Реферат по предмету "Производство"


Проект модернизации цеха производства мармелада с разработкой фасовочного оборудования предприятия

--PAGE_BREAK--Подготовка пищевых кислот Пищевые кристаллические кислоты (лимонную) растворяют в воде при нагревании, получая раствор 50%-ной концентрации. Для приготовления такого раствора на одну весовую часть кислоты берут одну весовую часть воды. Приготовленный раствор лимонной кислоты проверяют по рефрактометру. Показание прибора – 40 % соответствует 50%-ной концентрации лимонной кислоты в растворе.
Приготовленный раствор лимонной кислоты процеживают через сита с размером ячеек не более 0,5 мм.
Например: Расчет на 1 стол –22 кг
Вес тары фиксируем на весах, добавляем 0,144 кг кристаллической лимонной кислоты и доводим вес до 0,230 кг, добавляя воду (Т = 50-60 0С).
Подготовка цитрата натрия Цитрат натрия поступает в мешках вместимостью 25 кг. Представляет собой мелкий кристалл белого цвета. Перед использованием пересыпают из мешков в специальную тару.
Подготовка красителей
Перед использованием красители растворяют в теплой воде в соотношении 5 г на 100 мл.
На предприятии используют следующие виды красителей: тартразин, солнечный закат, понсо, зеленое яблоко.
Подготовка эссенций
Эссенции поступают на производство в емкостях, изготовителями которых являются «Союзопторг» или «Милорада».
На предприятии используются следующие виды эссенций: «Лимон», «Апельсин», «Грейпфрут», «Киви».
2.2 Технологический процесс по производству желейного резного мармелада «дольки»
2.2.1 Приготовление агаро-сахаро-паточного сиропа
Для приготовления агаро-сахаро-паточного сиропа используют варочный котел периодического действия вместимостью 150-300 л, куда загружают воду и предварительно подготовленный (набухший и промытый) агар.
Агар полностью растворяют при нагревании, затем загружают сахар-песок и после его растворения – патоку с содержание сухих веществ 30-40 %. Патока является антикристаллизатором. Агар используют Германского производства 700, 800, 900. Сироп варят при давлении 4 атмосфера. Готовый сироп прозрачный золотистого цвета.
Сироп сливают, фильтруют через марлю или сито с диаметром отверстий не более 1 мм, в приемную емкость.
Содержание сухих веществ в агаро-сахаро-паточном сиропе 62 ± 4 %.
2.2.2 Приготовление мармеладных масс для батонов и корочки
Мармеладную массу для батонов готовят в темперирующей машине путем охлаждения агро-сахаро-паточного сиропа до температуры 57,5 ± 2,5 0С и последующего смешивания его с раствором кислоты, красителем и ароматизатором.
В темперирующую машину с желейной массой для батонов добавляют возвратные отходы, которые предварительно нейтрализуют натрием фосфорнокислым двузамещенным (Na2HPO4 · 12 H2O).
Для нейтрализации берут 3 % товарной соли к массе возвратных отходов. В открытый варочный котел загружают воду и натрий фосфорнокислый двузамещенный в соотношении 1:4. Смесь нагревают до кипения и загружают предварительно измельченные возвратные отходы. Массу уваривают до содержания сухих веществ 77,5 ± 0,5 % и фильтруют через сито с диаметром отверстий не более 1,5 мм. Подготовленные таким образом возвратные отходы добавляют в темперирующую машину в количестве не более 25 5 к массе для батонов.
Мармеладную массу для желейного слоя корочки готовят в другой темперирующей машине, путем охлаждения агаро-сахаро-паточного сиропа до температуры 67,5 ± 2,5 0С и смешивания его с ароматизатором и красителем.
