической энергии в этом процессе. Известно, что величина прироста тяги, получаемая в результате эжекционного процесса, зависит от геометрических параметров эжекторного устройства, изменения реактивной массы и скорости её истечения. Этот прирост тяги мог быть получен О.И. Кудриным при различных значениях параметров процесса присоединения. При этом он не соответствует приросту кинетической энергии, который может значительно отличаться от прироста тяги, так как в большей степени зависит от изменения скорости объединённой массы. В данном случае, если коэффициент wtmравен 1 (т. е. скорость объединённой массы будет равна скорости активной струи, при её истечении в атмосферу), а m равен 2.4, то оба прироста одинаковы, и кинетическая энергия объединённой реактивной массы Etm= 0.5 (1 + m) C2tm, будет больше, чем кинетическая энергия активной струи Eaj=0.5 C2aj, также в 2.4 раза. Если коэффициент wtmбольше 1, то и прирост кинетической энергии, соответственно, больше прироста тяги. Однако скорость объединённой массы в зависимости от параметров процесса может быть меньше скорости активной струи. А для того, чтобы получить такой же прирост тяги (т. е. в 2.4 раза) при wtm меньше 1, присоединяемая воздушная масса должна быть равна 2.4mn, где n – коэффициент, на который уменьшается Caj и Ctm.(т .е. потери в скорости должны быть возмещены соответствующим увеличением массы). А для получения прироста кинетической энергии, равного приросту тяги, в процессе с wtm меньше 1, необходим коэффициент m, увеличенный в n2 раз. Тогда для получения прироста кинетической энергии в 2.4 раза, при предположении, что Ctm будет меньшее, по сравнению с Cpj, например, в 2 раза (что маловероятно в этом процессе), m должен быть 2.4×22 т.е. равен 9.6. А коэффициент m, полученный экспериментально, больше 10, поэтому прирост кинетической энергии и при таком гипотетическом предположении больше прироста тяги. Таким образом, значение кинетической энергии, получаемое в результате процесса последовательного присоединения, равное Etm= 0.5 (1 + 2.4mn2) (Ctm/n)2, (при увеличении тяги в 2.4 раза, экспериментально полученном О.И. Кудриным, и гипотетическом предположении о максимально возможном уменьшении wtm), больше, чем в 2.4 раза кинетической энергии активной струи Eaj=0.5 C2aj. Т. е. кинетическая энергия газовой струи, истекающей из эжекторного насадка в результате процесса последовательного присоединения, резко увеличивается. Причём она не рассеивается в атмосфере, как при создании тяги движителя, а используется для выполнения механической работы. Следовательно, большая часть мощности данным способом получается за счёт преобразования потенциальной энергии и низкопотенциальной теплоты сжатых под действием гравитации газов в кинетическую энергию воздушной массы, воздействующей на лопатки турбины. Поэтому эффективность комбинированных струйных ГТД оценивается суммарным КПД, который равен КПД теплового двигателя, увеличенному на произведение коэффициентов m и wtm. Сегодня возможности повышения эффективности ГТД с циклом при P=const. практически исчерпаны, а значения коэффициента m, полученные экспериментально, в зависимости от параметров процесса присоединения изменяются от 10 до 50, т. е. эффективность струйных ГТД может быть более чем на порядок выше эффективности современных ГТД (с соответствующим уменьшением выброса в атмосферу продуктов сгорания). Варианты конструкции струйных ГТД, в зависимости от схемы привода и его назначения, могут быть различные. Но в любом варианте есть эжекторный сопловой аппарат, состоящий из двух составных частей - струйного устройства для образования газовой массы импульсов активной струи (эту функцию может выполнять, например, реактивное сопло, детонационная камера сгорания, электрореактивное устройство и т. д.) и эжекторного насадка для присоединения дополнительных газовых масс. Сопловой аппарат может состоять из одного или нескольких эжекторных элементов, быть стационарным или вращающимся - с одновременным выполнением функции реактивной турбины - «сегнерова колеса». Варианты конструктивных схем и их преимущества описаны в Пат. 2188960 RU. Необходимо сделать акцент на том, что при вращающемся эжекторном сопловом аппарате кинетическая энергия одних и тех же присоединяемых масс два раза подряд преобразуется в полезную работу. Вначале, при их втекании в эжектор, образуется разница потенциалов давлений на внешней и внутренней сторонах его заборника, увеличивающая реактивную силу тяги эжектора и, соответственно, момент на валу «сегнерова колеса». А затем, при истечении объединённой реактивной массы из вращающегося эжекторного соплового аппарата, она воздействует на лопатки лопаточной турбины, создавая дополнительный момент за счёт присоединённых масс и на её валу. Автором разработан стендовый вариант комбинированного струйного ГТД, который позволяет варьировать и оптимизировать основные параметры процесса последовательного присоединения, в т.