Реферат по предмету "Разное"


1. Числові послідовності. Границі числових послідовностей Множина дійсних чисел. Теорема Кантора про вкладені відрізки

ІНСТИТУТ ПРИКЛАДНОЇ МАТЕМАТИКИ ТА ФУНДАМЕНТАЛЬНИХ НАУК Напрям: Прикладна математика Спеціальність: Соціальна інформатика (1002)I. Математичний аналіз1. Числові послідовності. Границі числових послідовностейМножина дійсних чисел. Теорема Кантора про вкладені відрізки. Поняття числової послідовності та границі числової послідовності. Властивості збіжних послідовностей. Теорема про існування границі монотонної обмеженої послідовності. Теорема Больцано-Вейєрштрасса. Фундаментальні послідовності. Критерій Коші збіжності числової послідовності.2. Границя функції в точці. Неперервні функції. Функції, неперервні на відрізкуГраниця функції в точці. Критерій Коші існування границі функції в точці. Неперервність функції в точці. Властивості функцій, неперервних в точці. Перша та друга важливі границі. Функції, неперервні на відрізку. Теореми Вейєрштрасса про неперервні на відрізку функції. Теорема Коші про проміжні значення неперервної на відрізку функції. Рівномірна неперервність.3. Диференціальне числення функції однієї змінноїДиференційовність функції однієї змінної. Геометрична інтерпретація похідної та диференціалу. Правила обчислення похідних. Похідна оберненої функції. Похідна і диференціал складної функції. Похідні функцій, заданих неявно. Похідна параметрично заданої функції. Теореми про середнє (Ферма, Ролля, Лагранжа) для диференційовних функцій. Знаходження границь невизначеностей за правилами Лопіталя. Похідні вищих порядків. Формула Тейлора. Застосування формули Тейлора до знаходження границь. Застосування методів диференціального числення до дослідження функцій. 4. Первісна та неозначений інтегралОзначення і властивості неозначеного інтегралу. Основні методи інтегрування (заміна змінних, інтегрування частинами, інтегрування раціональних функцій).5. Означений інтегралОзначення інтегровної функції, критерій інтегровності. Властивості означеного інтегралу. Інтеграл зі змінною верхньою межею. Формула Ньютона-Лейбніца. Заміна змінної в означеному інтегралі. Інтегрування частинами. Застосування означеного інтегралу (довжина дуги кривої, площа криволінійної трапеції, об’єм та бічна площа поверхні тіла обертання).6. Невласні інтеграли. Ознаки збіжності. Головне значення невласного інтегралуНевласні інтеграли першого та другого роду. Збіжність, абсолютна збіжність. Ознаки збіжності (ознака порівняння, ознаки Діріхле та Абеля). Головне значення невласного інтегралу.7. Числові ряди. Ознаки збіжності. Абсолютно та умовно збіжні рядиОзначення числового ряду. Збіжність. Властивості збіжних числових рядів. Ознаки збіжності рядів з невід’ємними членами. Числові ряди з членами довільних знаків. Абсолютно та умовно збіжні ряди. Ознаки Абеля та Діріхле.8. Функціональні послідовності та рядиЗбіжність та рівномірна збіжність функціональних послідовностей та рядів, ознаки рівномірної збіжності функціонального ряду. Рівномірна збіжність та неперервність. Почленне інтегрування та диференціювання рівномірно збіжних рядів та послідовностей. Степеневі ряди. Множина збіжності. Ряд Тейлора.9. Диференційовні відображення Rm —>RpОзначення диференційовного відображення та його похідної. Матриця Якобі диференційовного відображення. Диференціал відображення. Матриця Якобі складної функції. Матриця Якобі оберненої функції. Теорема про неявну функцію. Диференційовність та частинні похідні. Теорема про рівність змішаних частиних похідних однакового порядку, що відрізняються лише порядком диференціювання. Похідні та диференціали вищих порядків. Формула Тейлора для функцій багатьох змінних. 10. Екстремуми функцій багатьох зміннихНеобхідна умова локального екстремуму. Достатня умова локального екстремуму. Умовний екстремум. Необхідна умова локального умовного екстремуму (метод множників Лагранжа). Достатня умова локального умовного екстремуму. Найбільше та найменше значення функції в замкненій області. 