2.2.3 Приготовление мармеладной массы для взбивного слоя корочки
Мармеладную массу для взбивного слоя корочки готовят в сбивальной машине периодического действия, например, марки ВМ-35 путем взбивания уваренного и охлажденного до температуры 67,5 ± 2,5 0С агаро-сахаро-паточного сиропа с пенообразователем. В качестве пенообразователя используется, как правило, яичный белок. Взбивание осуществляют в течение 5-10 минут так, чтобы масса в результате насыщения воздухом побелела.
Содержание сухих веществ в готовой массе для взбивного слоя корочки 73 ± 0,5 %, температура массы 47,5 ± 2,5 0С.
2.2.4 Размазка и студнеобразование желейной  и взбивной массы для корочки
Корочку для батонов готовят из желейной и взбивной мармеладных масс размазыванием их поочередно по днищам лотков, изготовленных из нержавеющей стали или фанеры. Дно лотка предварительно смазывают инвертным сиропом с содержанием сухих веществ 68 ± 1 %.
Сначала размазывают ровным слоем толщиной 1,25 ± 0,25 мм массу для желейного слоя корочки. Лотки с массой выстаивают в условиях цеха в течение 20-25 минут. За это время осуществляется процесс студнеобразования массы. Затем по поверхности желейного слоя корочки равномерно размазывают взбивную массу. Толщина слоя – 1,25 0,25 мм. Лотки с массой выстаивают для ее студнеобразования в течение 45-60 минут.
2.2.5 Формование и выстойка батонов
Для формования батонов используют трубчатые аппараты либо желобообразные формы, смонтированные на столах и оборудованные водяным охлаждением. Продолжительность процесса студнеобразования желейной массы в желобообразных формах 30-40 минут зависит от температуры охлаждающей воды и воздуха помещения. По окончании процесса студнеобразования батоны вручную выбирают из форм, укладывают плоской стороной на деревянные лотки и направляют на выстойку в сушильную камеру № 1,  продолжительность которой составляет от 24 до 48 часов. В процессе выстойки на поверхности батона образуется кристаллическая корочка, обеспечивающая впоследствии хорошее склеивание батона с корочкой.
2.2.6 Завертка батонов в корочку и выстойка их
Завертку батонов в корочку осуществляют ручным способом. Батоны накладывают выпуклой стороной на предварительно нарезанные ленты двухслойной корочки. Ширина ленты должна соответствовать длине батона  37 ± 1 мм. Свободный край корочки приподнимают и перевертывают вместе с батоном, прижимая корочку к батону. Затем корочку обрезают ножом вровень со вторым краем батона. Наружную поверхность батона обсыпают сахаром-песком и укладывают батоны на лотки, которые устанавливают на стеллажи. Батоны выдерживают в помещении цеха в течение 8-12 часов и затем направляют на резку.

2.2.7 Резка батонов и обсыпка долек сахаром-песком
Резку батонов осуществляют механизированным способом на резальной машине, работающей в комплекте с формующим агрегатом.
Машина имеет обрезиненный барабан с направляющими роликами. В результате пульсирующего вращения последних обеспечивается подача батонов на шаг, равный ширине отрезаемой дольки (3-5 мм).
Процесс резки осуществляется на поверхности обрезиненного барабана ножом с возвратно-поступательным движением.
Предварительно нарезанные и обсыпанные сахаром-песком дольки вибрирующим устройством раскладываются на лотки, затем лотки складываются стеллажи и направляются в сушильную камеру № 2.
Так же резка осуществляется и вручную. При ручной резке батоны укладывают на доски рядышком и разрезают одновременно 5-6 батонов.
Нарезанные дольки обсыпают сахаром-песком и раскладывают на решета. Последние устанавливают на стеллажные тележки и направляют в сушильную камеру № 2.
2.2.8 Сушка и охлаждение долек
Сушка долек осуществляют в камерных сушилках при температуре  40 ± 5 0С в течение 8-10 часов.
Высушенные дольки охлаждают в помещении цеха в течение 2-4 часов и направляют на фасовку.
