1.Значение биологии, как фундаментальной науки её понимании единство человечества и биосферы Земли. Явления жизни и явления мертвой природы, взятые с геологической, т. е. с планетной, точки зрения, являются проявлением единого процесса. ...Мы получили в науке ряд наблюдений и достижений, которые указывают на огромное значение организмов в земной коре, в частности в химических ее процессах, и которые давно заслуживают систематической сводки и научной обработки с точки зрения общего проявления свойств живого. Около 70 лет назад выдающийся ученый академик В. И. Вернадский разработал учение о биосфере — оболочке Земли населенной; живыми организмами. В. И. Вернадский распространил понятие биосферы не только на организмы, но и на среду их обитания. Достижения биологии последнего времени привели к возникновению принципиально новых направлений в науке, ставших самостоятельными разделами в комплексе биологических дисциплин. Так, раскрытие молекулярного строения структурных единиц наследственности (генов) послужило основой для создания генной инженерии.^ 2.Биосоциальная природа человека, как отражение эволюционно обусловленной иерархии системы живой природы. На планете среди других существ людям принадлежит уникальное место, что обусловлено приобретением ими в процессе антропогенеза особого качества — социальной сущности. Это означает, что уже не биологические механизмы, а в первую очередь общественное устройство, интеллект, производство, труд обеспечивают выживание, всесветное и даже космическое расселение, благополучие человечества. Социальность, однако, не противопоставляет людей остальной живой природе. Человек остается включенным в систему органического мира. Этот мир складывался и развивался на протяжении большей части истории планеты независимо от человеческого фактора, более того, на определенном этапе своего развития он этот фактор породил. Человечество составляет своеобразный, но неотъемлемый компонент биосферы. Крупный отечественный патолог И. В. Давыдовский писал, что естественность и законность болезней вытекают из основных свойств жизни, а именно из универсального и важнейшего свойства организмов — приспосабливаться к меняющимся условиям внешней среды. По его мнению, полнота такого приспособления и есть полнота здоровья.^ 3.Единство материального субстрата жизни к жизненных явлений на молекулярном уровне. Взаимопроникновение идей и методов различных областей естествознания (физики, химии, биологии), возникновение наук на стыке этих областей (биофизика, биохимия, молекулярная биология) повлекли за собой расширение классификации, вплоть до выделения молекулярного и электронно-атомного уровней. Медико-биологические исследования, проводимые на этих уровнях, уже сейчас дают практический выход в здравоохранение. Так, приборы, основанные на явлениях электронного парамагнитного и ядерного магнитного резонанса, с успехом применяют для диагностики заболеваний и состояний организма. В силу ограниченной стабильности молекул или ошибок синтеза в ДНК (время от времени, но неизбежно) случаются нарушения, которые изменяют информацию генов. В последующей редупликации ДНК эти изменения воспроизводятся в молекулах-копиях и наследуются организмами дочернего поколения. Указанные изменения возникают и тиражируются закономерно, что и делает редупликацию ДНК конвариантной, т.е. происходящей иногда с некоторыми изменениями. Такие изменения в генетике получили название генных (или истинных) мутаций. Конвариантностъ редупликации, таким образом, служит основой мутационной изменчивости.^ 4. Вода, как первичная среда жизни и ее физико-химические свойства.Вода входит в состав клеток, межклеточного вещества, тканевой жидкости и лимфы. Она составляет 65—70 % массы тела человека, а кровь и лимфа содержат свыше 90 % воды. Значение воды состоит в том, что все химические превращения происходят только в водных растворах. Вода — растворитель органических и неорганических соединений. Дипольный характер молекулы воды позволяет ей формировать вокруг белков водную (сольватную) оболочку, препятствующую склеиванию их друг с другом. Это связанная вода, составляющая 4—5 % от всего ее, содержания. Остальную воду (около 95 %) называют свободной. Свободная вода является универсальным растворителем для многих органических и неорганических соединений. Большинство химических реакций идет только в растворах. Проникновение веществ в клетку и выведение из нее продуктов диссимиляции в большинстве случаев возможно только в растворенном виде. Вода принимает и непосредственное участие в биохимических реакциях (реакции гидролиза). Вода участвует в регуляции осмотического давления в клетках. 5. Значение генетического экологического и хронобиологического подходов к изучению развития и жизнедеятельности человека в формировании науки о здоровье и развитии профилактической медицины. Биологизаторские тенденции в оценке природы человека очень оживились в настоящее время. Это связано с развитием молекулярной биологии и генетики, которые открыли перед медициной перспективу генной инженерии. Экологические исследования имеют важную практическую направленность для решения вопросов медицинской паразитологии и эпидемиологии. По результатам исследования биологии паразитов человека и их жизненных циклов Скрябин поставил главную задачу девастации (полного уничтожения гельминтов). Одна из современных областей биологии – хронобиология, изучает механизм регуляции суточных ритмов митотической активности. Имеет важное значение для медицины: Суточная периодичность количества митозов указывает на регулируемость организмов (репарация тканей). Методы молекулярной генетики генной инженерии позволяют не только диагностировать целый ряд генных мутаций и устанавливать нуклеидную последовательность отдельных генов человека, но и клонировать их. С помощью методов генной инженерии стало возможно получать первичные генные продукты (инсулин). Это определяет перспективы – терапии наследственных болезней, обусловленных генными мутациями. Применение метода пальмоскопии можно установит отцовство ребенка. Этот метод применяется при диагностике хромосомных болезней (Дауна, Шерешевского, и др.) Близнецовый метод: помогает выявить ошибки при определении монозиготности близнецов. Генеалогический метод широко используют в медико - генетических консультациях для прогнозирования потомства. ^ 6.Поток информации в клетке биосинтез белка и его регуляция. Пластический и энергетический обмен. Жизнедеятельность клетки как единицы биологической активности обеспечивается совокупностью взаимосвязанных, приуроченных к определенным внутриклеточным структурам, упорядоченных во времени и пространстве обменных (метаболических) процессов. Эти процессы образуют три потока: информации, энергии и веществ. Благодаря наличию потока информации клетка на основе многовекового эволюционного опыта предков приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, а также передает в ряду поколений. В потоке информации участвуют ядро (конкретно ДНК хромосом), макромолекулы, переносящие информацию в цитоплазму (мРНК), цитоплазматический аппарат трансляции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). На завершающем этапе этого потока полипептиды, синтезированные на полисомах, приобретают третичную и четвертичную структуры и используются в качестве катализаторов или структурных белков (рис. 2.7). Кроме основного по объему заключенной информации ядерного генома в эукариотических клетках функционируют также геномы митохондрий, а в зеленых растениях — и хлоропластов.^ 7. Клеточная теория, ее положения и основные этапы развития (М. Шлейден. Т. Шванн. Р. Вихров). Современное состояние клеточной теории и значение для медицины. Клеточная теория сформулирована немецким исследователем, зоологом Т. Шванном (1839). Поскольку при создании этой теории Швакн широко пользовался работами ботаника М. Шлейдена, последнего то праву считают соавтором клеточной теории. Исходя из предположена о схожести (гомологичности) растительных и животных клеток, доказываемой одинаковым механизмом их возникновения; Шванн обобщил многочисленные данные в виде теории, согласно которой клетки являются структурной и функциональной основой живых существ. В конце XIX столетия немецкий патолог Р. Вирхов на основе новых фактов пересмотрел клеточную теорию. Ему принадлежит вывод о том, что клетка может возникнуть лишь из предсуществующей клетки. Клеточная теория в современном виде включает три главных положения. Первое положение соотносит клетку с живой природой планеты в целом. Оно утверждает, что жизнь, какие бы сложные или простые (например, вирусы) формы она ни принимала, в ее структурном, функциональном и генетическом отношении обеспечивается в конечном итоге только клеткой.