11. Міра Жордана, вимірні множини. Кратний інтеграл Рімана. Зведення кратного інтегралу до повторногоОзначення нижньої та верхньої міри Жордана. Означення множини, вимірної за Жорданом. Критерій вимірності. Означення кратного інтегралу Рімана. Властивості кратного інтегралу. Зведення кратного інтегралу до повторного. Теорема про заміну змінних у кратних інтегралах. Полярні, сферичні та циліндричні координати. 12. Властивості диференційовних відображень з ненульовим якобіаномВластивості неперервно диференційовних відображень областей з ненульовим якобіаном. Геометричний зміст модуля якобіана. Геометричний зміст знаку якобіана при відображенні областей. 13. Криволінійні інтегралиКриві в R3 (еквівалентні параметричні зображення, орієнтація). Криволінійні інтеграли першого та другого роду, властивості. Теорема (формула) Гріна. Застосування формули Гріна до обчислення площ. Криволінійні інтеграли, що не залежать від вибору шляху інтегрування, їх властивості.14. Поняття поверхні. Поверхневі інтегралиПараметричне зображення поверхні. Еквівалентні параметричні зображення. Дотична площина і нормаль до поверхні. Орієнтація поверхні. Поняття площі поверхні. Поверхневі інтеграли першого та другого роду. Заміна змінних у поверхневих інтегралах. Зведення поверхневих інтегралів до подвійних. 15. Теорія поляОзначення градієнта і похідної за напрямом. Означення дивергенції, ротора, циркуляції та потоку векторного поля. Означення потенціального та соленоїдного векторного поля. Теорема Остроградського Гаусса. Критерій соленоїдності векторного поля в об’ємно однозв’язній області. Теорема (формула) Стокса. Критерій потенціальності векторного поля.16. Інтеграли, залежні від параметраОзначення збіжності та рівномірної збіжності інтегралів, залежних від параметра. Теорема про неперервність інтегралів, залежних від параметра. Теорема про диференціювання інтегралів, залежних від параметра. Теорема про інтегрування інтегралів, залежних від параметра. 17. Ряди Фур’єТригонометрична система, її властивості. Тригонометричний ряд Фур’є. Показникова форма ряду Фур’є. Ортонормовані системи. Теорема (нерівність) Бесселя. Теорема (рівність) Парсеваля. Теорема Рімана - Лебега. Достатні умови поточкової збіжності рядів Фур’є. Почленне інтегрування рядів Фур’є.18 Інтеграл та перетворення Фур’єОзначення інтегралу Фур’є. Інтегральна формула Фур’є в показниковій формі. Пряме та обернене перетворення Фур’є. Властивості перетворення Фур’є. Перетворення Фур’є згортки. ^ II. Теорія ймовірностей та математична статистика1. Випадкові подіїВідносна частота випадкової події, ймовірність в дискретному просторі елементарних подій. Класичне означення ймовірності. Повна група подій. Геометрична ймовірність. Сумісні і несумісні події. Теореми додавання сумісних і несумісних подій. Залежні і незалежні події. Теореми множення залежних і незалежних подій. Формула повної ймовірності. Формула Байєса.2. Випадкові величиниЗагальне поняття випадкової величини та її функції розподілу. Поняття і розподіл дискретних випадкових величин. Основні дискретні розподіли та їх властивості (біноміальний, геометричний та пуассонівський розподіли). Абсолютно неперервні розподіли. Щільність розподілу і її властивості. Основні абсолютно неперервні розподіли та їх властивості (нормальний, показниковий, рівномірний розподіли). Розподіл дискретного випадкового вектора. Щільність розподілу абсолютно неперервного випадкового вектора. Рівномірний і нормальний розподіли на площині. Умовний розподіл. Розподіл функцій від випадкових величин. Розподіл суми (різниці), частки і добутку двох випадкових величин. Поняття і властивості математичного сподівання дискретної випадкової величини. Математичне сподівання біноміального, геометричного та пуассонівського розподілів. Поняття і властивості дисперсії дискретної випадкової величини. Дисперсії біноміального, геометричного та пуассонівського розподілів. Математичне сподівання довільної і абсолютно неперервної випадкових величин. Математичне сподівання і дисперсія рівномірного, показникового та нормального розподілів. Моменти вищих порядків. Поняття і властивості умовного математичного сподівання. Поняття і властивості коефіцієнта кореляції. 