2.2.9 Фасовка, маркировка, транспортирование и хранение
Фасовку производят на аппарате РТ-УМ-24. Маркировку наносят на правый верхний угол коробки вручную. Готовый мармелад в коробках на специальных тележках перевозят на склад готовой продукции. Мармелад должен хранится не более 3-х месяцев.

2.3 Методы и средства контроля технологического  процесса и полуфабрикатов
Методы и средства контроля технологического процесса и полуфабрикатов представлены в таблице 2.1.
Таблица 2.1 – Методы и средства контроля технологического процесса и полуфабрикатов
Объект  контроля
Место  контроля
Периодичность контроля
Контролируемый параметр
Предельное значение  параметра
Метод и средство контроля
1
2
3
4
5
6
Агаро-сахаро-паточный сироп
Диссутор, варочный котел
Каждая загрузка
Содержание сухих веществ
(62 ± 4) %
По ГОСТ 5900-73
Уваренный агаро-сахаро-паточный сироп
Приемная емкость, варочный котел
10-12 раз в смену
Содержание сухих веществ
(75 ± 1) %
По ГОСТ 5900-73
Пар
На входе в варочный аппарат
Постоянно
Давление
Не более  0,4 Па
Манометр со шкалой (0-0,6) МПа
или
(0-6) кгс/см2
Мармеладная масса для взбивного слоя корочки
Сбивальная машина
Каждая загрузка
Содержание сухих веществ
Температура
(73 ± 0,5) %
(47,5 ± 2,5) 0С
По ГОСТ 5900-73
Термометр по ГОСТ 27544-87
Шкала  (0-100) 0С
Цена деления 0,5 0С
Мармеладная масса для желейного слоя корочки
Темперирующая машина
Каждая загрузка
Содержание сухих веществ
Температура
(75 ± 1) %
(67,5 ± 2,5) 0С
По ГОСТ 5900-73
Термометр по ГОСТ 27544-87
Шкала  (0-100) 0С
Цена деления 0,5 0С
Мармеладная масса для батонов
Темперирующая машина
Каждая загрузка
Содержание сухих веществ
Температура
(77,5 ± 0,5) %
(57,5 ± 2,5) 0С
По ГОСТ 5900-73
Термометр по ГОСТ 27544-87
Шкала  (0-100) 0С
Цена деления 0,5 0С
Воздух
Сушильная камера
Постоянно
Температура
(42,5 ± 2,5) 0С
Автоматический прибор контроля температуры, шкала (0-50) 0С
Класс точности 1,5
2.4 Продуктовый расчет
Продуктовый расчет рассмотрим на примере мармелада «дольки». В смену выработка мармелада «дольки» составляет 4800 кг. Требуется рассчитать сырье на варку батонов и варку корочки.
Мармеладный цех работает в две смены по 12 часов каждая. Для каждой смены дается определенный план варки мармелада для батонов и для корочки.
Примерный план одной смены для варки батонов состоит из 12 варок, каждая из которых по 126 кг, т.е. отсюда следует, что план на смену составляет 1512 кг.
Примерный план одной смены для варки корочки состоит из 10 варок, каждая из которых по 50 кг, т.е. отсюда следует, что план на смену составляет 500 кг.
Рецептура мармелада «дольки» согласно ТУ 51934-2002 приведена в таблице 2.2.
Таблица 2.2 – Рецептура мармелада «дольки» (ТУ 51934-2002)
Сырье
Рецептура, кг
Количество  сырья в сутки, кг
Батоны
Сахар-песок
62,8
753,6
Агар
1,85
22,2
Цитрат
0,31
3,72
Вода
41
492
Лимонная кислота
0,21
2,52
Патока
19,8
237,6
Возвратные отходы
22,5
270
Корочка
Сахар-песок
24,4
244
Агар
0,51
5,1
Вода
16,5
165
Патока
16,4
154
Белок
0,046
0,46
При варке батонов добавляются возвратные отходы, состоящие из долек 18 кг и корочки 4,5 кг. Корочки кладут в меньшем количестве, так как в ней присутствует белок, который при варке может вскипеть.