^ 8. Кариотип человека. Морфофункциональная характеристика и классификация хромосом человека. Роль изучения кариотипа для выявления патологии человека. В результате этих исследований стало очевидным, что наследственность и изменчивость обусловлены функционированием одного и того же материального субстрата. В первые десятилетия XX в. были получены данные, свидетельствующие в пользу зависимости состояния признаков от характера взаимодействия генов, что выходило за рамки отношений доминантности и рецессивности, описанных еще Менделем. Отсюда появилось Представление о генетическом аппарате как о системе взаимодействующих генов — генотипе, который сосредоточен в хромосомном наборе — кариотипе. Кариотип — диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризуется определенным числом, строением и генетическим составом хромосом. Каждый вид хромосом в кариотипе, содержащий определенный комплекс генов, унаследованными от родителей с их половыми клетками. Двойной набор генов, заключенный в кариотипе, генотип – это уникальное сочетание парных аллелей геномов. В генотипе содержится программа развития конкретной особи. ^ 9. Медико-биологические аспекты экологических проблем человека. Получая от окружающей среды средства к существованию в таком количестве, которое полностью восстанавливалось за счет естественных процессов биотического круговорота, люди возвращали в биосферу то, что использовали другие организмы для своей жизнедеятельности. Универсальная способность микро организмов разрушать органическое вещество, а растений — превращать минеральные вещества в органические обеспечивала включение продуктов хозяйственной деятельности людей в биотический круговорот. В настоящее время человек извлекает из биосферы сырье в значительном и все возрастающем количестве, а современные промышленность и сельское хозяйство производят или применяют вещества, не только не используемые другими видами организмов, но нередко и ядовитые. В результате этого биотический круговорот становится незамкнутым. Вода, атмосфера, почвы загрязняются отходами производства, вырубаются леса, истребляются дикие животные, разрушаются природные биогеоценозы. В настоящее время человечество стоит перед возможностью экологического кризиса. Основные пути воздействия людей на природу заключаются в расходовании естественных богатств в виде минерального сырья, почв, водных ресурсов; загрязнении среды, истреблении видов, разрушении биогеоценозов.^ 10. Организация открытых биологических систем в пространстве и во времени. Идея единства мира живых существ находит свое подтверждение также в экологических исследованиях, относящихся главным образом к XX в. Представления о биоценозе (В. Н. Сукачев) или экологической системе (А. Тенсли) раскрывают универсальный механизм обеспечения важнейшего свойства живого — постоянно происходящего в природе обмена веществ и энергии. Названный обмен возможен только в случае сосуществования на одной территории и постоянного взаимодействия организмов разного плана строения (продуцентов, консументов, деструкторов) и уровня организации. Учение о биосферен ноосфере (В. И. Вернадский) раскрывает место и планетарную роль живых форм, включая человека, в природе, так же как и возможные последствия ее преобразования людьми. Каждый крупный шаг на пути познания фундаментальных законов жизни неизменно оказывал влияние на состояние медицины, приводил к пересмотру содержания и понимания механизмов патологических процессов. Соответственно пересматривались принципы организации лечебной и профилактической медицины, методы диагностики и лечения. Так, исходя из клеточной теории и разрабатывая ее дальше, Р. Вирхов создал концепцию клеточной патологии (1858), которая на долгое время определила главные пути развития медицины. Эта концепция, придавая особое значение в течении патологических состояний структурно-химическим изменениям на клеточном уровне, способствовала возникновению в практическом здравоохранении паталогоанатомической, службы.