Реферат по предмету "Разное"


"Нейроновые сети "

Министерство образования Российской ФедерацииУльяновский Государственный Технический УниверситетФакультет Информационных Систем и ТехнологийКафедра «Вычислительная техника»Дисциплина «Инженерия знаний»Рефератна тему: ”Нейроновые сети ” Выполнил: студент группы МЭВд-52Шаров О.Г.Проверил: Соснин П.И. Ульяновск, 2002Содержание Часть 1. Нейроновые сети 41. Что такое нейронные сети? 42. Биологический нейрон 53. Искусственный нейрон 74. Активационные функции 85. Базовые архитектуры нейронных сетей 116. Полносвязные нейронные сети. 127. Обучение искусственных нейронных сетей 13Правило коррекции по ошибке. 15Обучение Больцмана. 15Правило Хебба. 15Обучение методом соревнования. 16Часть 2. Нейрокомпьютеры 161. Введение 162. Элементная база нейровычислителей 22DSP - как элементная база нейровычислителей 24ПЛИС - как элементная база нейровычислителей 28Нейрочип - как элементная база нейровычислителей 283. Нейрочипы 31Нейросигнальный процессор NeuroMatrix NM6403 (фирма Модуль, Россия) 31Процессор NeuroMatrixR NM6404 35Нейропроцессор МА16 (фирма Siemens). 374. Преимущества нейрокомпьютеров. 385. Недостатки нейрокомпьютеров. 396. Практическое применение нейрокомпьютеров. 39Список источников 40 ^ Часть 1.Нейроновые сети 1.Что такое нейронные сети? Каждый нейрон получает сигналы от соседних нейронов по специальным нервным волокнам. Эти сигналы могут быть возбуждающими или тормозящими. Их сумма составляет электрический потенциал внутри тела нейрона. Когда потенциал превышает некоторый порог, нейрон переходит в возбужденное состояние и посылает сигнал по выходному нервному волокну. Отдельные искусственные нейроны соединяются друг с другом различными методами. Это позволяет создавать разнообразные нейронные сети с различной архитектурой, правилами обучения и возможностями. Термин “искусственные нейронные сети” у многих ассоциируется с фантазиями об андроидах и бунте роботов, о машинах, заменяющих и имитирующих человека. Это впечатление усиливают многие разработчики нейросистем, рассуждая о том, как в недалеком будущем, роботы начнут осваивать различные виды деятельности, просто наблюдая за человеком. Если переключиться на уровень повседневной работы, то нейронные сети это всего-навсего сети, состоящие из связанных между собой простых элементов формальных нейронов. Большая часть работ по нейроинформатике посвящена переносу различных алгоритмов решения задач на такие сети. В основу концепции положена идея о том, что нейроны можно моделировать довольно простыми автоматами, а вся сложность мозга, гибкость его функционирования и другие важнейшие качества определяются связями между нейронами. Каждая связь представляется как совсем простой элемент, служащий для передачи сигнала. Коротко эту мысль можно выразить так: “структура связей все, свойства элементов ничто”. Совокупность идей и научно-техническое направление, определяемое описанным представлением о мозге, называется коннекционизмом (connection связь). С реальным мозгом все это соотносится примерно так же, как карикатура или шарж со своим прототипом. Важно не буквальное соответствие оригиналу, а продуктивность технической идеи. С коннекционизмом тесно связан следующий блок идей: однородность системы (элементы одинаковы и чрезвычайно просты, все определяется структурой связей);надежные системы из ненадежных элементов и “аналоговый ренессанс” использование простых аналоговых элементов;“голографические” системы при разрушении случайно выбранной части система сохраняет свои свойства.Предполагается, что широкие возможности систем связей компенсируют бедность выбора элементов, их ненадежность и возможные разрушения части связей. Для описания алгоритмов и устройств в нейроинформатике выработана специальная “схемотехника”, в которой элементарные устройства (сумматоры, синапсы, нейроны и т.п.) объединяются в сети, предназначенные для решения задач. Для многих начинающих кажется неожиданным, что ни в аппаратной реализации нейронных сетей, ни в профессиональном программном обеспечении эти элементы вовсе не обязательно реализуются как отдельные части или блоки. Используемая в нейроинформатике идеальная схемотехника представляет собой особый язык описания нейронных сетей и их обучения. При программной и аппаратной реализации выполненные на этом языке описания переводятся на более подходящие языки другого уровня.^ 2.Биологический нейрон Нейрон (нервная клетка) является особой биологической клеткой, которая обрабатывает информацию (рис. 1). Она состоит из тела клетки (cell body), или сомы (soma), и двух типов внешних древоподобных ветвей: аксона (axon) и дендритов (dendrites). Тело клетки включает ядро (nucleus), которое содержит информацию о наследственных свойствах, и плазму, обладающую молекулярными средствами для производства необходимых нейрону материалов. Нейрон получает сигналы (импульсы) от других нейронов через дендриты (приемники) и передает сигналы, сгенерированные телом клетки, вдоль аксона (передатчик), который в конце разветвляется на волокна (strands). На окончаниях этих волокон находятся синапсы (synapses). рис.1. Биологический нейрон Синапс является элементарной структурой и функциональным узлом между двумя нейронами (волокно аксона одного нейрона и дендрит другого). Когда импульс достигает синаптического окончания, высвобождаются определенные химические вещества, называемые нейротрансмиттерами. Нейротрансмиттеры диффундируют через синаптическую щель, возбуждая или затормаживая, в зависимости от типа синапса, способность нейрона-приемника генерировать электрические импульсы. Результативность синапса может настраиваться проходящими через него сигналами, так что синапсы могут обучаться в зависимости от активности процессов, в которых они участвуют. Эта зависимость от предыстории действует как память, которая, возможно, ответственна за память человека. Кора головного мозга человека является протяженной, образованной нейронами поверхностью толщиной от 2 до 3 мм с площадью около 2200 см2, что вдвое превышает площадь поверхности стандартной клавиатуры. Кора головного мозга содержит около 1011 нейронов, что приблизительно равно числу звезд Млечного пути. Каждый нейрон связан с 103 - 104 другими нейронами. В целом мозг человека содержит приблизительно от 1014 до 1015 взаимосвязей. Нейроны взаимодействуют посредством короткой серии импульсов, как правило, продолжительностью несколько мсек. Сообщение передается посредством частотно-импульсной модуляции. Частота может изменяться от нескольких единиц до сотен герц, что в миллион раз медленнее, чем самые быстродействующие переключательные электронные схемы. Тем не менее сложные решения по восприятию информации, как, например, распознавание лица, человек принимает за несколько сотен мс. Эти решения контролируются сетью нейронов, которые имеют скорость выполнения операций всего несколько мс. Это означает, что вычисления требуют не более 100 последовательных стадий. Другими словами, для таких сложных задач мозг "запускает" параллельные программы, содержащие около 100 шагов. Это известно как правило ста шагов. Рассуждая аналогичным образом, можно обнаружить, что количество информации, посылаемое от одного нейрона другому, должно быть очень маленьким (несколько бит). Отсюда следует, что основная информация не передается непосредственно, а захватывается и распределяется в связях между нейронами.^ 3.Искусственный нейрон рис.2. Искусственный нейрон История создания искусственных нейронов уходит своими корнями в 1943 год, когда шотландец МакКаллок и англичанин Питтс создали теорию формальных нейросетей, а через пятнадцать лет Розенблатт изобрел искусственный нейрон (персептрон), который, впоследствии, и лег в основу нейрокомпьютера. Искусственный нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации нейрона. На рис.2 представлена модель реализующая эту идею. Хотя сетевые парадигмы весьма разнообразны, в основе почти всех их лежит эта конфигурация. Здесь множество входных сигналов, обозначенных x1, x2, x3...xn, поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые вектором X, соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес w1, w2, w3...wn, и поступает на суммирующий блок, обозначенный СУМ (адаптивный сумматор). Каждый вес соответствует "силе" одной биологической синаптической связи. (Множество весов в совокупности обозначается вектором W) Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход, который мы будем называть NET. В векторных обозначениях это может быть компактно записано следующим образом. NET=XW^ 4.Активационные функции Сигнал NET далее, как правило преобразуется активационной функцией F и дает выходной нейронный сигнал OUT. Активационная функция может быть обычной линейной функцией: OUT=K(NET)где К - постоянная, пороговой функцией ^ OUT=1, если NET>TOUT=0 в остальных случаях,где T - некоторая постоянная пороговая величина, или же функцией более точно моделирующей нелинейную передаточную характеристику биологического нейрона и представляющей нейронной сети большие возможности. рис.3. Искусственный нейрон с активационной функцией На рис3. блок обозначенный ^ F , принимает сигнал NET и выдает сигнал OUT. Если блок F сужает диапазон изменения величины NET так, что при любых значениях NET значения OUT принадлежат некоторому конечному интервалу, то F называется сжимающей функцией. В качестве сжимающей функции часто используется логистическая или сигмоидальная (S- образная) функция, показанная на рис.4. Эта функция математически выражается как F(x)=1/(1+e-x) .Таким образом, OUT=1/(1+e-NET) рис.4. Сигмоидальная логистическая функция По аналогии с электронными системами активационную функцию можно считать нелинейной усилительной характеристикой искусственного нейрона. Коэффициент усиления вычисляется как отношение приращения величины OUT к вызвавшему его небольшому приращению величины NET. Он выражается наклоном кривой при определенном уровне возбуждения и изменяется от малых значений при больших отрицательных возбуждениях (кривая почти горизонтальна) до максимального значения при нулевом возбуждении и снова уменьшается, когда возбуждение становится большим положительным. Гроссберг (1973) обнаружил, что подобная нелинейная характеристика решает поставленную им дилемму шумового насыщения. Каким образом одна и та же сеть может обрабатывать как слабые, так и сильные сигналы? Слабые сигналы нуждаются в большом сетевом усилении, чтобы дать пригодный к использованию выходной сигнал. Однако усилительные каскады с большими коэффициентами усиления могут привести к насыщению выхода шумами усилителей (случайными флуктуациями), которые присутствуют в любой физически реализованной сети. Сильные входные сигналы в свою очередь также будут приводить к насыщению усилительных каскадов, исключая возможность полезного использования выхода. Центральная область логистической функции, имеющая большой коэффициент усиления, решает проблему обработки слабых сигналов, в то время как в области с падающим усилением на положительном и отрицательном концах подходят для больших возбуждений. Таким образом, нейрон функционирует с большим усилением в широком диапазоне уровня входного сигнала. Рассмотренная простая модель искусственного нейрона игнорирует многие свойства своего биологического двойника. Например, она не принимает во внимание задержки во времени, которые воздействуют на динамику системы. Входные сигналы сразу же порождают выходной сигнал. И что более важно, она не учитывает воздействий функции частотной модуляции или синхронизирующей функции биологического нейрона, которые ряд исследователей считают решающими. Несмотря на эти ограничения, сети, построенные из этих нейронов, обнаруживают свойства, сильно напоминающие биологическую систему. Только время и исследования смогут ответить на вопрос, являются ли подобные совпадения случайными или следствием того, что в модели верно схвачены важнейшие черты биологического нейрона ^ 5.Базовые архитектуры нейронных сетей рис.5. Базовые архитектуры нейронных сетей Каждый нейрон получает сигналы от соседних нейронов по специальным нервным волокнам. Эти сигналы могут быть возбуждающими или тормозящими. Их сумма составляет электрический потенциал внутри тела нейрона. Когда потенциал превышает некоторый порог, нейрон переходит в возбужденное состояние и посылает сигнал по выходному нервному волокну. Отдельные искусственные нейроны соединяются друг с другом различными методами. Это позволяет создавать разнообразные нейронные сети с различной архитектурой, правилами обучения и возможностями. ИНС (Искусственные Нейронные Сеть) может рассматриваться как направленный граф со взвешенными связями, в котором искусственные нейроны являются узлами. По архитектуре связей ИНС могут быть сгруппированы в два класса: сети прямого распространения, в которых графы не имеют петель, и рекуррентные сети, или сети с обратными связями. В наиболее распространенном семействе сетей первого класса, называемых многослойным перцептроном, нейроны расположены слоями и имеют однонаправленные связи между слоями. На рисунке представлены типовые сети каждого класса. Сети прямого распространения являются статическими в том смысле, что на заданный вход они вырабатывают одну совокупность выходных значений, не зависящих от предыдущего состояния сети. Рекуррентные сети являются динамическими, так как в силу обратных связей в них модифицируются входы нейронов, что приводит к изменению состояния сети.