3. КОНСТРУКТОРСКАЯ РАЗРАБОТКА
3.1 Анализ работы фасовочного автомата марки РТ-УМ-24
Автомат фасовочный в настоящее время имеется на каждом пищевом предприятии. При производстве мармеладных и других кондитерских изделий автомат имеет большое значение, т.к. бестарные продукты пользуются много меньшим спросом, нежели в таре, а так же легче транспортируется и реализовывается.
При работе фасовочного автомата сталкиваются со следующей основной проблемой: некачественная сварка и проварка поперечного и продольного шва; нет выбраковочного устройства, выбраковка осуществляется вручную.
3.2 Расчет ленточного транспортера
3.2.1 Определение исходных данных для расчета конвейера
Исходными данными для разработки ленточного транспортера являются: производительность- П, скорость ленты- υ, длина транспортера- L.
Производительность транспортера должна быть
Птр≥ Пф,                                                                                            (3.1)
где Птр — производительность транспортера, пак./мин;
Пф — производительность фасовочного станка, пак./мин.
Производительность фасующего станка Пф=22 пак./мин, примем Птр=22 пак./мин.
Определим длину транспортера. Расстояние от скатывающего устройства до транспортера коробок составляет 1750 мм. Примем длину транспортера с учетом щитков, которые исключают возможность падения пакета с ленты и с учетом, что другой конец транспортера будет находится над транспортером коробок, равным L=2150 мм.
Скорость ленты рассчитаем по формуле
υ=Птр* Lр,                                                                                         (3.2)
где Птр — производительность транспортера, пак./с;
 Lр — рабочая длина транспортера (расстояние от скатывающего устройства до транспортера коробок), м.
 υ=0,366 *1,75 =0,64 м/с.
3.2.2 Определение параметров ленты
Ширину ленты при транспортировании штучных грузов выбираем исходя из максимальных геометрических размеров пакета: для дозы 0,300 кг — 19*18,5. Ближайшее стандартное значение ширины ленты В = 300 мм. Лента должна иметь высокую прочность и гибкость в продольном и поперечном направлениях, малую гигроскопичность, хорошую сопротивляемость знакопеременным нагрузкам при многократных перегибах на барабанах и роликоопорах, высокую износостойкость на истирание об опорные устройства.

Прорезиненная лента имеет тяговый каркас А (рисунок 3.1) покрытый со всех сторон эластичным заполнителем Б.

Рисунок 3.1 – Ленты конвейера
Тяговый каркас воспринимает растягивающие усилия в ленте, а заполнитель предохраняет каркас от воздействия влаги и механических повреждений. По типу тягового каркаса различают резинотканевую и резинотросовую ленты.
Тканевые прокладки изготавливают из капрона, онида, нейлона, лавсана и других материалов, обладающих высокой прочностью. Лента с двухсторонней резиновой обкладкой с прочностью ткани по основе Кр=65 Н/мм имеет 3 тканевые прокладки. Массу 1 м ленты qл определяют по формуле
qл=(10…15)*В,                                                                                 (3.3)
где В-ширина ленты, м.
qл=10*0,3=3 кг.
В данном случае нужны нижние роликовые опоры. Выберем ролик со следующими параметрами: диаметр ролика Dр=83 мм, длина ролика l=450 мм, масса роликоопоры m=7,7 кг, масса вращающихся частей роликоопоры mр=6,0 кг.
3.2.3 Тяговый расчет ленточного транспортера
Трасса, по которой движется тяговый элемент конвейера, как правило, состоит из чередующихся прямолинейных участков и поворотных пунктов, на них возникают сопротивления движению тягового элемента. Кроме того, сопротивления могут возникнуть в местах загрузки и разгрузки, на очищающих устройствах и т. п.
