Пошукова робота
на тему:
Вектори, лінійні операції над ними.План
Вектори і скаляри.
Множення вектора на число.
Додавання та віднімання векторів.
Проекція вектора на вісь.
1. Вектори і скаляри
У природі існують величини двох видів: такі, що характеризуються лише своїм числовим значенням, і такі, для характеристики яких крім числового значення ще потрібно знати їх напрямок у просторі. Перші з них називаються скалярними, а другі –векторними.
Так, маса, температура, час, густина, площа, об’єм, довжина відрізка, електричний заряд, опір провідника - скаляри, а сила, момент сили, швидкість, прискорення, напруженість силового поля - векторні величини.
Слід мати на увазі, що одна і та сама величина може розглядатись і як скаляр, і як вектор. Наприклад: сила струму - величина скалярна, бо вона визначається лише величиною заряду незалежно від того, в якому напрямку і під яким кутом до площадки рухаються частинки, що несуть заряд.
Але така характеристика електричного струму неповна. У багатьох випадках потрібно розглядати напрямок, в якому рухаються заряджені частинки. Для врахування напрямку переносу зарядів вводиться вектор густини струму.
Векторна величина геометрично зображається з допомогою направленого відрізка певної довжини і певному масштабі після вибору одиниці масштабу.
Вектор позначається на письмі двома буквами, причому перша-початок вектора, друга - його кінець з вказанням стрілкою напрямку. Наприклад,
Часто вектор позначають однією буквою, наприклад
Два вектори називаються колінеарними, якщо вони розташовані на одній прямій або на паралельних прямих.
Вектори називаються компланарними, якщо вони паралельні деякій площині (або лежать в одній площині).
Два вектори називаються рівними тоді і тільки тоді, коли вони мають однакову довжину і однаковий напрямок, тобто вони розміщені на паралельних прямих.
Звідси випливає, що при паралельному перенесенні вектора одержуємо вектор, рівний даному. Тому початок вектора можна розміщувати у будь-якій точці простору.
Якщо ряд векторів розміщені на різних прямих у просторі (паралельних або непаралельних), то, виходячи з попередніх міркувань, можна вибрати довільну точку в просторі, наприклад
Рис.2.1
Вектор, довжина якого дорівнює одиниці, називається одиничним.
Очевидно, що коли дано довільний вектор
2. Лінійні операції над векторами
Сумою двох векторів
Оскільки вектор можна переносити паралельно самому собі, то з рис.2.2 зрозуміло, що вектор
Рис.2.2
тоді
У кінці вектора
Для знаходження суми заданих
Якщо задано вектор
Щоб від вектора
В результаті множення вектора
Ділення вектора на скаляр зводиться легко до множення вектора на скаляр:
Поняття “більше”, “менше” для векторів незастосовні. Для лінійних операцій над векторами векторів вірні такі властивості:
10.
20.
30.
40.
Вираз
називається лінійною комбінацією векторів. Числа
Лінійні комбінації векторів мають такі властивості: якщо вектори
Приклад. Знайти вектор, що ділить кут між векторами
Р о з в ’ я з о к. Відомо, що діагональ ромба ділить кути ромба пополам. Переносячи один з векторів паралельно самому собі так, щоб його початок збігався з початком другого вектора, одержимо кут
3. Проекція вектора на вісь
Проекцією вектора
Легко довести основні положення теорії проекцій:
10.
(читається: проекція
20.
(рис.2.4).
Рис. 2.3
.
Рис.2.4
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |