Реферат по предмету "Разное"


1. Некоторые вопросы строения веществ

1. Некоторые вопросы строения веществ. 1.1 Межатомное взаимодействие. Рис.1. Зависимость сил взаимодействия между атомами (а) и энергии потенциального взаимодействия (б) от расстояния между атомами. Любой материал представляет собой продукт взаимодействия огромного количества атомов, и свойства материала зависят от характера взаимодействия этих атомов. Зная характер взаимодействия атомов, можно прогнозировать свойства материалов. Поскольку взаимодействие множества атомов анализировать достаточно сложно, вначале для простоты рассмотрим взаимодействие двух атомов. Между двумя атомами действует сила притяжения. Позже мы докажем, что сила притяжения по природе является кулоновской, следовательно, она убывает обратно пропорционально квадрату расстояния между атомами. Помимо силы притяжения, между атомами действует и сила взаимного отталкивания, которая обратно пропорциональна расстоянию в степени n, где n больше 2. Складывая силы притяжения и отталкивания, получаем результирующую силу взаимодействия двух атомов (рис 1 а). При расстоянии между атомами, равном rО силы притяжения и отталкивания взаимно компенсируют друг друга, результирующая сила взаимодействия равна нулю, и это расстояние является наиболее устойчивым. Оценим энергию потенциального взаимодействия двух атомов как работу, с обратным знаком, по перемещению иона из бесконечности в данную точку. Геометрическое интегрирование дает зависимость, показанную на рисунке 1 б.Из рисунка 1 б видно, что при минимальной энергии потенциального взаимодействия расстояние между соседними ионами равно rО. Увеличение энергии системы двух атомов (например, за счет роста тепловой энергии) ведет к появлению возможности взаимного смещения атомов относительно друг друга, причем с ростом энергии системы амплитуда колебаний возрастает. Другой интересной особенностью влияния температуры на свойства материалов является термическое расширение. Как видно из рисунка 1 б, кривая потенциального взаимодействия (или потенциальная кривая) асимметрична, поэтому при росте температуры среднее расстояние между атомами увеличивается, и линейные размеры тел увеличиваются. Изменение линейных размеров тела при нагреве описывается коэффициентом теплового расширения: aТ = (1/L)(dL/dT). Как видно из рис. 2б) коэффициент теплового расширения снижается при увеличении глубины потенциальной ямы. В том случае, когда взаимодействует множество атомов, смещение любого из них приводит к росту энергии системы, Поэтому потенциальную кривую можно представить в виде периодической функции (рис. 2). При минимуме энергии системы расстояния между атомами одинаковы и равны r0. Вдоль любого направления расстояния будут равны r0, хотя эти расстояния по разным направлениям будут разными. Расстояние между атомами вдоль какого-либо направления принято обозначать а. Рис. 2. Зависимость энергии потенциального взаимодействия (Wp) от расстояния между атомами (x) для случая взаимодействия множества атомов.Для переброса атома из одного равновесного положения в другое требуется повышение энергии. Поэтому в том случае, когда энергия системы минимальна или незначительно отличается от минимальной, атомы не могут перемещаться из одного положения в другое, и мы имеем дело с твердым телом. При значительном повышении энергии системы атомы активно колеблются, обмениваются энергией - и в результате могут переходить из одного положения в другое. В этом случае мы имеем дело с жидким телом. Дальнейший рост энергии системы приводит к выходу атомов из потенциальной ямы, они перестают взаимодействовать друг с другом, могут занимать различные положения – и мы имеем дело с газом. Увеличение глубины потенциальной ямы ведет к росту температуры плавления и температуры испарения вещества. Вместе с тем, увеличение глубины потенциальной ямы ведет к уменьшению коэффициента теплового расширения: αТ = (1/L)(dL/dT). Таким образом, вещества с большей температурой плавления, как правило, имеют меньший коэффициент термического расширения. При воздействии на тело силовых полей (электрического, механического, магнитного) частицы тела смещаются из равновесных положений. При этом могут реализовываться три случая. 