^ 11. Закономерности проявления свойств живого в развитии и структурно-функциональной организации органов и тканей организма человека. Обязательные свойства жизни более подробно. Живым существам присущ особый способ взаимодействия с окружающей средой —обмен веществ. Его содержание составляют взаимосвязанные и сбалансированные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Результатом ассимиляции является образование и обновление структур организма, диссимиляции — расщепление органических соединений с целью обеспечения различных сторон жизнедеятельности необходимыми веществами и энергией. Для осуществления обмена веществ необходим постоянный приток определенных веществ извне; некоторые продукты диссимиляции выделяются во внешнюю среду. Таким образом, организм является по отношению к окружающей среде открытой системой. Он способен противостоять нарастанию энтропии, сохранять высокий уровень упорядоченности. Хранение информации в ДНК, утилизация ее в процессе жизнедеятельности путем переноса на белки и далее на различные биологические структуры находят свое отражение в наличии генотипа и фенотипа} что также обязательно для всех живых существ. Воплощение исходной наследственной информации генотипа в информацию рабочих структур организма происходит в процессе онтогенеза — индивидуального развития, типичного для живых форм. В ходе этого процесса проявляется такое свойство, как способность к росту.^ 12. Задачи биологии человека, как базисной дисциплины в системе естественнонаучной и профессиональной подготовки врача широкого профиля. Биологическая подготовка играет принципиальную и все более возрастающую роль в структуре медицинского образования. Будучи фундаментальной естественнонаучной дисциплиной, биология раскрывает закономерности возникновения и развития, а также необходимые условия сохранения жизни как особого явления природы нашей планеты. Человек, отличаясь несомненным своеобразием в сравнении с другими живыми формами, тем не менее, представляет собой закономерный результат и этап развития жизни на Земле, поэтому само его существование прямо зависит от общебиологических (молекулярных, клеточных, системных) механизмов жизнедеятельности. Велика роль курса биологии не только в естественнонаучной, но и в мировоззренческой подготовке врача. Предлагаемый1 материал учит разумному и осознанно внимательному отношению к окружающей природе, себе самому и окружающим как части этой природы, способствует выработке критической оценки последствий воздействия человека на среду обитания. Биологические знания воспитывают бережное и уважительное отношение к детям и лицам преклонного возраста. Открывшаяся на рубеже веков в связи с развитием геномики возможность активно и фактически произвольно изменять генетическую конституцию людей неизмеримо увеличивает ответственность врача, требуя от него неукоснительного следования этическим нормам, гарантирующим соблюдение интересов пациента.^ 13. Организм, как открытая саморегулирующая система. Понятие о гомеостазе. Теория генетическая, клеточные и системные основы гомеостаза. Живой организм, будучи в энергетическом и вещественном плане открытой системой, на любом этапе индивидуального развития существует в единстве со средой обитания. При этом, несмотря на определенные, иногда значительные колебания характеристик среды он сохраняет себя во времени и пространстве как отдельную биологическую единицу, отличающуюся постоянством морфологии, основных функциональных и поведенческих характеристик, физико-химических параметров клеток, тканевой жидкости, крови. Свойство живых форм поддерживать постоянство своей внутренней среды, а также главные черты присущей ему организации, несмотря на изменчивость параметров окружающей среды, называется гомеостазом. Основу гомеостаза составляют механизмы, сложившиеся в процессе эволюции и поэтому закрепленные генетически. Эффективность механизмов гомеостаза во многом определяется генотипами особей, разнообразие которых в пределах генофонда вида объясняет индивидуальные особенности уровня структурно-функциональной стабильности конкретных организмов, различия их нормы реакции на одно и то же изменение окружающей среды. Поддержание генетического постоянства внутренней среды организма или состояния генетического гомеостаза осуществляется при помощи неспецифических и специфических (действующих строго против конкретного чужеродного агента) защитных механизмов. К первым относятся, например, барьерные свойства кожи и слизистых оболочек, антимикробные свойства лизоцима слюны, фагоцитоз. Вторые представлены механизмами клеточного и гуморального иммунитету, аллергическими реакциями.