Реферат по предмету "Радиоэлектроника"


Конспект лекций по курсу "Микропроцессоры и микро-ЭВМ в Персональной электронике" для студентов специальности 2008

ВВЕДЕНИЕ


МИНИСТРЕРСТВО ВЫСШЕГО ОБРАЗОВАНИЯ РФ

МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ПРИБОРОСТРОЕНИЯ И ИНФОРМАТИКИ








КАФЕДРА «ПЕРСОНАЛЬНАЯ ЭЛЕКТРОНИКА»



Конспект лекций по курсу «Микропроцессоры и микро-ЭВМ в Персональной электронике» для студентов специальности 2008


















Москва 2001


ВВЕДЕНИЕ. ПОНЯТИЕ О МИКРОПРОЦЕССОРАХ

В последнее десятилетие наметилась четкая тенденция повышения роли вычислительной техники во всей жизни современного человека. Недаром в наших школах введено преподавание нового предмета «Основы информатики и вычислительной техники».

Наряду с бурным развитием вычислительной техники еще наблюдается две глобальные тенденции в современной радиоэлектронике. Во-первых, усложняются функции любого электронного аппарата. При этом с точки зрения эксплуатации его, наблюдается упрощение работы с ним даже необученного пользователя. Во-вторых, радиоэлектроника расширяет свое влияние на все большие сферы человеческой деятельности. Теперь ее применение наблюдается даже в тех областях, в которых ранее ее использование казалось немыслимым. Эти два аспекта можно назвать усилением «интеллектуализации» техники.

Из этого вытекает еще одна реалия современного развития электроники — крен в сторону техники, направленной на удовлетворение «бытовых» потребностей человека. Поэтому в самое последнее время получил развитие термин «Персональная электроника», который имеет в виду не только электронику для «домашнего использования», а и офисную, автомобильную и другие виды устройств, которые направлены на удовлетворение персональных потребностей пользователя.

Все указанные выше тенденции и особенности применения электроники были бы невозможны без поистине взрывоподобного развития микропроцессорной техники. Начало ее использования было весьма скромным, а сейчас ни один мало-мальски сложный аппарат не может без нее обойтись. Благодаря своим преимуществам микропроцессорная техника начинает вытеснять традиционную радиоэлектронику из такого понятия, как элементная база.

Естественно, теперь при обучении проектированию персональной электроники нельзя не давать студентам хотя бы основ применения микропроцессорной техники. Поэтому не вызывает сомнения актуальность преподавания курса «Применение микропроцессоров и микро-ЭВМ в Персональной электронике» студентам специальности «Персональная электроника» (2008).

Целью настоящего курса является дать понятие о микропроцессорах и однокристальных микро-ЭВМ, области их применения, дать основы функционирования микропроцессорных систем, научить основам программирования микропроцессоров и микро-ЭВМ, построения простейших систем управления объектами.

Курс состоит из лекционных и практических занятий и лабораторного практикума. Он построен таким образом, чтобы на лекциях дать слушателям наиболее широкое представление о предмете, а на практических и лабораторных занятиях познакомить их с конкретными микропроцессорными системами, научить основам построения и функционирования определенных систем управления на основе одного — двух наиболее популярных микропроцессорных наборов.

После окончания обучения слушатель должен свободно ориентироваться в многочисленной литературе по микропроцессорам и микро-ЭВМ, уметь выбрать тот или иной микропроцессорный комплект для использования в конкретной системе, уметь программировать один из самых распространенных микропроцессорных систем, составлять структурную и принципиальную схемы микропроцессорной системы для ее использования в конкретной области техники. В дальнейшем слушатель, основываясь на литературе и материалах о микропроцессорных системах, сможет сам проектировать и, главным образом, уметь применять микропроцессоры в своей повседневной работе, свободно ориентироваться в обслуживании и ремонте такого рода аппаратуры.

История появления микропроцессоров

Появление микропроцессоров обязано слиянию двух ранее независимых отраслей техники. Первая из них — создание систем управления промышленными объектами. В начале 60-х годов функции многих промышленных систем настолько усложнились, что потребовалось создавать сложные автоматические системы управления этими объектами. Эпоха НТР потребовала создания высокоавтоматизированных, быстро переналаживаемых производств, так называемых «гибких автоматизированных производств». Но если применять старую методику переналадки всего машинного парка производства, то это потребовало бы слишком больших затрат на переход с одного вида продукции на другой. Поэтому встала потребность создания таких управляющих устройств-производств, которые бы переналаживались на выпуск другой продукции самыми простыми средствами.