1. Под действие поля ни одна из частиц не переходит через потенциальные барьеры. При исчезновении поля частицы возвращаются в исходные положения. В этом случае мы имеем дело с упругими безгистерезисными процессами: упругой деформацией, упругой поляризацией и так далее. Чем "круче" стенки потенциальной ямы, тем труднее осуществляется упругий бесгистерезисный процесс, в частности, растет модуль упругости материала. 2. Под действием поля некоторые слабо связанные частицы перебрасываются из одного положения в другое. После снятия внешнего воздействия под влиянием теплового движения или внутренних напряжений устанавливается состояние, статистически эквивалентное исходному. Этот случай реализуется при близости величины некоторых потенциальных барьеров со средней энергией частиц. Такие процессы называются упругогистерезисными (типичный пример - "неупругость" пружин) и характеризуются замкнутыми кривыми, называемыми циклами гистерезиса. 3. Если внешнее поле перемещает частицы через потенциальные барьеры, достаточно высокие по сравнению с тепловой энергией материала, то при снятии внешнего воздействия частицы в исходные положения не возвращаются, появляется остаточный эффект (пластическая деформация металлов, получение постоянных магнитов, электретов и т.д.). Подводя итог сказанному выше, следует отметить, что увеличение глубины потенциальной ямы ведет к росту напряжения течения при пластической деформации, увеличению модуля упругости, повышению температур плавления и испарения, к снижению коэффициента теплового расширения. Таким образом, зная одни свойства материала, можно прогнозировать другие свойства.^ 1.2 Типы химических связей. Для облегчения понимания межатомного взаимодействия мы будем рассматривать типы химической связи в несколько упрощенном виде, а именно, рассмотрим: а) гомеополярную, или ковалентную связь, б) гетерополярную, или ионную связь, в) металлическую связь и г) поляризационную связь, или связь Ван-дер-Ваальса.^ Ковалентная связь. Ковалентная связь образуется между атомами одного или нескольких химических элементов с близкими ионизационными потенциалами. В чистом виде ковалентная связь реализуется при взаимодействии элементов с наполовину заполненными электронными оболочками. Из квантовой химии следует, что система из положительно заряженного ядра и отрицательно заряженных электронных оболочек имеет минимальную энергию в том случае, когда электронные оболочки заполнены полностью. Поэтому атомы с наполовину заполненными электронными оболочками обмениваются электронами. При этом образуются пары электронов с противоположно направленными спиновыми магнитными моментами, причем эти пары принадлежат обоим соседним атомам. Появление между положительно заряженными ионами пары отрицательно заряженных электронов приводит к тому, что оба иона притягиваются к обобществленным электронам и, тем самым, притягиваются друг к другу. Каждый атом взаимодействует с ограниченным числом соседей, причем число соседей равно числу валентных электронов атома. Следовательно, ковалентная связь насыщенна. Кроме того, атом взаимодействует только с теми соседями, с которыми он обменялся электронами, то есть ковалентная связь направленна. Отношение размера положительно заряженного ядра к размеру валентной электронной оболочки чрезвычайно мало, поэтому при анализе силы притяжения можно считать, что взаимодействуют точечные заряды, то есть сила притяжения описывается простейшим видом кулоновского закона: сила притяжения обратно пропорциональна квадрату расстояния между зарядами. При сближении атомов начинается взаимное отталкивание внутренних электронных оболочек, и отталкивание атомов описывается более сложным законом: сила отталкивания обратно пропорциональна расстоянию между атомами в степени n, где n >2. Увеличение порядкового номера элемента ведет к росту количества электронных оболочек, экранирующих взаимодействие положительно заряженных ядер с валентными электронами. Поэтому снижается сила взаимного притяжения и уменьшается глубина потенциальной ямы. В результате, с ростом порядкового номера элемента падает температура плавления, растет коэффициент теплового расширения, уменьшается модуль упругости.