^ 14. Исторический метод и современный системный подход основа познания общих законов и закономерности жизнедеятельности человека. По мере накопления конкретных знаний наряду с представлением о разнообразии организмов возникла идея о единстве всего живого, Особенно велико значение этой идеи для медицины, так как это указывает на универсальность биологических закономерностей для всего органического мира, включая человека. В известном смысле история современной биологии как науки о жизни представляет собой цепь крупных открытий и обобщений, подтверждающих справедливость этой идеи и раскрывающих ее содержание. Современная теория эволюции обращает внимание на условность грани между живой и неживой природой, между живой природой и человеком. Результаты изучения молекулярного и атомного состава клеток и тканей, строящих тела организмов, получение в химической лаборатории веществ, свойственных в естественных условиях только живому, доказали возможность перехода в истории Земли от неживого к живому. Не противоречит законам биологической эволюции появление на планете социального существа — человека. Клеточная организация, физико-химические и генетические законы неотделимы от его существования, так же как и любого другого организма. Эволюционная теория показывает истоки биологических механизмов развития и жизнедеятельности людей, т.е. того, что может быть названо их биологическим наследством.^ 15. Прокариотипические и эукарнотипическне клетки, их сравнительная характеристика. Клеткам прокариоттеского типа (рис. 2.1) свойственны малые размеры (не более 0,5—3,0 мкм в диаметре или по длине), отсутствие обособленного ядра, так что генетический материал в виде ДНК не отграничен от цитоплазмы оболочкой. В клетке отсутствует развитая система мембран. Генетический аппарат представлен ДНК единственной кольцевой хромосомы, которая лишена основных белков — гистонов (гистоны являются белками клеточных ядер). Благодаря значительному количеству диаминокислот аргинина и лизина гистоны имеют щелочной характер. Различия прокариотических и эукариотических клеток по наличию гистонор указывают на разные механизмы регуляции функции генетического материала. В прокариотических клетках отсутствует клеточный центр. Тип клеточной организации представлен двумя подтипами. Особенностью организмов простейших (рис. 2.2) является то, что они (исключая колониальные формы) соответствуют в структурном отношении уровню одной клетки, а в физиологическом — полноценной особи. В связи с этим одной из черт клеток части простейших является наличие в цитоплазме миниатюрных образований, выполняющих на клеточном уровне функции жизненно важных органов многоклеточного организма.^ 16. Фундаментальные свойства жизни их разнообразие и атрибуты жизни. Живым существам присущ особый способ взаимодействия с окружающей средой — обмен веществ. Его содержание составляют взаимосвязанные и сбалансированные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). Результатом ассимиляции является образование и обновление структур организма, диссимиляции — расщепление органических соединений с целью обеспечения различных сторон жизнедеятельности необходимыми веществами и энергией. Для осуществления обмена веществ необходим постоянный приток определенных веществ извне; некоторые продукты диссимиляции выделяются во внешнюю среду. Таким образом, организм является по отношению к окружающей среде открытой системой. Жизнь представляет собой постоянный процесс самообновления, в результате которого воссоздаются структуры, соответствующие снашиваемым и утрачиваемым. Это достигается благодаря использованию живыми формами для построения своих структур и обеспечения всех сторон жнзнед,еятелъности~биологической (генетической) информации. Последняя отбиралась по признаку биологической полезности в процессе эволюции видов, населяющих планету. Она хранится, записанная с помощью специального кода, в наследственном веществе клеток.