^ 6.Полносвязные нейронные сети. Здесь каждый нейрон передает свой выходной сигнал остальным нейронам, включая самого себя. Выходными сигналами сети могут быть все или некоторые выходные сигналы нейронов после нескольких тактов функционирования сети. Все входные сигналы подаются всем нейронам. Элементы слоистых и полносвязных сетей могут выбираться по-разному. Существует, впрочем, стандартный выбор: нейрон с адаптивным неоднородным линейным сумматором на входе. Для полносвязной сети входной сумматор нейрона фактически распадается на два: первый вычисляет линейную функцию от входных сигналов сети, второй линейную функцию от выходных сигналов других нейронов, полученных на предыдущем шаге. Функция активации нейронов (характеристическая функция) это нелинейный преобразователь выходного сигнала сумматора. Если функция одна для всех нейронов сети, то сеть называют однородной (гомогенной). Если же характеристическая функция зависит еще от одного или нескольких параметров, значения которых меняются от нейрона к нейрону, то сеть называют неоднородной (гетерогенной). Составлять сеть из нейронов стандартного вида не обязательно. Слоистая или полносвязная архитектуры не налагают существенных ограничений на участвующие в них элементы. Единственное жесткое требование, предъявляемое архитектурой к элементам сети, это соответствие размерности вектора входных сигналов элемента (она определяется архитектурой) числу его входов. Если полносвязная сеть функционирует до получения ответа заданное число тактов k, то ее можно представить как частный случай k-слойной сети, все слои которой одинаковы и каждый из них соответствует такту функционирования полносвязной сети. Существенное различие между полносвязной и слоистой сетями становится очевидным, когда число тактов функционирования заранее не ограничено слоистая сеть так работать не может. Доказаны теоремы о полноте: для любой непрерывной функции нескольких переменных можно построить нейронную сеть, которая вычисляет эту функцию с любой заданной точностью. Так что нейронные сети в каком-то смысле могут все.^ 7.Обучение искусственных нейронных сетей Способность к обучению является фундаментальным свойством мозга. В контексте ИНС процесс обучения может рассматриваться как настройка архитектуры сети и весов связей для эффективного выполнения специальной задачи. Обычно нейронная сеть должна настроить веса связей по имеющейся обучающей выборке. Функционирование сети улучшается по мере итеративной настройки весовых коэффициентов. Свойство сети обучаться на примерах делает их более привлекательными по сравнению с системами, которые следуют определенной системе правил функционирования, сформулированной экспертами. Для конструирования процесса обучения, прежде всего, необходимо иметь модель внешней среды, в которой функционирует нейронная сеть - знать доступную для сети информацию. Эта модель определяет парадигму обучения. Во-вторых, необходимо понять, как модифицировать весовые параметры сети - какие правила обучения управляют процессом настройки. Алгоритм обучения означает процедуру, в которой используются правила обучения для настройки весов. Существуют три парадигмы обучения: "с учителем", "без учителя" (самообучение) и смешанная. В первом случае нейронная сеть располагает правильными ответами (выходами сети) на каждый входной пример. Веса настраиваются так, чтобы сеть производила ответы как можно более близкие к известным правильным ответам. Усиленный вариант обучения с учителем предполагает, что известна только критическая оценка правильности выхода нейронной сети, но не сами правильные значения выхода. Обучение без учителя не требует знания правильных ответов на каждый пример обучающей выборки. В этом случае раскрывается внутренняя структура данных или корреляции между образцами в системе данных, что позволяет распределить образцы по категориям. При смешанном обучении часть весов определяется посредством обучения с учителем, в то время как остальная получается с помощью самообучения. Теория обучения рассматривает три фундаментальных свойства, связанных с обучением по примерам: емкость, сложность образцов и вычислительная сложность. Под емкостью понимается, сколько образцов может запомнить сеть, и какие функции и границы принятия решений могут быть на ней сформированы. Сложность