^ Ионная связь. Ионная связь образуется при взаимодействии атомов с малым количеством валентных электронов и атомов с большим количеством электронов на валентных оболочках. При этом наружные электроны атомов с низкими потенциалами ионизации переходят на валентные оболочки атомов с высокими ионизационными потенциалами. В результате образуются положительно и отрицательно заряженные ионы, взаимно притягивающиеся электростатическими силами. Ионная связь ненасыщенна, поскольку каждый из отрицательно заряженных ионов притягивает к себе положительно заряженные, а каждый из положительно заряженных ионов притягивает к себе все отрицательно заряженные. Однако ионная связь направлена, поскольку ион притягивает к себе разноименно заряженные ионы и отталкивает одноименно заряженные. Уменьшение размера иона и увеличение его заряда ведет к росту энергии связи, а следовательно, к росту температуру плавления материала, уменьшению коэффициента теплового расширения и к увеличению модуля упругости.^ Металлическая связь образуется между атомами одного или нескольких химических элементов, у которых валентные электронные оболочки застроены меньше чем на половину. Поскольку энергия иона минимальна при полностью заполненной внешней оболочке, атомы отдают внешние валентные электроны и превращаются в положительно заряженные ионы, между которыми находятся свободные электроны (электронный газ). Каждый из положительно заряженных ионов притягивается к свободным электронам, и, тем самым, ионы притягиваются друг к другу. Металлическая связь ненаправленна и ненасыщенна, и число ближайших соседей у иона определяется в основном геометрическим и энергетическими факторами. Следовательно, кристаллические решетки металлов упакованы плотно. Под действием электрического поля не связанные с ионами электроны перемещаются, то есть металлы обладают высокой электропроводностью. Свободные электроны могут легко ускоряться и замедляться, то есть менять свою кинетическую энергию. Вследствие этого металлические материалы поглощают кванты электромагнитного поля любой энергии, то есть металлы непрозрачны для радио- и световых волн в широком диапазоне частот. Поглотив квант электромагнитного поля, свободный электрон возбуждается, и, переходя в стационарное состояние, испускает аналогичный квант. Иначе говоря, металлические материалы отражают радио- и световые волны. Несколько позже докажем, что плотно упакованная решетка металлов является причиной их высокой пластичности. По определению М.В. Ломоносова: «Металлы суть светлые тела кои ковать можно".^ Поляризационная связь, или связь Ван-дер-Ваальса. Образуется при сближении молекул или атомов инертных газов. Рассмотрим возникновение поляризационной связи на примере инертных атомов. У одиночного атома электронная оболочка симметрична. При сближении двух атомов их электронные оболочки электрически взаимодействуют и деформируются (см. рис. 6). В итоге атомы превращаются в диполи, которые взаимно притягиваются. Чем больше порядковый номер атома, тем больше у него электронных оболочек, а следовательно, связь валентных электронов с ядром ослабевает, и деформировать ее становится легче. Следовательно, возрастает дипольный момент атома и увеличивается энергия связи между атомами. Поэтому температура кипения тяжелых инертных газов заметно выше температуры кипения легких газов.Аналогичные процессы происходят и при сближении электрически нейтральных молекул. Причем чем выше молекулярный вес, тем больший дипольный момент молекул и выше энергия связи. Поэтому вещества с низким молекулярным весом при комнатной температуре являются газами, вещества с большим молекулярным весом - жидкостями, а вещества с еще большим молекулярным весом - твердыми те-лами. Важно иметь в виду, что в одном и том же материале одновременно могут реализовываться несколько типов химических связей. Так, внутри молекулы поли-этилена связь ковалентная, а между молекулами поляризационная. В алмазе атомы углерода связаны ковалентной связью, а у графита три электрона образуют кова-лентную связь, один электрон идет на образование металлической связи, и обра-зующиеся плоские молекулы связаны поляризационной связью. В ряде случаев наблюдается изменение типа связи при изменении внешних условий. Так, олово является элементом четвертой группы, и в нем должна реализо-вываться ковалентная связь, но у олова пять электронных оболочек, и валентные электроны слабо связаны с ядром. Поэтому при термическом возбуждении электро-ны отрываются от атомов, и связь становится металлической. До температуры 13*С межатомная связь в олове ковалентная, и он является типичным полупроводником  «серое» олово. Выше 13*С связь становится металлической, и олово ведет себя как типичный металл – «белое» олово. Важно отметить, что превращение белого олова в серое олово не может произойти строго при 13*С. Это вызвано существенным раз-личием в плотности упаковки атомов. При перестройке кристаллических решеток в материале появляются упругие напряжения, которые повышают энергию системы. Поэтому превращение начинается при существенном переохлаждении. Упругие на-пряжения, возникающие при превращении, разрушают материал, поэтому серое олово существует в виде порошка. Превращение белого олова в серое было причи-ной гибели экспедиции Роберта Скотта. Поскольку канистры с горючим были пропаяны оловом, то при охлаждении белое олово превратилось в серое и горючее вытекло.