^ 17. Создание хромосомной теории наследственности. Работы Т. Моргана и его сотрудников не только подтвердили значение хромосом как основных носителей наследственного материала, представленного отдельными генами, но и установили линейность расположения их по длине хромосомы. Доказательством связи материального субстрата наследственности и изменчивости с хромосомами было, с одной стороны, строгое соответствие открытых Г. Менделем закономерностей наследования признаков поведению хромосом в ходе митоза, при мейозе и оплодотворении. Согласно хромосомной теории наследственности, совокупность генов, входящих в состав одной хромосомы, образует группу сцепления. Каждая хромосома уникальна по набору заключенных в ней генов. Число групп сцепления в наследственном материале организмов данного вида определяется, таким образом, количеством хромосом в гаплоидном наборе их половых клеток. При оплодотворении образуется диплоидный набор, в котором каждая группа сцепления представлена двумя вариантами — отцовской и материнской хромосомами, несущими оригинальные наборы аллелей соответствующего комплекса генов. Представление о линейности расположения генов в каждой хромосоме возникло на основе наблюдения нередко возникающей рекомбинации (взаимообмена) между материнским и отцовским комплексами генов, заключенными в гомологичных хромосомах. 18. Молекулярная организация органических веществ (белки, углеводы, нуклеиновые кислоты, АТФ) и их роль. Молекулярный механизм использования живыми организмами биологической информации основан на функционировании в клетках уникальных химических соединений — биологических полимеров, не встречающихся в природных условиях в неживых объектах. Во-первых, это белки, которые, выполняя роль биологических катализаторов (ферменты), обусловливают протекание биохимических реакций в нужном направлении, с достаточной скоростью, при достаточно мягких условиях температуры и давления. Ферменты отличаются специфичностью. Они катализируют превращения веществ определенного химического строения или даже отдельного вещества. Постоянство биологической информации белковых молекул достигается тем, что в качестве матриц для их синтеза используются молекулы нуклеиновых кислот. Хранение и использование биологической (генетической) информации на основе уникальных информационных макромолекул белков и нуклеиновых кислот составляет важное свойство жизни. Особая роль в этом принадлежит одному из этапов дыхательного обмена — циклу Кребса, осуществляемому в митохондриях. Через этот цикл проходит путь углеродных атомов (углеродных скелетов) большинства соединений, служащих промежуточными продуктами синтеза химических компонентов клетки^ 19. Развитие представлений о слитности жизни. Определение жизни с позиции системного подхода (витализм, механицизм, диалектический материализм). На протяжении своей истории биология неизменно была ареной борьбы идеалистического и материалистического мировоззрений. Принципиальное разногласие между идеализмом и материализмом заключается в понимании отношения между материей и сознанием. Идеализм утверждает первичность сознания, некоего духовного начала и подчинения ему материального. Материализм утверждает первичность материального мира, рассматривая сознание как свойство высокоорганизованной материи. В биологии идеализм представлен витализмом. Витализм признает наличие особой, непознаваемой опытным путем духовной сущности, от которой зависит исключительность свойств жизни. Философские взгляды материалистов XVIII—XIX веков в биологии представлены механицизмом. Ему свойственно отрицание качественного своеобразия живого. Биологические закономерности он сводит к физическим явлениям и химическим превращениям. Некоторые представители механицизма все разнообразные проявления жизни объясняли наличием единого универсального биологического принципа. Философской основой современной биологии служит диалектический материализм — учение, созданное К. Марксом и Ф. Энгельсом во второй половине XIX века. Диалектический материализм глубоко и последовательно отражает всеобщие законы материального мира, вскрывает своеобразие и закономерности переходов различных форм движения материи. Фундамент диалектического материализма составляет идея развития.