3. Граничні теореми теорії ймовірностейНерівність Чебишова. Закон великих чисел. Теореми Хінчина (без доведення), Чебишова, Бернуллі, Маркова. Локальна теорема Лапласа. Інтегральна теорема Лапласа. Поняття і властивості характеристичних функцій випадкових величин. Теореми Бохнера-Хінчина, Марцинкевича, Пойа (без доведення). Характеристичні функції основних розподілів. Поняття і властивості твірних функцій випадкових величин. Центральна гранична теорема для однаково розподілених випадкових величин. Граничні теореми в схемі Бернуллі.4. Елементи вибіркової теоріїПредмет та основні задачі математичної статистики. Ймовірнісно-статистична модель. Вибірки. Емпірична функція розподілу. Варіаційний ряд і статистичний ряд розподілу вибірки. Гістограма і полігон вибірки. Граничні теореми для емпіричної функції розподілу (без доведення). Теоретичні та вибіркові моменти. Збіжність за ймовірністю та асимптотична нормальність вибіркових моментів. Розподіл порядкових статистик. 5. Оцінювання невідомих параметрів розподілуНезміщені та умотивовані оцінки. Поняття і властивості оптимальних оцінок. Поняття функції правдоподібності, внеску вибірки, функції інформації. Нерівність Рао-Крамера. Ефективні оцінки. Експоненціальні моделі. Достатні статистики. Критерій факторизації. Теорема Рао-Блекуела-Колмогорова. Повні достатні статистики і рівняння незміщеності. Метод максимальної правдоподібності. Метод моментів. Інтервальне оцінювання невідомих параметрів розподілу. Розподіл деяких функцій від нормально розподілених випадкових величин. Інтервальні оцінки та методи їх побудови. Інтервали надійності для невідомих параметрів нормального розподілу. Асимптотичний інтервал надійності для оцінки невідомої ймовірності події. 6. Перевірка статистичних гіпотезЗагальні поняття про статистичні гіпотези та статистичні критерії. Основні принципи побудови критеріїв узгодженості. Критерії узгодженості про вигляд функції розподілу Колмогорова, Мізеса. Критерії узгодженості про вигляд функції розподілу Пірсона. Критерій незалежності. Перевірка параметричних гіпотез. Критерій Неймана-Пірсона. Критерії значущості та інтервальне оцінювання.^ III. Диференціальні рівняння1. Загальні поняття про диференціальні рівняння, типи їх розв’язків. Порядок диференціального рівняння. Приклади задач, які призводять до поняття диференціального рівняння.Основні поняття та означення. Загальний інтеграл диференціального рівняння. Диференціальне рівняння – математична модель реального процесу. 2. Диференціальні рівняння 1-го порядку з відокремлюваними змінними і рівняння, які зводяться до них.Загальний інтеграл рівняння з відокремленими змінними. Інтегрування рівнянь з відокремлюваними змінними. Рівняння з автомодельною правою частиною. Однорідні рівняння першого порядку. Поняття однорідної функції. Рівняння першого порядку з дробово-раціональним аргументом у правій частині.3. Лінійні диференціальні рівняння 1-го порядку і методи їх розв’язування. Диференціальні рівняння в повних диференціалах.Лінійне однорідне диференціальне рівняння 1-го порядку. Метод Бернуллі-Ейлера знаходження розв'язку лінійного неоднорідного рівняння. Метод Лаґранжа інтегрування лінійних неоднорідних рівнянь 1-го порядку. Рівняння Бернуллі та методи його інтегрування. Рівняння звідні до лінійних. Інтегрування рівняння Ріккаті. 