С другой стороны параллельно этим отраслям развивалась мощная база вычислительной техники. На заре своего развития она мало что умела, имела очень большие габариты и главное — низкую надежность из-за использования электронных ламп. Но по мере совершенствования вычислительная техника становилась все более мощной, все менее громоздкой, все более удобной для эксплуатации. Но развитие этой техники шло в основном по пути наращивания мощности и возможности больших ЭВМ, установленных в отдельных, специально приспособленных помещениях, обслуживаемых специально обученным персоналом высокой квалификации. Использование средств вычислительной техники в таком виде для нужд производства имело ограниченный характер.

В это же время в радиоэлектронике (и, в частности, в вычислительной технике) шло естественное развитие элементной базы. На смену лампам пришли транзисторы. Габариты и потребляемая мощность сразу снизились в десятки раз. Но подлинный переворот в радиоэлектронике был совершен, когда появились первые интегральные микросхемы, т.е. тогда, когда внутри пластины полупроводника стали изготовлять готовые схемы, а не отдельные активные приборы. Это позволило существенно снизить габариты, потребляемую мощность, повысить надежность аппаратуры.

Совершенствование технологии изготовления интегральных схем (ИС) привело к появлению ИС средней степени интеграции, (когда на одном кристалле размещалось несколько десятков транзисторов), ИС большой степени интеграции или БИС (когда на кристалле тысячи и десятки тысяч элементов), и наконец, ИС сверхбольшой степени интеграции или СБИС (на кристалле — миллионы элементов). Однако по мере развития элементной базы стало все более очевидным противоречие: если на транзисторах или на ИС малой интеграции можно было построить различную аппаратуру (по своим функциональным возможностям), то по мере роста степени интеграции ИС становились все более специализированными. Действительно, в одной БИС размещалось порой целое устройство, и эту БИС нельзя было применить для построения другого аппарата. Кроме того, хотя и изготовление такой ВИС было достаточно дешевым, но проектирование таких специализированных БИС требовало все больших затрат, а сфера их применения все суживалась. Таким образом, развитие элементной базы вело в тупик.

Подлинной революцией, которая позволила выйти из этого тупика, стало появление микропроцессоров. В 1971 г. фирма Intel (США) выпустило БИС под кодом 4004 и назвала ее микропроцессором. На микроэлектронный уровень была перенесена идеология средств вычислительной техники. Впервые БИС стала именно универсальной системой благодаря сочетанию аппаратных и программных средств. Т.е. структура БИС была неизменной, а универсальность ей придавалось возможностью программирования ее функций. Таким образом, для различных применений требовалось только написать другую программу работы, без изменения структуры микропроцессорной системы.

Но основное применение микропроцессоров сразу открылось именно в построении управляющих систем промышленности. Проектировщики сразу поняли все преимущества новой элементной базы. Теперь требовалось изменять только программу работы оборудования, а все оборудование остается неизменным. И что самое важное, стало возможным встраивать микропроцессоры непосредственно в оборудование, что придало ему еще большую гибкость.

Микропроцессорная техника стала бурно развиваться. Появились микропроцессорные комплекты для построения самых различных систем, и в том числе вычислительных. В настоящее время промышленность выпускает большую номенклатуру микропроцессоров, которые можно применять для построения различных управляющих промышленных систем, для создания достаточно мощных вычислительных систем, и для встраивания в бытовую технику.

Следующим этапом развития элементной базы стало применение однокристальных микро-ЭВМ (ОЭВМ). Действительно, для включения микропроцессора в систему было необходимо предусмотреть «навешивание» на него еще по крайней мере нескольких микросхем — памяти, генераторов, интерфейсных схем и т.д. Все это выливалось в увеличение габаритов, потребляемой мощности, снижение надежности. Поэтому на определенном этапе очевидным решением стало интеграция всех этих устройств на одном кристалле. При этом основные преимущества МП техники сохранились и даже развились дальше. Можно сказать, что в настоящее время «чистые» микропроцессоры применяются только в вычислительной технике, а в персональной электронике подавляющее большинство управляющих систем построено на ОЭВМ.

Сейчас уже можно сказать, что ни одна сторона техники и быта не может обойтись без применения микропроцессоров и ОЭВМ в той или иной мере.

Терминология курса

Для изучения микропроцессорной техники, литературы по этому вопросу необходимо познакомиться с терминологией, встречающейся в различных источниках. В настоящем разделе приводятся только наиболее общие термины. Другие понятия будут расшифрованы в соответствующих разделах.

Микропроцессор (МП) — программно управляемое устройство, предназначенное для обработки цифровой информации и управления процессами этой обработки, и выполненное в виде одной (или нескольких) ИС с высокой степенью интеграции электронных компонентов.

Микропроцессорный комплект (МПК) — совокупность МП и других ИС, совместимых по конструкторско-технологическому исполнению и предназначенных для совместного применения при конструировании МП, микро-ЭВМ, и других управляющих систем.