образцов определяет число обучающих примеров, необходимых для достижения способности сети к обобщению. Слишком малое число примеров может вызвать "переобученность" сети, когда она хорошо функционирует на примерах обучающей выборки, но плохо - на тестовых примерах, подчиненных тому же статистическому распределению. Известны 4 основных типа правил обучения: коррекция по ошибке, машина Больцмана, правило Хебба и обучение методом соревнования. ^ Правило коррекции по ошибке. При обучении с учителем для каждого входного примера задан желаемый выход d. Реальный выход сети y может не совпадать с желаемым. Принцип коррекции по ошибке при обучении состоит в использовании сигнала (d-y) для модификации весов, обеспечивающей постепенное уменьшение ошибки. Обучение имеет место только в случае, когда перцептрон ошибается. Известны различные модификации этого алгоритма обучения. ^ Обучение Больцмана. Представляет собой стохастическое правило обучения, которое следует из информационных теоретических и термодинамических принципов. Целью обучения Больцмана является такая настройка весовых коэффициентов, при которой состояния видимых нейронов удовлетворяют желаемому распределению вероятностей. Обучение Больцмана может рассматриваться как специальный случай коррекции по ошибке, в котором под ошибкой понимается расхождение корреляций состояний в двух режимах . ^ Правило Хебба. Самым старым обучающим правилом является постулат обучения Хебба. Хебб опирался на следующие нейрофизиологические наблюдения: если нейроны с обеих сторон синапса активизируются одновременно и регулярно, то сила синаптической связи возрастает. Важной особенностью этого правила является то, что изменение синаптического веса зависит только от активности нейронов, которые связаны данным синапсом. Это существенно упрощает цепи обучения в реализации VLSI. ^ Обучение методом соревнования. В отличие от обучения Хебба, в котором множество выходных нейронов могут возбуждаться одновременно, при соревновательном обучении выходные нейроны соревнуются между собой за активизацию. Это явление известно как правило "победитель берет все". Подобное обучение имеет место в биологических нейронных сетях. Обучение посредством соревнования позволяет кластеризовать входные данные: подобные примеры группируются сетью в соответствии с корреляциями и представляются одним элементом. При обучении модифицируются только веса "победившего" нейрона. Эффект этого правила достигается за счет такого изменения сохраненного в сети образца (вектора весов связей победившего нейрона), при котором он становится чуть ближе ко входному примеру.^ Часть 2.Нейрокомпьютеры 1.Введение История развития вычислительных систем с массовым параллелизмом насчитывает уже не один десяток лет. Пожалуй, эта одна из небольшого числа областей науки и техники, где отечественные разработки находятся на уровне мировых достижений, а в некоторых случаях и превосходят их. Шли годы, изменялась элементная база и подходы к архитектуре построения современных суппервычислителей, появлялись новые направления, к числу которых можно отнести и нейрокомпьютеры. Что же следует понимать под термином нейрокомпьютер? Вопрос достаточно сложный. Нейросетевая тематика, как таковая, является междисциплинарной, ей занимаются как разработчики вычислительных систем и программисты, так и специалисты в области медицины, финансово-экономические работники, химики, физики и т.п. То, что понятно физику, совершенно не принимается медиком и наоборот - все это породило многочисленные споры и целые терминологические войны по различным направлениям применения всего где есть приставка нейро-. Приведем некоторые наиболее устоявшиеся определения нейрокомпьютера, принятые в конкретных научных областях: № Научное направление Определение нейровычислительной системы 1 Математическая статистика Нейрокомпьютер - это вычислительная система, автоматически формирующая описание характеристик случайных процессов или их совокупности, имеющих сложные, зачастую априори неизвестные функции распределения. 2 Математическая логика Нейрокомпьютер - это вычислительная система алгоритм работы которой представлен логической сетью элементов частного вида - нейронов, с полным отказом от булевых элементов типа И, ИЛИ, НЕ. 3 Пороговая логика Нейрокомпьютер - это вычислительная система, алгоритм решения задач в которой представлен в виде сети пороговых элементов с динамически перестраиваемыми коэффициентами и алгоритмами настройки, независимыми от размерности сети пороговых элементов и их входного пространства. 