^ 20. Иммунитет, как свойство поддержания индивидуальности организмов и разнообразия внутри вида. Виды иммунитета. Защитные действия хозяина против паразитарной инвазии обеспечиваются главным образом иммунными механизмами. Иммунные реакции хозяина возникают в ответ на действие антигенов двух разных типов: входящих в состав организма паразита и выделяющихся паразитами в окружающую среду. Антигены первого типа, кроме входящих в состав покровов, высвобождаются только после гибели паразитов. Они очень многообразны, но у многих, особенно родственных форм, часто бывают сходными. Поэтому антитела на эти антигены обладают слабой специфичностью. Антигены покровов разнообразны и специфичны. Часто они имеют гликопротеиновую природу и на разных этапах жизненного цикла паразитов могут меняться, поэтому выработка иммунитета к ним затруднена. Антигены второго типа специфичны. Простейшие, обитающие вне клеток, покрываются антителами и в таком виде теряют свою подвижность. При этом облегчается их захват макрофагами. В некоторых случаях антитела обеспечивают агглютинацию (склеивание) паразитов, которые после этого гибнут. При многих паразитарных заболеваниях между хозяином и паразитом устанавливаются компромиссные взаимоотношения: хозяин адаптируется к обитанию в его организме небольшого количества паразитов, а их существование в организме хозяина создает состояние иммунитета, препятствующего выживанию личинок, вновь попадающих в организм больного.^ 21. Предпосылки и современные представления о возникновении жизни на Земле. Существуют две главные гипотезы, по-разному объясняющие появление жизни на Земле. Согласно гипотезе панспермии, жизнь занесена из космоса либо в виде спор микроорганизмов, либо путем намеренного «заселения» планеты разумными пришельцами из других миров. Согласно гипотезе, жизнь возникла на Земле, когда сложилась благоприятная совокупность физических и химических условий, сделавших возможным абиогенное образование органических веществ из неорганических. В середине прошлого столетия Л. Пастер окончательно доказал невозможность самозарождения жизни в теперешних условиях. В 20-х годах текущего столетия биохимики А. И. Опарин и Дж. Холдейн предположили, что в условиях, имевших место на планете несколько миллиардов лет назад, образование живого вещества было возможно. Главные этапы на пути возникновения и развития жизни, по-видимому, состоят в: 1) образовании атмосферы из газов, которые могли бы служить «сырьем» для синтеза органических веществ (метана, оксида и диоксида углерода, аммиака, сероводорода, цианистых соединений), и паров воды, 2) абиогенном (т.е. происходящем без участия организмов) образовании простых органических веществ, в том числе мономеров биологических полимеров — аминокислот, Сахаров, азотистых оснований, АТФ и других мононуклеотидов, 3) полимеризации мономеров в биологические полимеры, прежде всего белки (полипептиды) и нуклеиновые кислоты (полинуклеотиды); 4) образовании предбиологических форм сложного химического состава — протобионтов, имеющих некоторые свойства живых существ; 5) возникновении простейших живых форм, имеющих всю совокупность главных свойств жизни,— примитивных клеток; 6) биологической эволюции возникших живых существ.^ 22. Закон физико-химического единства живого вещества В.И. Вернадского. Природные биогенные элементы. В.И Вернадский развил это направление и разработал учение о биосфере как глобальной системе нашей планеты, в которой основной ход геохимических и энергетических превращений определяется живым веществом. Он распространил понятие биосферы не только на сами организмы, но и на среду их обитания, чем придал концепции биосферы биогеохимический смысл. С именем В.И. Вернадского связано также формирование социально-экономической концепции биосферы, отражающей ее превращение на определенном этапе эволюции в ноосферу вследствие деятельности человека, которая приобретает роль самостоятельной геологической силы. Учитывая системный принцип организации биосферы, а также то, что в основе ее функционирования лежат круговороты веществ и потоки энергии, современной наукой сформулированы биохимическая, термодинамическая, биогеоценотическая, кибернетическая концепции биосферы. В.И. Вернадский представляет ноосферу не как нечто внешнее по отношению К биосфере, а как новый этап в развитии биосферы, заключающийся в разумном регулировании отношений человека и природы. Согласно В.И. Вернадскому, биосфера - это такая оболочка, в которой существует или существовала в прошлом жизнь и которая подвергалась или подвергается воздействию живых организмов. Она включает: 1) живое вещество, образованное совокупностью организмов; 2) биогенное вещество, которое создается и перерабатывается в процессе жизнедеятельности организмов (газы атмосферы, каменный уголь, нефть, сланцы, известняки и др.); косное вещество, которое образуется без участия живых организмов (продукты тектонической деятельности, метеориты); 4) биокосное вещество, представляющее собой совместный результат жизнедеятельности организмов и абиогенных процессов (почвы).