ч. с учетом скорости набегающего потока (совместно с «НПО Машиностроение», г. Реутов подготовлена конструкторская документация этого варианта). Мы коротко рассмотрели известные стохастический и управляемый процессы преобразования потенциальной и тепловой энергии атмосферы в кинетическую энергию воздушных потоков, а также способ её преобразования в комбинированных струйных двигателях с не вращающимся эжекторным сопловым аппаратом для увеличения мощности на валу без дополнительных затрат энергии топлива. Рассмотрим второй способ - преобразования энергии атмосферы в бестопливных струйных двигателях Проведенные эксперименты показали, что оптимальное значение скорости активной струи (Caj) продуктов сгорания в процессе присоединения находится в диапазоне скоростей, которые можно получать без дополнительного подогрева сжатого рабочего тела перед его расширением в реактивном сопле. Следовательно, продукты сгорания (с давлением, получаемым при нагреве за счёт сжигания топлива в замкнутом объёме камеры периодического сгорания) можно заменить воздухом, сжимаемым в компрессоре, а камеру сгорания (с рабочим телом для одного цикла) - пневмоаккумулятором с большим объёмом. При истечении воздуха из такого пневмоаккумулятора давление перед критическим сечением сопла остаётся постоянным в течение всего цикла. Поэтому «хвостовая» часть газовой массы импульсов активной струи, снижающая эффективность процесса присоединения, отсутствует, что практически исключает смешение последовательно движущихся разделённых воздушных масс и, следовательно, потери на их трение. В результате коэффициент wtmстановится больше 1. Напомню, что это означает - скорость объединённой массы больше скорости реактивной струи, образованной рабочим телом с такими же параметрами как при образовании активной струи, но истекающей в область с неизменным давлением. Так как скорость объединённой массы Ctm равна скорости активной струи Caj, то кинетическая энергия объединённой массы будет больше кинетической энергии активной струи, т. е. Etm больше Eaj, и, соответственно, больше потенциальной энергии (Eace) рабочего тела – сжатого воздуха, образующего активную струю, не менее, чем в m раз. Величина m изменяется в зависимости от параметров процесса присоединения в диапазоне от 10 до 50, поэтому потенциальная энергия рабочего тела Eace, необходимая для образования массы импульсов активной струи при его расширении, составляет лишь 0.1 – 0.02 кинетической энергии объединённой массы Etm, получаемой в результате процесса присоединения. Причём для повышения давления воздуха в пневмоаккумуляторе перед его расширением в струйном устройстве можно использовать разные способы, в т. ч. сжатие в механическом компрессоре, приводимым в действие за счёт различных источников энергии, а такой баланс энергии позволяет осуществлять привод компрессора за счёт мощности, полученной на валу турбины в результате процессов преобразований энергии атмосферы в предыдущих периодах. При этом суммарные энергозатраты и потери в процессах преобразованийEexp = Eace + Ece + Ete + Eoe где Ece – потери энергии при сжатии воздуха в компрессоре; Ete – потери энергии при преобразовании Etm в турбине; Eoe– прочие потери энергии. Общий удельный вес технологических потерь (Ece + Ete + Eoe), не превышает 25% Etm, в том числе: Ece 20% Eace; Ete 15% Etm; Eoe 2% Eaj. (потери означают, что данный способ преобразования энергии не противоречит второму началу термодинамики) В основном величина потерь зависит от КПД турбины, а удельный вес потерь в компрессоре и прочих потерь при больших величинах m незначителен и составляет, соответственно, 1% и 0.1% от Etm, увеличиваясь с уменьшением m. С учётом энергозатрат и потерь, энергия для использования потребителями Eus = Etm – Eexp. Если принять Etmравной 100%, то, при среднем значении m равном 20 и wtm равном1, Eus= 100% – (5% + 1% + 15%+ 0.1%) = 78.9%, т. е. кинетическая энергия для полезного использования потребителями в виде мощности на валу составляет 78.9% от получаемой в результате процесса присоединения кинетической энергии объединённой реактивной массы. А суммарные энергозатраты и потери в этом случае Eexp составят 21.1% Etm. Если основные параметры процесса и/или их соотношения отклоняются от оптимальных величин, то значения m и wtm уменьшаются.При уменьшении коэффициента m до 0.695 и соответствующем изменении уровня технологических энергозатрат и потерь, кинетической энергии объединённой массы будет достаточно только для их компенсации, а Eus≈ 100% – (69.5% + 13.9% + 15%+ 1.4%) ≈ 0.Это означает, что для самоподдержания процесса достаточно увеличить кинетическую энергию реактивной массы на 44%, т.