^ 1.3 Кристаллическая структура твердых тел. При невысокой энергии системы ионы находятся в потенциальных ямах (см. рис.1б), и расположение ионов становится упорядоченным. Упорядоченное расположение атомов принято называть кристаллической решеткой. Для описания кристаллических решеток удобно воспользоваться понятием  элементарная ячейка кристалла  минимальный объем кристалла, полностью сохраняющий все его свойства. При трансляции (параллельном перемещении) элементарной ячейки можно заполнить сколь угодно большой кристалл. У элементов четвертой группы ковалентная насыщенная и направленная связь, и у каждого атома четыре соседа. Число ближайших соседей принято называть координационным числом. Элементарную решетку можно представить в виде тетраэдра с одним атомом в центре и четырьмя атомами по вершинам тетраэдра. Кристаллическую решетку с такой элементарной ячейкой имеют элементарный кремний, германий, углерод в модификации алмаза. Этот тип кристаллической решетки принято называть решеткой алмаза. При образовании ионной связи кристаллические решетки получаются более компактными, координационное число достигает 6. Это связано с тем, что ионная связь не насыщена, хотя и направленна. Типичным представителем веществ с таким видом связи является соединение NaCl; кристаллическую решетку такого соединения можно представить в виде примитивного куба, в вершинах которого расположены ионы хлора и натрия. Элементарная ячейка кристаллической решетки такого соединения показана на рис. 8.При образовании металлической связи кристаллические решетки становятся еще более компактными. Координационные числа достигают значений 8 и 12. В металлических материалах, как правило, формируются три типа кристаллических решеток: объемноцентрированная кубическая (ОЦК), гранецентрированная кубическая (ГЦК) и гексагональная плотноупакованная (ГП). Элементарные ячейки ОЦК, ГЦК и ГП решеток показаны на рис. 9. ОЦК решетку имеют такие металлы, как вольфрам, молибден, ниобий, низкотемпературные модификации железа, титана, щелочные металлы и ряд других металлов. Серебро, медь, алюминий, никель, высокотемпературная модификация железа и ряд других металлов имеют ГЦК решетку. ГП решетка у магния, цинка, кадмия, высокотемпературной модификации титана. Обратите внимание на то, что металлы с плотноупакованной решеткой, как правило, обладают большей проводимостью, чем металлы с менее плотноупакованной ОЦК решеткой. Это связано с тем, что у металлов с плотноупакованной решеткой повышена плотность электронного газа, а следовательно, повышена концентрация основных носителей заряда – свободных электронов.^ 1.4. Дефекты кристаллических решеток. Из термодинамики известно, что всякая система стремится к минимуму свободной энергии (F), где F является разностью между внутренней энергией системы U и связанной энергией системы ТS. F = U - TS (1) Внутренняя энергия системы является разностью между энергией атомов в дне потенциальной ямы и истинной энергией системы. Повышение температуры материала или появление упругих напряжений вследствие смещения атомов из равновесного состояния повышает энергию системы. Связанная энергия системы является произведением температуры (Т) на энтропию (S) системы, или меру ее беспорядка. При смещении атома из равновесного положения, с одной стороны, возрастает внутренняя энергия системы, а с другой стороны, растёт связанная энергия, поэтому появление в кристаллической решетке дефектов может оказаться энергетически выгодным. Все дефекты кристаллической решетки принято делить на две большие группы: геометрические дефекты и энергетические дефекты. При появлении в решетке геометрических дефектов кристаллическая решетка локально искажается. При наличии энергетических дефектов атомы остаются на своих