^ 23. Различия жизненных циклов нормальных и опухолевых клеток Регуляция клеточного цикла к митотической активности. Нарушения той или иной фазы митоза приводят к патологическим изменениям клеток. Отклонение от нормального течения процесса спирализации может привести к набуханию и слипанию хромосом. Иногда наблюдается отрыв участка хромосомы, который, если он лишен центромеры, не участвует в анафазном перемещении к полюсам и теряется. Отставать при движении могут отдельные хроматиды, что приводит к образованию дочерних ядер с несбалансированными хромосомными наборами. Повреждения со стороны веретена деления приводят к задержке митоза в метафазе, рассеиванию хромосом. При изменении количества центриолей возникают многополюсные или асимметричные митозы. Нарушение цитотомии приводит к появлению дву- и многоядерных клеток. На основе митотического цикла возник ряд механизмов, с помощью которых в том или ином органе количество генетического материала и, следовательно, интенсивность обмена могут быть увеличены при сохранении постоянства числа клеток. Удвоение ДНК клетки не всегда сопровождается ее разделением на две. Поскольку механизм такого удвоения совпадает с предмитотической редупликацией ДНК и оно сопровождается кратным увеличением количества хромосом, это явление получило название эндомитоза.^ 24. Закономерности потока веществ в про - и эукариотипических клетках. Реакции дыхательного обмена не только поставляют энергию, но и снабжают клетку строительными блоками для синтеза разнообразных молекул. Ими являются многие продукты расщепления пищевых веществ. Особая роль в этом принадлежит одному из этапов дыхательного обмена — циклу Кребса, осуществляемому в митохондриях. Через этот цикл проходит путь углеродных атомов (углеродных скелетов) большинства соединений, служащих промежуточными продуктами синтеза химических компонентов клетки. В цикле Кребса происходит выбор пути превращения того или иного соединения, а также переключение обмена клетки с одного пути на другой, например с углеводного на жировой. Таким образом, дыхательный обмен составляет ведущее звено потока веществ, которые объединяют пути расщепления и образования углеводов, жиров, нуклеиновых кислот.^ 25. Особенности потока информации в про - и эукариотипических клетках. Жизнедеятельность клетки как единицы биологической активности обеспечивается совокупностью взаимосвязанных, приуроченных к определенным внутриклеточным структурам, упорядоченных во времени и пространстве обменных (метаболических) процессов. Эти процессы образуют три потока: информации, энергии и веществ. Благодаря наличию потока информации клетка на основе многовекового эволюционного опыта предков приобретает структуру, отвечающую критериям живого, поддерживает ее во времени, а также передает в ряду поколений. В потоке информации участвуют ядро (конкретно ДНК хромосом), макромолекулы, переносящие информацию в цитоплазму. Среди органелл животной клетки особое место в дыхательном обмене принадлежит митохондриям, выполняющим функцию окислительного фосфорилирования, а также матриксу цитоплазмы, в котором протекает процесс бескислородного расщепления глюкозы — анаэробный гликолиз (рис. 2.8). Из двух механизмов, обеспечивающих жизнедеятельность клетки энергией, анаэробный гликолиз менее эффективен. В связи с неполным (в отсутствие кислорода) окислением, прежде всего глюкозы, в процессе гликолиза для нужд клетки извлекается не более 10% энергии. Недоокисленные продукты гликолиза (пируват) поступают в митохондрии, где в условиях полного окисления, сопряженного с фосфорилированием АДФ до АТФ, отдают для нужд клетки оставшуюся в их химических связях энергию^ 26. Возрастные изменения различных тканей, органов в системе человека. Признаки старения сердечно-сосудистой системы становятся заметными обычно в возрасте после 40 лет. Закономерные изменения наблюдаются в стенках сосудов: в них откладываются липиды, прежде всего холестерин, что наряду с другими структурными превращениями снижает эластичность и искажает ответы на различные стимулы, регулирующие кровообращение. В основе функциональных расстройств дыхательной системы лежит разрушение межальвеолярных перегородок, что сокращает дыхательную поверхность, разрастание в легких соединительной ткани, снижает эффективность аэрогематическо