Тяговый расчет ленточного конвейера сводится к определению натяжений ленты. Контуры трассы конвейера разбивают на ряд участков, на которых определяют сопротивление движению тягового элемента.
Сопротивление перемещению на прямолинейных участках
Wпр=((q+qл)+qрх)*g*Cр*L+Cл*q/л,                                                     (3.4)
где q- масса перемещаемого груза на 1 м ленты, кг;
 qл — масса 1 м ленты, кг;
 qрх — масса роликовой опоры на 1 м холостой ветви, кг;
 q/л — масса ленты на1 м стальной пластины и тензовесов, кг;
 Ср — коэффициент сопротивления для стационарных роликовых опор (для помещений с отоплением, с незначительным содержанием абразивной пыли Ср=0,022);
 Сл — коэффициент трения резины о сталь.
q=m/L;                                                                                              (3.5)
    продолжение
--PAGE_BREAK--qрх=mp/lp;                                                                                           (3.6)
q/л=qл*(3*l1+2*l2),                                                                             (3.7)
где lр — расстояние между роликоопорами, м;
 l1 — длина пластины, м;
 l2 — длина тензовесов, м.
q= 1/ 2,15= 0,465 кг;
qрх= 6/ 0,55= 10,91 кг;
q/л=3* (3*1+2*0,7)= 13,2 кг;
Wпр=((0,465+ 0,3)+ 10,91)*9,8 * 0,022* 2,15+ 9,8* 0,29* 13,2= 44,18 Н.

Сопротивление движению на поворотных устройствах возникают на блоках, барабанах, роликах. Сопротивление на поворотных устройствах складываются из сопротивления вызванного жесткостью тягового элемента
Wпу=Wп+ Wж,                                                                                   (3.8)
где Wп — сопротивление в подшипниках, Н;
 Wж — сопротивление при изгибе тягового элемента на поворотном устройстве, Н.
Wп=2* Sнб* f* d/ Dб* sin (α / 2),                                                        (3.9)
где Sнб — текущее значение натяжения тягового элемента, Н;
 f- коэффициент трения в подшипниках вала;
 d- диаметр вала, м;
 Dб — диаметр поворотного устройства, м;
 α- угол обхвата, ˚С.
Сопротивление при изгибе тягового элемента на поворотном устройстве зависит от жесткости тягового элемента
Wж= θ* Sнб,                                                                                       (3.10)
где θ- коэффициент жесткости тягового элемента, θ= (0,01…0,02).
Таким образом, суммарное сопротивление на поворотном устройстве будет равно
Wпу= Sнб*( 2* f*d/ Dб* sin (α /2)+θ);                                                 (3.11)
Wпу= Sнб*(2*0,1* 0,018/ 0,2* sin (180˚/2)+ 0,01)= Sнб*0,028.
Натяжение после поворота
Sсб= Sнб+ Wпу= ξ* Sнб,                                                             (3.12)
где ξ- коэффициент сопротивления поворотного устройства, при угле обхвата α= 180˚ ξ= 1,05…1,07.
Sсб= 1,05*Sнб.
Тяговое усилие находят методом последовательного определения натяжения тягового элемента в характерных точках трассы. Контур тягового элемента разбивают точками на участки с одинаковым видом сопротивления, причем разбивку и нумерацию участков начинают с точки сбегания тягового элемента с приводного барабана.
При расчете натяжений пользуются следующим правилом: натяжение Si+1 в последующей точке трассы равно сумме натяжения Si в последующей точке и силы сопротивления Wi — (i+1) на участке, расположенном между этими точками
Si+1= Si+ Wi — (i+1).                                                                                (3.13)
Аналогично определяются натяжения при расчете против движения тягового элемента
Si — 1= Si – Wi — (i-1).                                                                               (3.14)
Результаты сводятся в таблицу 3.1.
