Реферат по предмету "Производство"


Свет фотоны скорость света эфир и другие банальности

Николай Носков
Методология современной физики, возникшая на «дрожжах» теории относительности, привела к невиданному шатанию умов и к появлению на ее основе множества научных теорий, похожих больше на фантазии средневековых схоластов.
Так, например, профессор Вейник, печально известный тем, что пострадал за критику теории относительности (он просто ее высмеял), пишет в «Термодинамике» – учебнике для студентов [1]: «… важный недостаток квантовой механики – это отсутствие руководящих идей, которые бы позволили судить о структуре частицы. В результате такая банальная элементарная частица, как фотон, попала в разряд исключительных (этому, по-видимому, способствовало то, что свет длительное время считался волной, а также формула Е = mc2 Эйнштейна). На самом деле фотон в принципе не отличается от электрона и других элементарных частиц (об этом можно судить по фотографиям...). Достаточно было разобраться в структуре электрона или фотона, чтобы составить полное представление обо всем микромире и об управляющих ими законах. Согласно общей теории (Вейника – Н.Н.), элементарная частица – это ансамбль микрозарядов. К последним относятся: масса (субстанционы), пространство (метроны), время (хрононы), электрон, термон, постоянная Планка и т.д. Число различных элементарных частиц бесконечно велико».
Таким образом, мы видим как пространство – время, волна – частица, принцип неопределенности, эквивалент массы – энергии и другие «сущности» продолжают порождать все новых чудовищ в виде термонов, метронов, хрононов и субстанционов. Что же касается фотографии, то если бы Вейнику показали снимок ночного шоссе, он точно так же определил бы «банальность» автомашины, оставляющей след фар на фотоснимке. «Сон разума порождает чудовищ» (Гойя).
«Причину всех естественных явлений постигают при помощи соображений механического характера, в противном случае приходится отказаться от всякой надежды когда – либо и что-нибудь понять в физике». (Гюйгенс «Трактат о свете» [2]). Эту же мысль в разных вариантах высказывали известнейшие исследователи и мыслители разных времен: Аристотель, Галилей, Ньютон, Гук, Декарт, Даламбер, Френель, Фарадей, Гельмгольц и многие другие. Так, Максвелл в «Трактате об электричестве и магнетизме» [3] написал: «В настоящее время мы не можем понять распространение (взаимодействия – Н.Н.) во времени иначе, чем-либо, как полет материальной субстанции через пространство, либо как состояние движения или напряжения в среде, уже существующей в пространстве… Действительно, как бы энергия не передавалась от одного тела к другому во времени, должна существовать среда или вещество, в которой находится энергия, после того как она покинула одно тело, но еще не достигла другого… Следовательно, все эти теории (волновые, взаимодействия и электромагнетизма – Н.Н.) ведут к понятию среды, в которой имеет место распространение, и если мы примем эту среду как гипотезу, я думаю, она должна занять выдающееся место в наших исследованиях, и следует попытаться построить мысленное представление ее действия во всех подробностях; это и являлось моей постоянной целью в настоящем трактате».
Но попытаемся теперь представить по Вейнику возникновение фотона: летел, летел «возбужденный» электрон по орбите, и вдруг от него отрывается некая «банальная сущность», которая, не имея на то никаких причин и оснований, независимо от скорости и циклической частоты электрона, приобретает свою частоту колебаний (после подсчета количества энергии, которую он должен забрать?), а массу – уж какая получится! Следствие здесь не порождено причинами, а физические соображения не подкреплены логикой и законами механики. Какие уж тут «мысленные представления» Максвелла?!
Итак, Максвелл утверждает, что энергию на расстояние можно перенести лишь двумя способами: либо вместе с веществом (массой), либо волнами через промежуточную среду. Существование якобы особого вида материи – электромагнитного поля – результат проникновения в физику ненаучного мышления. Это даже не теплород, которым достаточно успешно описывалась энергия колебания атомов и молекул вещества и, одновременно, тепловое (электромагнитное) излучение. Это просто попытка завуалировать свое незнание и бессилие перед загадкой природы.