е. Etm= 100 больше Eaj= 69.5 лишь в 1.44 раза (100/69.5=1.44) и такое соотношение обеспечивает непрерывность процессов бестопливного преобразования энергии атмосферы. Прирост кинетической энергии за счёт увеличения m сверх этого уровня (0.695) может быть использован для потребления. Например, если m равен всего навсего 1 (при этом присоединяемая масса равна массе активной струи), технологические затраты и потери изменяются: Eace до 50%, Ece до 10%, Eoe до 1%, а Eus = 100% – (50% + 10% + 15% + 1%) = 24% Etm. Совершенно очевидно, что даже при такой малой величине m, равной 1 (а в процессе последовательного присоединения величина коэффициента m = 10 достижима при не самых оптимальных параметрах), невысоких КПД турбины (0.85) и компрессора (0.8), для сжатия рабочего тела можно использовать энергию, полученную в предыдущих циклах, при этом оставляя потребителям 24% располагаемой Etm. Результаты экспериментов также подтверждают возможность преобразований энергии атмосферы при сжатии рабочего тела за счёт мощности, полученной при её преобразовании в предыдущих периодах. Если экстраполировать увеличение кинетической энергии (в 2.4 раза), полученное экспериментально в процессе последовательного присоединения с активной струёй из продуктов сгорания, на аналогичный процесс с использованием сжатого воздуха для образования этой струи, то даже без учёта реального снижения потерь на смешение и трение объединяемых масс, повышающего эффективность этого процесса, Eus = 100% – (41.7%+8.3%+15%+ 0.8%) = 34.2% Etm. Таким образом, энергетический баланс доказывает возможность бестопливного преобразования энергии атмосферы в мощность на силовом валу даже при использовании отнюдь не самых оптимальных параметров в процессе последовательного присоединения. Согласно второму началу термодинамики не вся энергия одного неисчерпаемого источника преобразуется в работу – часть превращается в теплоту, которая рассеивается во внешней среде. В рассмотренном способе бестопливного преобразования энергии атмосферы при механическом сжатии рабочего тела мы получаем высокопотенциальную теплоту, температуру которой можно регулировать (в зависимости от степени сжатия и охлаждения рабочего тела перед расширением) и полезно использовать в этой среде, например, через теплообменные устройства систем отопления. При расширении сжатого и охлаждённого рабочего тела, например, до атмосферной температуры, значения Caj и Ctmбудут находиться в диапазоне величин коэффициента скорости λ до 2.45, достаточном для получения окружных скоростей, обеспечивающих высокий КПД турбомашин. Т. е. одновременно с бестопливным получением мощности на валу, которую можно использовать не только для генерации электроэнергии, но и для привода различного вида движителей транспортных средств, мы можем получать высокопотенциальное тепло для отопления. Температура высокопотенциального рабочего тела, а также низкопотенциального - воздуха - в процессах преобразований энергии и выполнения работы понижается.Управляя количеством атмосферного и холодного отработавшего воздуха, возвращаемого в эжекторные насадки в качестве присоединяемых масс, можно получать воздух с регулируемой температурой, например, для использования в системах кондиционирования. Если отработавший в одном устройстве присоединения или эжекторном сопловом аппарате воздух направлять в качестве присоединяемых масс в другое устройство или следующий сопловой аппарат и т.д., то его можно охлаждать до температур, используемых в криогенной технике. Процесс присоединения дополнительных масс воздуха в рассмотренном бестопливном способе преобразования энергии атмосферы также состоит из повторяющейся с заданной периодичностью пары последовательно связанных термодинамических циклов со своими источниками энергии и рабочими телами: из обратного цикла Карно (цикла воздушного теплового насоса – холодильной машины) и цикла - охлаждения атмосферного воздуха при его расширении и ускорении. Часть мощности, полученной в результате преобразований энергии атмосферы в предыдущих периодах, используется для сжатия атмосферного воздуха


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Экономическое пространство социально-культурной сферы и туризма
Реферат Экономическое пространство социально культурной сферы и туризма
Реферат Щука. Все способы ловли
Реферат Центр Севастополя история и современность
Реферат Экономические обоснование стоимости туристского продукта на примере Турции
Реферат Экономическое обоснование создания предприятия в туризме
Реферат Ціноутворення у сфері зовнішньоекономічної діяльності
Реферат Экскурсионно-туристические центры Рима и Ватикана
Реферат Чешская республика 2
Реферат Шварценеггер Арнольд - Новая энциклопедия бодибилдинга
Реферат Экологический туризм и местное сообщество
Реферат Экзотический туризм 2
Реферат Меры ответственности за неподписание либо невыполнение обязательства по предупреждению коррупции
Реферат Экологический туризм 4
Реферат Blah Essay Research Paper For my senior