В результате тягового расчета конвейера получают уравнение, связывающее натяжение в точке набегания на приводной барабан с натяжением в точке сбегания тягового элемента с приводного барабана
Sнб=A1*Sсб+B1,                                                                                  (3.15)
где A1 и B1 — численные коэффициенты, полученные в результате расчета.
Sнб= 0,7161* Sсб+ 246,736.
Таблица 3.1 – Расчет натяжений по трассе конвейера
Отсутствие проскальзывания ленты по барабану определяется из выражения
Sнб
где α- угол обхвата приводного барабана лентой, град;
 ƒ- коэффициент трения о барабан.
Для определения Sнб и Sсб решим систему уравнений
Sнб= 0,7161*Sсб+ 246,736;
Sнб= 2,56* Sсб.
Отсюда Sнб= 342,559 Н; Sсб= 133,812 Н.
Уточним число прокладок ленты
Z=Smax* nл/ (B* Kр),                                                                          (3.17)
где Smax — максимальное растягивающее усилие в ленте, Н;
 nл — коэффициент запаса прочности на растяжение, nл= (9…12);
 B- ширина лента, мм;
 Кр — прочность ткани на основе, Н/мм.
 Z= 491,82* 9/ (300* 65)= 0,22.
Массу 1 м прорезиненной ленты можно рассчитать по формуле
qл=1,1*В*(а*Z+δ1+δ2), (                                                                             (3.18)
где а- толщина одного слоя тканевой прокладки, а=1,25 мм;
 δ1 и δ2 — толщина обкладки на рабочей и нерабочей стороне ленты, δ1=3…6 мм, δ2=1,5…2 мм.
qл= 1,1* 0,3* (1,25*1+ 3+ 1,5)= 1,9 кг/м.
3.2.4 Расчет натяжного устройства
Для винтового натяжного устройства определяют размеры винта из условия прочности на растяжение или сжатие и усилие, необходимое для вращения винта. В общем случае величина усилия для перемещения натяжного барабана с лентой равна сумме натяжений набегающей S/нб и S/сб сбегающей ветвей ленты у натяжного барабана
Pну= S/нб +S/сб + Wпу.                                                                         (3.19)
Pну= 491,82+ 197,6+ 0,04* 491,82= 709,1 Н.
Проверим на прочность натяжной болт, который при работе испытывает расчетную нагрузку Рну= 709,1 Н. Болт имеет метрическую резьбу 1М16х1,5 с наружным диаметром d=16 мм и шагом S= 1,5 мм. Коэффициент трения в резьбе f= 0,18. Внутренний диаметр резьбы d1= 14,355 мм, средний диаметр резьбы dср= 15,101 мм, толщина гайки h= 30 мм.
Необходимо определить запас прочности для опасного сечения болта, если материал болта – сталь 40 с пределом текучести σт= 320 Н/ мм2.
Момент в резьбе
Мр= Рну* (dср* tg(λ+ρ))/2,                                                                  (3.20)
где λ- угол подъема винтовой линии, град.;
 ρ- угол трения, град.
λ= arctg( S/(π*dcp)= arctg(1,5/(3,14*15,101 )= 1,812                       (3.21)
ρ= arctg(f/ cos(α/2)),                                                                         (3.22)
где α- угол профиля резьбы, α= 60˚.
ρ= arctg(0,18/ cos 30˚= 11,742˚.
Мр= 709,1* (15,101*tg(1,812˚+11,742˚))/(2*1000)= 1,29 Н*м.

Опасным сечением является поперечное сечение в нарезной части болта выше гайки. Для опасного сечения нормальное напряжение смятия
σсм= Рну/(π*d12/4)= 709,1/ (3,14* 14,3552/4)= 4,38 Н/мм2.               (3.23)
Для опасного сечения напряжение при кручении
τк= Мр/ (π* d13/16)= 1,29*1000/ (3,14* 14,3553/16)= 2,22 Н/мм2.   (3.24)
Закон изменения эквивалентного напряжения
σэкв= (σсм2+ τк2 )½ = (4,382+ 2,222)½ = 4,91 Н/мм2.                                     (3.25)
Коэффициент запаса по отношению к пределу текучести
nт= σт/ σэкв= 320/4,91=65,17.                                                            (3.26)
Такой коэффициент вполне достаточен.