Над этой загадкой бьются великие умы человечества, начиная с древнегреческих, древнеарабских, древнеиндийских и древнекитайских мыслителей, с Ньютона, Гука, Гюйгенса, кончая современными исследователями, которые, хотя и добились великих достижений в использовании света (лазеры и др.), однако их знания о существе света остались еще очень далеки от истинных.
Взгляды Ньютона [4] на природу света были весьма противоречивы и непоследовательны. Хотя он и явился родоначальником истинно научного мышления, боязнь выдвижения научных гипотез без достаточного запаса экспериментальных и наблюдательных фактов привела его к другой крайности: к скованности мышления и к отсутствию последовательности в выводах. Так, его взгляды относительно взаимодействия тел на расстоянии привели его к мысли о существовании промежуточной среды; но при рассмотрении природы света он отвергает эту среду только из-за того, что «нет достаточного запаса опытов, коими законы действия этого эфира были бы точно определены и показаны».
Конечно, в его время постановка вопроса о свойствах и составе эфира была преждевременна, поскольку отсутствовали даже такие науки, как оптика, электромагнетизм, атомная и молекулярная физики и многие другие. И даже в наше время такие науки как о ядре атома и об элементарных частицах еще «плавают в тумане». Что же говорить об эфире – следующей ступени строения вещества?
Однако наблюдений, фактов, экспериментов и знаний о свойствах эфира становилось все больше, и все великие и сколько-нибудь значимые теории возникли лишь благодаря «мысленному построению его действия». Эйнштейн и Инфельд назвали его «лесами» для строительства теорий, которые можно убрать в угоду существования общего принципа относительности. Но теперь трудно себе представить, что возникли бы такие науки, как оптика и электромагнитная теория, если бы общий принцип относительности появился раньше их.
«Волновая теория победила теорию истечения Ньютона безукоризненно качественной и количественной точностью своих предсказаний» (С.Вавилов [5]) и не только этим. Во-первых, независимость скорости света от скорости источника нельзя объяснить теорией истечения. Ньютон как раз считал, что скорость фотонов складывается со скоростью источника. Во-вторых, теория истечения предсказывала увеличение скорости света в более плотной среде, а волновая теория Гюйгенса – уменьшение этой скорости. Прямые эксперименты по замеру скорости в плотной среде, произведенные Физо и Фуко, подтвердили волновую природу света.
Волновая теория света была подтверждена и теоретическими и экспериментальными работами Фарадея, Максвелла, Герца, Лебедева и других исследователей. Максвелл, например, в своем «Трактате...» написал: «… светоносная среда при прохождении света через нее служит вместилищем энергии. В волновой теории, развитой Гюйгенсом, Френелем, Юнгом, Грином и др., эта энергия считается частично потенциальной и частично кинетической. Потенциальная энергия считается обусловленной деформацией элементарных объемов среды, и значит, мы должны рассматривать среду как упругую. Кинетическая энергия считается обусловленной колебательным движением среды, поэтому мы должны считать, что среда имеет конечную плотность. В теории электричества и магнетизма, принятой в настоящем трактате, признается существование двух видов энергии – электростатической и электрокинетической, и предполагается, что они локализованы не только… в телах, но и в каждой части окружающего пространства… Следовательно, наша теория согласуется с волновой теорией в том, что обе они предполагают существование среды, способной стать вместилищем двух видов энергии». При этом и Максвелл и Фарадей как люди широких научных взглядов указали на то, что эфир нужен не только для волновой теории света (электродинамизма), но и для передачи взаимодействий. Этот весьма важный аргумент игнорируется до сих пор современными исследователями как результат необходимости видеть «новое платье короля» – искривление пространства-времени.
Вот как написал об этом сказочник Андерсен: «Они выдали себя за искусных ткачей и сказали, что могут соткать такую чудесную ткань, которая отличается удивительным свойством – становится невидимой для всякого человека, который сидит не на своем месте или непроходимо глуп… «Я не глуп, – думал сановник. Значит я не на своем месте? Вот тебе раз! Однако нельзя и виду подавать!»