Микропроцессорная система (МПС) — управляющая, информационная или иная специализированная цифровая система, построенная на базе МП или микро-ЭВМ, включающая в себя средства связи с объектом управления или с пользователем.

Аппаратные средства МПС — МП средства и схемы сопряжения с обслуживаемым объектом, имеющие некоторую конструктивную базу и соединенные согласно определенной принципиальной схеме.

Программные средства МПС — последовательность команд, программа или совокупность программ, размещенных на средствах носителях информации и реализующие требуемый алгоритм ее функционирования.

Однокристальная микро-ЭВМ (ОЭВМ) — МПС, реализованная на одном кристалле, и выполняющая основные функции управления и сопряжения с объектом.

Классификация и основные параметры МП

Сложность классификации МП средств связана с тем, что с одной стороны МП — это функциональное вычислительное устройство, а с другой стороны — это БИС. Поэтому для МП важны такие параметры БИС, как:

тип корпуса БИС,

количество источников питания,

требования к синхронизации,

мощность рассеяния,

температурный диапазон,

быстродействие,

уровни сигналов,

возможность наращивания,

нагрузочная способность и т.д.

Как функциональное устройство МП характеризуется следующими параметрами:

формат обрабатываемых данных,

количество, тип и гибкость системы команд,

методы адресации данных,

число внутренних регистров,

средства прерываний,

построение системы ввода-вывода и т.д.

Как и обычное устройство управления МП можно разделить на три части: операционную (в ней осуществляется преобразование данных), управляющую (осуществляет управление обработкой данных по программе) и интерфейсная (осуществляет связь МП с внешними устройствами). Первые две части характеризуются разрядностью, системой команд, системой прерываний и т.д., третья часть — разрядностью, возможностью подключения других частей системы и т.д.

Конструктивно все три части могут присутствовать в одном кристалле БИС, тогда этот МП называют однокристальным МП: или каждый кристалл МПС выполняет свою функцию — тогда МП называют многокристальным. Ряд МП допускают наращивание до необходимой разрядности, причем отдельно можно наращивать все три части МП. Тогда эти МП называют многокристальными секционированными, где каждая секция обрабатывает свою область разрядов данных. На рис. 0.1 условно показаны эти типы МП.








а) б) в)

УП- управляющая часть, ОП — операционная часть, ИП — интерфейсная часть

Рис. 0.1.

Поэтому по числу БИС в МПК МП классифицируются:

-однокристальные,

многокристальные,

многокристальные секционированные.

По назначению:

— универсальные — могут быть использованы для широкого круга задач, причем их эффективность слабо зависит от типа решаемой задачи,

— специализированные — они ориентированы на выполнение определенных функций, что позволяет существенно повысить эффективность при решении определенного класса задач. В частности, это специальные математические процессоры, процессоры обработки видеоданных и т.д. Производительность этих процессоров очень высока, но только для узкого круга решаемых задач.

По виду обрабатываемых данных:

— цифровые,

— аналоговые (МП — цифровые устройства, но на их входах и выходах стоят соответственно аналогово-цифровые и цифро-аналоговые преобразователи).

По виду временной синхронизации:

— синхронные — МП, в которых начало и конец каждой операции задаются устройством управления и не зависят от вида команд и величины операндов,

— асинхронные МП — начало последующей операции определяется по фактическому окончанию предыдущей операции.

По организаций МПС:

— одномагистральная МПС — все устройства системы имеют один интерфейс и подключены к единой магистрали, по которой передаются коды данных, адресов и управляющих сигналов,

-многомагистральная МПС — устройства группами подключаются к своей информационной магистрали, по которым можно осуществить одновременную передачу данных, адресов и управляющих сигналов.

По виду системы команд:

— МП с жестким набором команд — каждая команда такого МП не может быть разделена на более простые операции. Система команд такого МП не может быть изменена программным способом,

— МП с микропрограммированием — система команд такого МП может быть модифицирована за счет изменения последовательности микропрограмм. из которых состоит каждая команда такого МП. Мировая промышленность выпускает в настоящее время большое число МПК. Каждый из них предназначен для определенного применения, имеет свои особенности. Основной вопрос при применении МП средств — выбор определенного МПК. Как видно из предыдущего изложения, параметров МПК много, поэтому в табл. 0.1 указаны основные МПК, выпускаемые отечественной промышленностью, и некоторые особо важные их параметры.

Таблица 0.1

Обозначение серии

Наименование ЦПЭ

Технология

Разрядность, бит

Тактовая частота, МГц

Напряжения питания, В

Потребляемая мощность, мВт

1

2

3

4

5

6

7

К580

КР580ВМ80А

nМОП

8

2,5

-5,+5,+12

700

К584

К584ВМ1

И2Л

4п

0,5

+5

750

К588

К588ВС1

КМОП

16п

0,8

+5

1,0

К589


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.