4. Теорема існування і єдиності розв’язку задачі Коші для нормального диференціального рівняння 1-го порядку.Формулювання теореми та її обґрунтування. Доведення теореми. 5. Диференціальні рівняння 1-го порядку не розв’язні відносно похідної. Рівняння Клеро і Лагранжа.Застосування методу введення параметра для розв'язання неявних рівнянь. Поняття особливого розв'язку. Рівняння Клеро. Рівняння Лаґранжа.6. Рівняння вищих порядків та методи їх розв’язання.Рівняння вищих порядків, що не містять шуканої функції. Пониження порядку рівнянь, в які явно входить шукана функція, а незалежна змінна відсутня. Інтегрування однорідних рівнянь вищих порядків. Інтегрування лінійних рівнянь вищих методом пониження.7. Лінійні диференціальні рівняння n-го порядку. Властивості їх розв’язків. Методи розв’язку лінійних диференціальних рівнянь n-го порядку з сталими коефіцієнтами.Лінійні однорідні диференціальні рівняння та властивості їх розв'язків. Поняття характеристичного многочлена. Структура загального розв'язку однорідного рівняння. Метод підбору (невизначених коефіцієнтів) знаходження розв'язку лінійного неоднорідного рівняння. Метод Лаґранжа інтегрування лінійних неоднорідних рівнянь вищих порядків. 8. Системи диференціальних рівнянь 1-го порядку. Лінійні системи диференціальних рівнянь і властивості їх розв’язків. Методи розв’язування лінійних однорідних систем диференціальних рівнянь зі сталими коефіцієнтами.Інтегрування систем методом зведення до рівнянь вищих порядків. Лінійні однорідні системи та властивості їх розв'язків. Побудова характеристичного рівняння лінійної однорідної системи диференціальних рівнянь першого порядку. Загальний розв'язок лінійної однорідної системи. Метод Лаґранжа інтегрування неоднорідної системи диференціальних рівнянь. 9. Стійкість розв’язків диференціальних рівнянь. Означення стійкості по Ляпунову. Типи точок спокою.Поняття асимптотичної стійкості та стійкості за Ляпуновим. Типи точок спокою. ^ IV. Алгебра та геометрія1. Матриці та визначники. Крамерові системи рівняньДії над матрицями. Перестановки та підстановки. Означення та властивості визначника n-го порядку. Розклад визначника за елементами рядка. Визначник добутку матриць. Вироджені та невироджені матриці. Обернена матриця. Правило Крамера. Метод Гауса. Матричний метод.2. Векторна алгебраЛінійні операції над векторами. Базис та координати. Проекція вектора на вісь. Поділ відрізка у заданому відношенні. Скалярний, векторний, мішаний добутки та їх властивості. 3. Прямі та площиниОсновні типи рівнянь прямої на площині. Жмуток прямих. Рівняння площини. Зведення лінійного рівняння до нормального вигляду. Основні рівняння прямої у просторі. Відстань між мимобіжними прямими.4. Криві та поверхні 2-го порядкуКанонічні рівняння еліпса, гіперболи, параболи. Ексцентриситет, директриси та дотичні. Лінійні перетворення системи координат на площині. Зведення загального рівняння 2-го порядку до канонічного вигляду. Поверхні обертання. Канонічні рівняння поверхонь 2-го порядку. 5. МногочлениАлгебраїчна та тригонометрична форми комплексного числа. Операції над комплексними числами. Формула Муавра. Добування кореня. Первісні корені. Ділення з остачею. Найбільший спільний дільник. Алгоритм Евкліда. Теорема Безу. Схема Горнера. Кратні корені. Основна теорема алгебри. Формули Вієта. Многочлени з дійсними коефіцієнтами. Межі дійсних коренів. Теорема Штурма. Симетричні многочлени. Результант. Дискримінант.6. Лінійні просториБазис та координати. Вимірність. Лема про лінійні комбінації. Зв’язок між базисами. Лінійні підпростори. Лінійні оболонки та гіперплощини. Сума та перетин. Прямі суми. Ізоморфізм. Терема про ізоморфні лінійні простори. Евклідів простір. Ортонормований базис. Ортогоналізація системи векторів. Матриця Грама. Ортогональне доповнення. Ортогональна проекція ветора на підпростір. Нерівності Коші-Буняковського та Мінковського. Унітарні