С.Вавилов написал: «Волновая теория торжествовала, казалось, окончательную победу… Но торжество оказалось очень преждевременным… Волновая теория оказалась беспомощной перед квантовыми законами действия света». [5]
Мы же теперь зададимся вопросом: неужели этот единственный факт против множества других смог так резко изменить мнение ученых?! Да, присутствует дискретность излучения; да, фотон летит как монолитная частица. Но разве нет аналогичного поведения звука в воздухе? Или наоборот: разве нет поведения электромагнитных волн подобного звуку?
Герц [6] и его последователи прекрасно увидели свойство электромагнитного излучения передавать в окружающее пространство сферические волны, не локализованные в пространстве. (Кстати, они и не квантованы, как утверждают современные светила, поскольку они – результат не перескока электронов с одной орбиты на другую, а ускоренного движения свободных электронов в проводнике). Благодаря такому свойству длинных электромагнитных волн мы смотрим телевизор и слушаем радиоприемник из любой точки сферы вокруг излучателя. Однако, как только частота электромагнитных волн переходит некоторую границу в сторону увеличения, появляется направленность излучения.
То же самое происходит и со звуком. Правда, такие свойства звука были открыты совсем недавно, в связи с получением ультразвука. Оказалось, что ультразвуковые волны имеют острую направленность и могут рассматриваться как частицы, локализованные в пространстве. Вот вам и «беспомощность волновой теории»! Оказывается, что каждый раз, когда исследователи сами беспомощны что-либо объяснить, они обвиняют в этом классическую механику.
Как показал Фейнман [7], законы колебаний зависят от частоты, так как от нее зависит характер процессов, протекающих в среде. Однако сам он удовлетворился лишь выводом уравнения колебаний, когда давление и температура в упругой волне меняются адиабатически. Ни один из исследователей, в том числе и Фейнман, не рассмотрели высокие частоты колебаний относительно длины свободного пробега частиц, когда процессы, происходящие при этом, приводят к поглощению тепла. В этом случае совершенно очевидно, что колебание не может распространяться сферической волной из-за распределения направлений движения отдельных частиц. Оно может быть только остро направленным, поскольку частота колебаний меньше «частоты» свободного пробега частиц.
Из аналогии со свойствами ультразвука следует вывод о том, что локальность совсем не противоречит волновой теории. Мало того, не окажется ли, что воздух ведет себя при этом как металл, и ультразвук обладает поперечными волнами?
Кроме локальности, фотоны, в отличие от радиоволн, обладают еще одним важным свойством, связанным с их происхождением: строго дозированной энергией. Это свойство фотонов связанное со строением атомов, не должно распространяться на весь спектр электромагнитных волн. И тут, тем более, постоянная Планка как характеристика энергии фотонов не должна рассматриваться в более широком смысле, как это делается на каждом шагу в физике в последнее время. К дискретности времени, пространства и массы постоянная Планка не имеет никакого отношения.
В связи со строгой дозированностью энергии фотонов возникла новая наука – квантовая механика, в которой с самого начала и до сих пор осталось несколько нерешенных вопросов. Первый: почему электроны атома, двигаясь по круговой или эллиптической орбите, не излучают фотонов, хотя испытывают при этом центростремительное ускорение? Второй: каков механизм испускания и поглощения фотонов?
Первый вопрос связан с заблуждением, которое повторяется во всех учебниках и научных трудах по квантовой механике. Так, например, у Семенченко в «Избранных главах теоретической физики» [8] читаем: «Электроны не могут двигаться вокруг ядра продолжительное время, так как по законам классической электродинамики всякий ускоренно движущийся электрон излучает электромагнитную энергию. Вследствие этого кинетическая энергия электрона уменьшается, и в конце концов он должен упасть на ядро». А Кайгородский даже подсчитал в «Физике для всех» [9] время падения электрона на ядро – сотые доли секунды!