местах, но энергия одного или группы атомов оказывается повышенной. В свою очередь, геометрические дефекты принято делить на точечные, линейные, поверхностные и объемные. Протяженность точечных дефектов во всех направлениях мала. Протяженность линейных дефектов велика в одном направлении и мала в двух других направлениях. Поверхностные дефекты имеют большую протяженность по двум направлениям и малую по одному, и объемные дефекты имеют большую протяженность по всем направлениям.1.4.1 Точечные дефекты решетки К ним относятся атомы инородных элементов (легирующих элементом или примесей), межузельные атомы (атомы основного элемента, по каким-либо причинам покинувшие узлы кристаллической решетки и застрявшие в междоузлиях), вакансии или не занятые атомами узлы кристаллической решетки. Точечные дефекты показаны на рисунке 10. Представление о вакансиях было впервые введено Я. И. Френкелем для объяснения процессов диффузии в металлах - материалах с плотноупакованной кристаллической решеткой. При наличии в кристаллической решетки вакансии атом может перескочить из узла решетки в вакантное место. Тем самым вакансия смещается, и процесс диффузии можно описывать как последовательное перемещение атомов или как движение вакансий. Такой подход хорошо объясняет температурную зависимость диффузии. С ростом температуры увеличивается связанная энергия системы и растет концентрация вакансий, поэтому с ростом температуры активизируется диффузия. Согласно модели Френкеля, при образовании вакансий атом из узла кристаллической решетки перепрыгивает в междоузлие, и появляется пара дефектов - вакансия и межузельный атом, или пара Френкеля. Несколько позже Шоттки оценил энергию упругих искажений решетки вблизи вакансии и вблизи межузельного атома и показал, что энергия упругих искажений решетки вблизи межузельного атома существенно больше энергии искажений вблизи вакансии. Это позволило ему предложить другой механизм образования вакансий. Атом выходит на поверхность кристалла, и образующаяся вакансия мигрирует (перемещается) в глубь кристалла. Совершенно очевидно, что вероятность образования вакансий по механизму Шоттки существенно выше вероятности образования вакансий по механизму Френкеля. По современным представлениям, наиболее вероятным механизмом образования вакансий является их испускание границами зерен или дислокациями (см. ниже). Наличие точечных дефектов оказывает влияние не только на диффузионные процессы в материалах, но и на их электрические свойства. В металлических материалах основным носителем заряда являются свободные электроны. Поскольку кристаллическая решетка металлов упакована плотно, то распространение электронов удобнее всего представить в виде движения электронной волны. При взаимодействии электронной волны с узлами кристаллической решетки, электронная волна передает энергию находящимся в них ионам. Поглотив энергию электронной волны, ионы возбуждаются, колеблются и распространяют во все стороны дифрагированные электронные волны. Дифрагированные волны интерферируют, и образуется новая волна. В том случае, когда кристаллическая решетка правильна, ионы являются когерентными источниками дифрагированные волн, поэтому амплитуды дифрагированных волн суммируются, и формируется новая волна, амплитуда которой равна амплитуде исходной волны (рис. 11,а). Энергия волны пропорциональна квадрату ее амплитуды, таким образом, в правильной кристаллической решетке электронная волна движется без потерь, и удельное электрическое сопротивление материала с идеальной кристаллической решеткой равно нулю. Появление в кристаллической решетке дефектов приводит к смещению некоторых ионов из равновесных положений, и дифрагированные волны становятся некогерентными (рис. 11,б). При сложении некогерентных волн амплитуда результирующей волны оказывается меньше амплитуды падающей волны, в результате у металла удельное электросопротивление становится отличным от нуля. С ростом температуры концентрация вакансий растет, а следовательно, увеличивается удельное электросопротивление. Аналогичным образом удельное электросопротивление растет при легировании металлов вследствие появления атомов примесей, искажающих кристаллическую решетку. В материалах с ионной связью между атомами основным носителем заряда являются ионы. При появлении вакансий перемещение ионов облегчается, а следовательно, падает удельное электросопротивление. При появлении