4 Вычислительная техника Нейрокомпьютер - это вычислительная система с MSIMD архитектурой, в которой процессорный элемент однородной структуры упрощен до уровня нейрона, резко усложнены связи между элементами и программирование перенесено на изменение весовых коэффициентов связей между вычислительными элементами. 5 Медицина (нейробиологический подход) Нейрокомпьютер - это вычислительная система представляющая собой модель взаимодействия клеточного ядра, аксонов и дендридов, связанных синаптическими связями (синапсами) (т.е. модель биохимических процессов протекающих в нервных тканях). 6 Экономика и финансы Устоявшегося определения нет, но чаще всего под нейровычислителем понимают систему обеспечивающую параллельное выполнение "бизнес-транзакций" с элементами "бизнес-логики". Следовательно, основные преимущества нейрокомпьютеров связаны с массовым параллелизмом обработки, что обуславливает высокое быстродействие, низким требованиями к стабильности и точности параметров элементарных узлов, устойчивостью к помехам и разрушениям при большой пространственной размерности системы, причём устойчивые и надёжные нейросистемы могут создаваться из низконадёжных элементов, имеющих большой разброс параметров. В дальнейшем в данном обзоре под нейрокомпьютером будет пониматься любая вычислительная система с MSIMD архитектурой (определение №4). Прежде чем перейти к обзору современных нейровычислителей и их элементной базы, остановимся на классификации архитектур вычислительных систем по Б.М. Когану: Вычислительную систему с одним потоком команд и данных (однопроцессорная ЭВМ - SISD) (рис.1а). Вычислительную систему с общим потоком команд (SIMD - одиночный поток команд и множественный поток данных) (рис.1б). Вычислительную систему множественным потоком команд и одиночным потоком данных (MISD - конвейерная ЭВМ) (рис.1в). Вычислительная система с множественным потоком команд и данных (рис.1г) (MIMD). Рис.1. Архитектуры вычислительных систем. Элементарным строительным элементом нейронной сети (НС) является нейрон, который осуществляет взвешенное суммирование поступающих на его вход сигналов. Результат такого суммирования образует промежуточный выходной сигнал, который преобразуется активационной функцией в выходной сигнал нейрона. По аналогии с электронными системами активационную функцию можно считать нелинейной усилительной характеристикой искусственного нейрона, имеющей большой коэффициент усиления для слабых сигналов и c падающим усилением для больших возбуждений. Коэффициент усиления вычисляется как отношение выходного сигнала нейрона к вызвавшему его небольшому приращению взвешенной суммы входных сигналов. Кроме этого для обеспечения увеличения вычислительной мощности многослойными НС, по сравнению с однослойными, необходимо чтобы активационная функция между слоями была нелинейной, т.е. как показано в учитывая ассоциативность операции умножения матриц любую многослойную нейросеть без нелинейных активационных функций можно свести к эквивалентной однослойной нейросети, которые весьма ограничены по своим вычислительным возможностям. Но вместе с этим наличие нейлинейностей на выходе нейрона не может служить определяющим критерием, хорошо известны и успешно работают нейросети и без нелинейных преобразований на выход, получившие название нейросети на линиях задержки. Алгоритмический базис нейрокомпьютеров обеспечивает теория нейронных сетей (НС). Нейронная сеть - это сеть с конечным числом слоёв из однотипных элементов - аналогов нейронов с различными типами связи между слоями. Среди основных преимуществ НС является:инвариантность методов синтеза НС к размерности пространства признаков и размерам НС,адекватность современным перспективным технологиям,отказоустойчивость в смысле монотонного, а не катастрофического изменения качества решения задачи в зависимости от числа вышедших из строя элементов. Решение математических задач в нейросетевой логическом базисе определяют теоретические положения нейроматематики. Этапы решения практически любой задачи в нейросетевом логическом базисе:формирование входного сигнала НС,формирование выходного сигнала НС,формирование желаемого выходного сигнала НС,формирование сигнала ошибки и функционала оптимизации,формирование структуры нейронной сети, адекватной выбранной задаче,разработка алгоритма настройки НС, эквивалентного процессу решения задачи в нейросетевом логическом базисе,проведение исследований процесса принятия решения задачи.