Прошу посмотреть читателя на уравнение классической электродинамики Вебера, состоящее из трех слагаемых. Первое слагаемое – закон Кулона, второе – изменение силы взаимодействия в результате запаздывания потенциала, третье – это то, что относится к нашей теме излучения. Здесь мы видим, что в формулу Вебера входит скалярная величина расстояния между взаимодействующими частицами. Это означает, что при неизменном расстоянии между ядром и электроном и первая и вторая производные равны нулю. Следовательно, в этом случае должны отсутствовать запаздывание потенциала и излучение. А значит, не всякий ускоренно движущийся электрон излучает энергию. Движущийся по круговой орбите электрон не должен излучать! Поражает, как долго осталась незамеченной столь существенная ошибка!
Решение второго вопроса было подсказано Гюйгенсом. Он предположил: «Свет возникает благодаря толчкам, которые движущиеся частицы тел наносят частицам эфира». До появления соотношения де Бройля для длин волн эта фраза Гюйгенса как бы «висела в воздухе». Соотношение де Бройля должно было стать фундаментом для исследования причин появления как самого соотношения, а как следствия волн де Бройля – появления фотонов. Однако вывод об индетерменированности квантовой механики, сделанный Борном, Гейзенбергом и Бором, а также отказ от эфира, сделанный Эйнштейном, увел физиков в сторону от этой проблемы.
Видимо, следует предположить, что волны де Бройля – реальный процесс «толчкового» движения частиц, причиной которого является неравномерность запаздывания потенциала, а фотон является отрезком локальных (остронаправленных) волн эфира, имеющих в начале и в конце немного разную частоту колебания (ширину спектральной линии), что связано с замедлением скорости электрона при перескоке его с одной устойчивой орбиты на другую.
Толчковое движение частиц как следствие неравномерности запаздывания потенциала может явиться решением еще одного из вопросов квантовой механики – существования устойчивых дискретных орбит электрона. Устойчивые орбиты являются, видимо, результатом резонанса циклических и толчковых колебаний.
Таким образом, несмотря на множественные заклинания ортодоксальных релятивистов о том, что возвращения к классической физике, к эфиру, к механическим взглядам, к причинности и к волновым представлениям света нет и быть не может, мы должны это сделать, иначе «придется отказаться от всякой надежды когда-либо и что-нибудь понять в физике» Список литературы
А.И. Вейник. Термодинамика. Высшая школа, Минск, 1968, стр. 434.
Х. Гюйгенс. Трактат о свете. Лейден, 1703. Пер. с лат. в сб. под ред. Г.М.Голина и С.Р. Филоновича «Классики Физической науки», Высшая школа, 1989, стр. 131-140.
Дж. К.Максвелл. Трактат об электричестве и магнетизме, т. 1, 2, Оксфорд, 1873. Пер. с англ. Наука, М., 1989.
И. Ньютон. Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света. Лондон, 1706. Пер. с лат. под ред. Г.С.Ландсберга, Гостехиздат, М., 1981.
С.И. Вавилов. Глаз и солнце. Наука, М., 1976.
Г. Герц. О весьма быстрых электрических колебаниях. Ann. der Ph., b. 31, s. 421...448. Пер. с нем. в сб. под ред. Г.М.Голина и С.Р.Филоновича «Классики Физической науки», Высшая школа, 1989.
Г. Герц. Об электродинамических волнах в воздухе и их отражении. Ann. der Ph., b. 34, s. 609...623. Пер. с нем. в сб. под ред. Г.М.Голина и С.Р.Филоновича «Классики Физической науки», Высшая школа, 1989.
Р. Фейнман, Р.Лейтон, М.Сэндс. Фейнмановские лекции по физике. Пер. с англ., т. 3, 4, Мир, М., 1976, стр. 391...398.
В.К. Семенченко. Избранные главы теоретической физики. Просвещение, М., 1966, стр. 131.
А.И. Китайгородский. Физика для всех, т. 3 (Электроны), Наука, М., 1979.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.