в материале примесей кристаллическая решетка искажается, энергия материала локально повышается, что способствует облегчению выхода иона из потенциальной ямы. Таким образом, появление любых точечных дефектов ведет к снижению электросопротивления материалов с ионной связью. В материалах с ковалентной связью присутствие вакансий приводит к обрыву ковалентной связи и появлению на валентной оболочке атома неспаренного электрона. Наличие неспаренных электронов энергетически невыгодно, и атом теряет его. Таким образом, в материале появляются два носителя заряда: отрицательно заряженный свободный (делокализованный) электрон и положительно заряженная дырка. Следовательно, увеличение концентрации вакансий ведет к падению удельного электрического сопротивления материалов с ковалентной связью. Влияние легирующих элементов на электропроводность материалов достаточно сложно и будет подробно рассмотрено при изучении полупроводниковых материалов. В общем случае следует отметить, что присутствие неизовалентных примесей ведет к появлению в материале дырок или свободных электронов, то есть к повышению концентрации носителей заряда.^ 1.4.2 Линейные дефекты кристаллической решетки.Многочисленные исследования изменения структуры поверхности твердых тел при пластической деформации свидетельствуют о том, что пластическая деформация происходит путем послойного смещения одной части кристалла относительно другой. Аналогичным образом деформируется колода карт при сдвиге (рис.12). Несколько позже было установлено, что сдвиг осуществляется по плотноупакованным плоскостям и в плотноупакованных направлениях. Эти данные позволили Я.И. Френкелю оценить теоретическую прочность кристаллов исходя из предположения, что под действием механических напряжений атомы в узлах кристаллической решетки одновременно смещаются вдоль плотноупакованных плоскостей в плотноупакованных направлениях. Проведенные расчеты показали, что теоретическая прочность существенно превышает реальную прочность. Это обстоятельство позволило Френкелю предположить, что в металлах имеются легко подвижные дефекты - дислокации. На основании предположения Френкеля Тейлором, Орованом и Поляни была предложена геометрическая модель такого дефекта и начата разработка теории дислокаций. Модель дислокации, предложенная Тейлором, Орованом и Поляни, позднее названная краевой дислокацией, показана на рисунке 13. Согласно этой модели, в кристалле имеется оборванная плоскость - экстраплоскость. Вблизи обрыва экстраплоскости остальные плоскости кристаллической решетки изгибаются. Таким образом, вблизи края экстраплоскости кристаллическая решетка искажена. Величина искажений кристаллической решетки быстро снижаются при удалении от края экстраплоскости, но сохраняется при движении вдоль линии обрыва. Поэтому такую дислокацию называют краевой. Таким образом, дислокации представляют собой линейные дефекты кристаллической решетки. Для оценки величины искажений кристаллической решетки вблизи дислокации Бюргерс предложил построить замкнутый контур вокруг участка кристалла, содержащего дислокацию, а затем построить т кой же контур на участке кристалла с правильной решеткой. Как видно из приведенного рисунка (рис. 14), для построения замкнутого контура вокруг участка, содержащего дислокацию, потребовалось 23 шага. При построении аналогичного контура в области совершенного кристалла аналогичный контур не замыкается и для замыкания контура требуется еще один вектор (b), в настоящее время называемый вектором Бюргерса. Построение контура Бюргерса в участке кристалла содержащего дислокацию можно начинать из произвольной точки и в любом направлении. Однако в любом случае вектор Бюргерса оказывается перпендикулярным линии краевой дислокации. В связи с этим у Бюргерса возник вопрос: нельзя ли представить дислокацию, вектор смещения которой параллелен линии дислокации? В 1939 году он предложил геометрический образ такой дислокации и назвал ее винтовой дислокацией. Как видно из рис. 15а), при круговом движении по плоскости перпендикулярной винтовой дислокации происходит нисходящее или восходящее смещение на следующую плоскость аналогичное движение по винтовой лестнице. Поэтому такой дефект называют винтовой дислокацией У вектора Бюргерса есть ряд особенностей: вектор Бюргерса нонвариантен, то есть неизменен. Следовательно, дислокация не может оборваться в кристалле; энергия упругих искажений решетки пропорциональна квадрату модуля вектора Бюргерса; при движении решеточной дислокации с вектором Бюргерса, равным периоду трансляции решетки, кристаллическая решетка не изменяется.