Всё вышеизложенное делает построение современных систем управления с использованием нейросетевого подхода и на основе нейросетевого логического базиса одним из самых перспективных направлений реализации многоканальных и многосвязанных систем управления. Как было отмечено, нейрокомпьютер - это вычислительная система с MSIMD архитектурой, т.е. с параллельными потоками одинаковых команд и множественным потоком данных. Давайте разберемся, каким боком относятся нейрокомпьютеры к параллельным ЭВМ. На сегодня можно выделить три основных направления развития вычислительных систем с массовым параллелизмом (ВСМП): № Наименование направления Описание 1 ВСМП на базе каскадного соединения универсальных SISD, SIMD, MISD микропроцессоров. Элементная база - универсальные RISC или CISC процессоры: Intel, AMD, Sparc, Alpha, Power PC, MIPS и т.п. 2 На базе процессоров с распараллеливанием на аппаратном уровне. Элементная база - DSP процессоры: TMS, ADSP, Motorola 3 ВСМП на специализированной элементной базе Элементная база от специализированных однобитовых процессоров до нейрочипов. Для каждого из направлений сегодня существуют решения, реализующие те или иные нейросетевые парадигмы. Для большей ясности в дальнейшем будем считать, что нейросетевые системы, реализованные на аппаратных платформах первого направления (пусть и мультипроцессорных) будем относить к нейроэмуляторам - т.е. системам реализующим типовые нейрооперации (взвешенное суммирование и нелинейное преобразование) на программном уровне. Нейросетевые системы, реализованные на аппаратных платформах второго и третьего направления в виде плат расширения стандартных вычислительных систем (1-го направления) - будем называть нейроускорителями (взвешенное суммирование, как правило, реализуется аппаратно, например, на основе трансверсальных фильтров, а нелинейные преобразования - программно) и системы, реализованные на аппаратной платформе третьего направления в виде функционально законченных вычислительных устройств, следует относить к нейрокомпьютерам (все операции выполняются в нейросетевом логическом базисе). Подводя итоги терминологической "войны" можно отметить, что нейрокомпьютеры можно смело отнести к вычислительным системам с высоким параллелизмом (MSIMD архитектуры), реализованным на основе специализированной элементной базы, ориентированной на выполнение нейросетевых операций в нейросетевом логическом базисе. ^ 2.Элементная база нейровычислителей Элементной базой нейровычислительных систем второго и третьего направлений являются соответственно заказные кристаллы (ASIC), встраиваемые микроконтроллеры (mС), процессоры общего назначения (GPP), программируемая логика (FPGA - ПЛИС), транспьютеры, цифровые сигнальные процессоры (DSP) и нейрочипы. Причем использование, как тех, так и других, позволяет сегодня реализовывать нейровычислители, функционирующие в реальном масштабе времени, однако наибольшее использование при реализации нейровычислителей нашли ПЛИС, DSP и конечно нейрочипы. Транспьютеры (T414, T800, T9000) и в частности транспьютероподобные элементы являются важным для построения вычислительных систем с массовым параллелизмом, а их применение постепенно сдвигается в сторону коммутационных систем и сетей ЭВМ, хотя еще остаются примеры реализации на них слоев некоторых ЭВМ с массовым параллелизмом в виде решеток процессорных элементов.DSP (Digital Signal Processor-цифровой сигнальный процессор), обладая мощной вычислительной структурой, позволяют реализовать различные алгоритмы обработки информационных потоков. Сравнительно невысокая цена, а также развитые средства разработки программного обеспечения позволяют легко применять их при построении вычислительных систем с массовым параллелизмом. Стремительный переход современных систем управления на цифровые стандарты, привел к необходимости обрабатывать с высокой скоростью достаточно большие объемы информации. Сложная обработка и фильтрация сигналов, например, распаковка сжатых аудио- и видеоданных, маршрутизация информационных потоков и т.