простори. Ермітові матриці. Унітарні матриці.7. Лінійні системи загального виглядуБазисний мінор. Ранг матриці. Теорема Кронекера-Капеллі. Максимальна лінійно незалежна підсистема. Підпростір розв’язків однорідної системи. Загальний розв’язок однорідної системи. Лінійний многовид розв’язків неоднорідної системи. Метод найменших квадратів.8. Лінійні перетворенняМатриці лінійного перетворення в різних базисах та їх зв’язок. Група лінійних перетворень. Ранг, образ, ядро та дефект. Власні значення та власні вектори. Спряжене лінійне перетворення. Самоспряжені лінійні перетворення. Ортогональні перетворення. Жорданова нормальна форма матриці лінійного перетворення.9. Квадратичні формиСпряжений простір. Взаємні базиси. Матриця білінійної форми. Квадратична форма, її ранг. Закон інерції. Полілінійні функції. Тензори.10. Алгебраїчні структуриГрупа. Підгрупа. Нормальні дільники.Фактор-група. Гомоморфізм груп. Абельові групи. Кільце. Ідеал. Фактор-кільце. Гомоморфізм кілець. Класифікація полів. Розширення полів. Скінченні поля. ^ V. Фінансова математика1. Просте нарахування відсотків.Поняття відсоткової ставки. Нарощення і дисконтування за простими відсотками. Зв’язок простої відсоткової та облікової ставки відсотків. Банківське дисконтування. 2. Застосування простого нарахування відсотків.Застосування простих ставок у фінансових розрахунках. Облік векселів. Принцип фінансової еквівалентності. Зміна умов контрактів, консолідація векселів. Врахування інфляції при простому нарахуванні3. Складне нарахування відсотків.Реінвестиція під прості відсотки. Нарощення і дисконтування за складними відсотками. Номінальна ставка. Ставка ефективності. Неперервні відсотки. Врахування інфляції при складному нарахуванні.4. Еквівалентність фінансових розрахунків.Еквівалентність відсоткових ставок. Змінювані відсоткові ставки. Середні відсоткові ставки. Принцип стабільності ринку. Еквівалентність простих і складних відсотків.5. Застосування складного нарахування відсотків.Застосування складних відсотків у фінансових розрахунках. Планування погашення довгострокової заборгованості. Кредитні операції. Зміна умов контрактів, консолідація платежів. 6. Розрахунок параметрів загальної ренти.Теорія рент. Типи рент. Дискретні ренти. Приведення рент різного типу до простої ренти. Розрахунок нарощеної та теперішньої вартості ренти. Розрахунок параметрів рент.7. Застосування потоків платежів.Ренти з неперервним нарахуванням відсотків. Вічні ренти. Застосування теорії рент в кредитно-фінансових операціях. Консолідація та конверсія фінансових рент.8. Цінні папери.Ринок цінних паперів (загальні відомості). Первинний і вторинний ринок цінних паперів. Облігації. Визначення вартості облігації. Акції. Визначення цін акцій. Опціони, страхові аннуітети. Ф’ючерсні контракти.9. Основи інвестицій.Характеристики ефективності інвестицій. Планування інвестиційного процесу. Визначення ринкового портфеля. Оптимізація портфеля цінних паперів.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Этническая идентичность её типы и основания
Реферат Отечественная культура XIV-XV веков
Реферат Методы планирования и прогнозирования прибыли
Реферат 7777 лучших заговоров от лучших целителей России
Реферат Как стать гением переговоров?
Реферат Экономическая теория.
Реферат Розвиток регіональної та соціальної політики ЄС
Реферат Экономическая характеристика научно-производственных комплексов НПК России
Реферат Динамика российско-таджикских отношений
Реферат Calling
Реферат Происхождение и развитие галактик и звёзд
Реферат Рынок автомобилестроения в период современного кризиса
Реферат Герцеговинское восстание
Реферат "Курс начинающего кадровика" Продолжительность обучения 72 часа
Реферат 1 Символы массовой культуры Человек воспринимает мир через изображение, предметы и символы. Они указывают нам что делать, что думать и что чувствовать