При приложении внешних напряжений дислокации смещаются и выходят на поверхность кристалла, и таким образом осуществляется пластическая деформация. Очевидно, что перемещение дислокаций вдоль плотноупакованных направлений и в плотноупакованных плоскостях осуществляется легче, чем в неплотноупакованных направлениях, вдоль которых расстояния между атомами больше. Следовательно, материалы с плотноупакованными кристаллическими решетками  металлы  обладают высокой пластичностью. Присутствие в кристаллической решетке дислокаций оказывает существенное влияние на механические и электрические свойства материалов. При полном отсутствии дислокаций прочность кристаллов была бы равна теоретической. Подтверждением этого положения является создание кристаллов малого диаметра, так называемых "усов". Усы практически свободны от дислокаций, и их прочность приближается к теоретической. В обычных материалах дислокации всегда присутствуют, поэтому их прочность существенно ниже теоретической. Важно отметить, что при повышении плотности дислокаций в обычных материалах их прочность возрастает. Это связано с тем, что в ядре дислокации кристаллическая решетка искажена, а следовательно, дислокации окружены полями упругих напряжений. При увеличении плотности дислокаций поля упругих напряжений перекрываются, дислокации взаимодействуют друг с другом, и перемещение дислокаций затрудняется. Хотя прочность материалов с повышенной плотностью дислокаций всего лишь в два - три раза выше прочности материалов с обычной плотностью дислокаций, повышение прочности за счет повышения плотности дислокаций имеет большой практический интерес. Дело в том, что повышение плотности дислокаций легко провести путем холодной пластической деформации. Испокон веков прежде чем точить косу, крестьяне отбивали ее, то есть ударяли по режущей часть лезвия косы молотком. При этом режущая часть упрочнялась и меньше тупилась при работе. Повышение прочности металлов в ходе холодной пластической деформации называют наклепом, или нагартовкой. Зависимость прочности металлических материалов от плотности дислокаций показана на рис. 16. Наличие в материале дислокаций резко повышает скорость диффузии. Это связано с тем, что дислокации могут являться источниками и стоками вакансий. При испускании вакансий дислокации переползают на плоскость лежащую выше, а при поглощении вакансий дислокации переползают на плоскость, лежащую ниже исходной плоскости. Таким образом, наличие дислокаций повышает локальную концентрацию вакансий, а следовательно, ускоряет диффузию. Опытные мастера, прежде чем затачивать жало паяльника, отбивают его. Тогда при облуживании жала припоем, олово, входящее в состав припоя, диффундирует в медное жало, и на поверхности жала образуется тонкий слой сплава меди с оловом – бронзы. Коррозионная стойкость материала повышается, и жало паяльника служит дольше. Важно отметить, что решеточные дислокации взаимодействуют с атомами растворенных примесей или легирующих элементов. Как отмечалось выше, вблизи чужеродного атома кристаллическая решетка искажена - растянута или сжата. В ядре дислокации кристаллическая решетка также искажена: под экстраплоскостью кристаллическая решетка растянута, а над экстраплоскостью сжата. Поэтому чужеродные атомы притягиваются к дислокациям, образуя атмосферы Котрелла. При движении дислокаций вместе с ними перемещаются и атмосферы Котрелла, что приводит к затруднению движения дислокаций или к повышению прочности металлических материалов. Поэтому сплавы прочнее чистых металлов. Искажение кристаллической решетки за счет присутствия дислокаций повышает удельное электрическое сопротивление металлических материалов и снижает удельное электрическое сопротивление неметаллических материалов. Природа влияния дислокаций на электрические свойства материалов аналогична природе влияния точечных дефектов.