п., требует применения достаточно производительных вычислительных систем. Подобные системы могут быть реализованы на различной элементной базе, но наибольшее распространение получили устройства с применением цифровых сигнальных процессоров и ПЛИС. Программируемая логика способна работать на более высоких частотах, но поскольку управление реализовано аппаратно, то изменение алгоритмов работы требует перепрограммирования ИС. Низкая тактовая частота DSP пока ограничивает максимальную частоту обрабатываемого аналогового сигнала до уровня в 10-20 МГц, но программное управление позволяет достаточно легко изменять не только режимы обработки, но и функции, выполняемые DSP. Помимо обработки и фильтрации данных DSP могут осуществлять маршрутизацию цифровых потоков, выработку управляющих сигналов и даже формирование сигналов системных шин ISA, PCI и др. Оценивать быстродействие тех или иных устройств на основе DSP и ПЛИС принято по времени выполнения типовых операций цифровой обработки сигналов (Фильтр Собеля, БПФ, преобразование Уолша-Адамара и др.). Однако оценки производительности нейровычислителей используют другие показатели: CUPS (connections update per second) - число измененных значений весов в секунду (оценивает скорость обучения). CPS (connections per second) - число соединений (умножений с накоплением) в секунду (оценивает производительность). CPSPW = CPS/Nw, где Nw - число синапсов в нейроне. CPPS - число соединений примитовов в секунду, CPPS=CPS*Bw*Bs, где Bw, Bs - разрядность весов и синапсов. MMAC - миллионов умножений с накоплением в секунду. Особенностью использования DSP и ПЛИС в качестве элементной базы нейровычислителей является то, что ориентация в выполнении нейросетевых операций обуславливает с одной стороны повышение скоростей обмена между памятью и параллельными арифметическими устройствами, а с другой стороны уменьшение времени весового суммирования (умножения и накопления) за счет применения фиксированного набора команд типа регистр-регистр. ^ DSP - как элементная база нейровычислителей Цифровые сигнальные процессоры (DSP) вот уже на протяжении нескольких десятилетий являются элементной базой для построения как нейроускорителей, так и контура логики общесистемного управления нейрокомпьютеров.Большая производительность, требуемая при обработке сигналов в реальном времени, побудила Texas Instruments и Analog Devices выпустить транспьютероподобные семейства микропроцессоров TMS320C4x и ADSP2106x, ориентированные на использование в мультипроцессорных системах. На этом фоне первый российский сигнальный процессор (нейросигнальный процессор) фирмы Модуль - "Neuro Matrix" [6], выглядит весьма достойно среди DSP c фиксированной точкой. При тактовой частоте 50 Мгц "Neuro Matrix" практически не уступает по производительности изделиям мировых лидеров, а по некоторым задачам даже превосходит их (табл 1). Табл. 1. Сравнительные тесты СISC процессоров, DSP TI и нейросигнального процессора NM6403 Наименование теста Intel Pentium II 300 Мгц Intel PentiumMMX 200 Мгц TI TMS320C40 50 Мгц НТЦ"Модуль" NM6403 40 Мгц Фильтр Собеля (размер кадра 384X288 байт), кадров/с. - 21 6,8 68 Быстрое преобразование Фурье (256 точек, 32 разряда), мкс (тактов) 200 - 464 (11588) 102 (4070) Преобразование Уолша-Адамара (21 шаг, вх. данные 5 бит), с 2,58 2,80 - 0,45 При создании нейровычислительных систем на базе сигнальных процессоров необходимо помнить, что DSP обладают высокой степенью специализации. В них широко используются методы сокращения длительности командного цикла, характерные для универсальных RISC-проце


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Osi Reference Model Essay Research Paper The
Реферат What Exactly Is Electronic Music Essay Research
Реферат Police Harrassment Essay Research Paper Police HarassmentThesis
Реферат Oti (Лого) Omeopatia Fitoterapia Integratori alimentari Италия Комплексная антигомотоксическая терапия хронической венозной недостаточности (методические рекомендации)
Реферат сигналы BIOS
Реферат Стандартизация и сертификация продукции Иностранные сертификаты качества
Реферат Применение информационных технологий в бухгалтерии
Реферат Крестьянский менталитет: наследие России царской в России коммунистической
Реферат Антибиотические белки и пептиды и воспалительный процесс
Реферат Маранта - "молящаяся трава"
Реферат Добри Войников "Криворазбраната цивилизация"
Реферат Социальная политика и сферный подход к решению вопросов в муниципальном образовании
Реферат Особенности использования аналитико-синтетического метода обучения письму учащихся младших классов в школе для детей с тяжёлыми нарушениями речи
Реферат Разработка таймера
Реферат Алгоритмизация и программирование разветвляющихся процессов