^ 1.4.3 Поверхностные дефекты кристаллической решетки. К поверхностным дефектам решетки относятся дефекты упаковки и границы зерен. Для понимания природы появления дефектов упаковки обратимся к геометрии заполнения кристаллической решетки в плотноупакованных материалах. Предположим, что атомы представляют собой шары; тогда плотноупакованную плоскость можно создать, расположив атомы, как показано на рисунке 17. Обозначим первый слой атомов буквой А. Для создания следующей плотноупакованной плоскости необходимо поместить атомы во впадины между атомами первого слоя. Как видно из рисунка 17, имеются два вида впадин: впадины типа В и впадины типа С. Очевидно, что одновременно во впадины обоих типов атомы расположить невозможно. Предположим, что второй слой атомов расположен во впадинах типа В, обозначим этот слой атомов В. Третий слой атомов можно расположить либо во впадины, совпадающие с центрами атомов первого слоя, либо во впадины второго типа не совпадающие с атомами первого слоя. В первом случае получается чередование слоев:АВАВАВАВАВАВАВАВАВ..., Во втором случае чередование слоев типа:АВСАВСАВСАВСАВСАВС..., Чередование слоев типа АВАВАВ типично для гексагональной плотноупакованной решетки, чередование слоев типа ^ АВСАВСАВС – для гранецентрированной кубической решетки. При нарушении чередования слоев внутри одной решетки появляется прослойка другой решетки: АВСАВСАВСАВАВСАВСАВС. При этом кристаллическая решетка искажается, и ее энергия возрастает. Появление дефектов упаковки связано с движением частичных дислокаций. Как отмечалось выше, при появлении дислокаций кристаллическая решетка искажается, и энергия системы возрастает на величину, пропорциональную квадрату вектора Бюргерса Е  b2. Поэтому дислокации могут расщепляться на две частичные дислокации, bb/2 +b/2. Это ведет к снижению энергии упругих искажений решетки вокруг дислокаций b/22 + b/22  b2. При движении обычной полной дислокации атомы последовательно становятся из одного равновесного положения в другое, а при движении частичной дислокации атомы переходят в новые положения, нетипичные для данной кристаллической решетки. В результате в материале появляется дефект упаковки. Данная ситуация иллюстрируется рисунком 18. Как видно из рисунка, при движении полной решеточной дислокации с вектором Бюргерса b атомы перемещаются из одних равновесных положений в другие (например, из положения В в положение В). При этом кристаллическая решетка вдали от дислокации остается правильной. При расщеплении полной дислокации на две частичные движение частичных дислокаций приводит к образованию дефекта упаковки. При этом энергия атомов, смещенных в положение С, повышается. В том случае, когда энергия дефекта упаковки велика, расщепление дислокации на частичные энергетически невыгодно, а в том случае, когда энергия дефекта упаковки мала, дислокации расщепляются на частичные, и между ними появляется дефект упаковки. Можно строго доказать, что движение пары частичных дислокаций с дефектом упаковки между ними осуществляется сложнее, чем движение полной дислокации. Поэтому материалы с низкой энергией дефекта упаковки прочнее материалов с высокой энергией дефекта упаковки. Другим видом поверхностных дефектов являются границы зерен, представляющие собой узкую переходную область между двумя кристаллами неправильной формы. Ширина границ зерен, как правило, составляет 1,5-2 межатомных расстояния. Поскольку на границах зерен атомы смещены из равновесного положения, то энергия границ зерен повышена. Энергия границ зерен существенно зависит от угла разориентации кристаллических решеток соседних зерен. При малых углах разориентации (до 5) энергия границ зерен практически пропорциональна углу разориентировки. Такие границы называют малоугловыми. Строение малоугловых границ можно представить как скопление решеточных дислокаций.Уменьшение расстояния между решеточными дислокациями (d) в малоугловых границах ведет к увеличению угла разориентировки () на границе  = 2 arctg(b/2d), или   b/d (рис.19). Участки кристалла, разделенные малоугловыми границами, принято называть субзернами. Если граница субзерен представляет собой сетку краевых дислокаций, то такую границу называют границей наклона, а если граница субзерен является скоплением винтовых дислокаций, то субграницу называют границей кручения. В общем случае, субграница может содержать компоненты кручения и наклона. При углах разориентировки, превышающих 5, плотность дислокаций на границах зерен становится столь высокой, что ядра дислокаций сливаются, и дальнейшее описание границ при помощи решеточных дислокаций становится невозможным. Границы, описание которых невозможно при помощи дислокационной модели, на


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.