Выполним расчет по определению напряжения среза и смятия для резьбы натяжного болта и гайки. При условии равномерного распределения усилия по виткам резьбы напряжение смятия
σсм= Рну/( π*h*(d2‑ d12)/ (4*S));                                                          (3.27)
σсм= 709,1/( 3,14*30*(162 — 14,3552)/(4*1,5))= 0,91 Н/мм2.
 Напряжение среза резьбы болта (при коэффициенте полноты резьбы Кб≈0,75)
τб= Рну/(π*d1*Кб*h)= 709,1/(3,14*14,355*0,75*30)= 0,77 Н/мм2.   (3.28)

Напряжение среза резьбы гайки (при коэффициенте полноты резьбы Кг≈0,88)
τг= Рну/(π*d1*Кг*h)= 709,1/(3,14*14,355*0,88*30)= 0,59 Н/мм2. (3.29)
Полученные значения напряжения смятия и среза резьбы много меньше предела текучести металла (σт=320 Н/мм2).
3.2.5 Выбор электродвигателя для ленточного транспортера
Мощность определяют по формуле
N=P* υ/ η,                                                                                         (3.30)
где P- тяговое усилие, Н;
υ- скорость ленты, м/с;
η- КПД приводного устройства.
Тяговое усилие на приводном барабане
P= Sнб — Si = 491,82- 197,6=294,22 Н.                                                        (3.31)
N= 294,22* 0,64/ (0,94* 0.98)=204,41 Вт.
Выбираем мотор-редуктор: МЦ2С-63-112, 4А80А4P3 мощность N=1,1 кВт, частота вращения n=1000 об./мин, КПД двигателя η= 0,85.
3.3 Кинематический расчет сбрасывателя
Расчет сбрасывателя сводится к нахождению силы сбрасывания и сравнению ее с силой тяги двигателя
Fсбр≤ Ft,                                                                                            (3.32)
где Fсбр — сила сбрасывания пакета, Н;
Ft — окружная сила лопасти, Н.
Сбрасывающая сила будет сложена из сопротивления пакета и силы необходимой для придания ускорения пакета
Fсбр= m*(a+f*g)/cosβ,                                                                        (3.33)
где m- масса пакета, кг;
 а- ускорение лопасти, м/с2;
 f- коэффициент трения пакета о ленту конвейера, f =0,0125;
 β- текущий угол между силой сбрасывания и лентой конвейера,
Масса пакета c мармеладом равна 0,300 кг (m= 0,300 кг).
Ускорение лопасти определим по формуле
а=ω2 *Rл,                                                                                           (3.34)
где ω- угловая скорость вала барабана с лопастями, рад/с;
 Rл — радус лопастей, м.
 Определим время прохождения пакета по длине лопасти сбрасывателя
 t = В /(2* υк),                                                                                   (3.35)
где υк-скорость конвейера, м/с;
 В- длина лопасти, м.
t =0,3/(2*0,64)=0,23 с.
Требуемую скорость лопасти определим по следующей формуле
υлоп= π*R/(2*t),                                                                                 (3.36)
где R- радиус лопасти, м.
υлоп=3,14*0,26/(2*0,23)=1,77 м/с.
Угловая скорость сбрасывателя определяется следующим образом
ω= υлоп/R=1,77/0,26=6,8 рад/с.
а= 6,82*0,26=12 м2/с.
Текущий угол между силой сбрасывания и лентой конвейера β примем максимальный. Максимальный угол β будет в тот момент, когда лопасть соприкоснется с пакетом, при этом β=0…10º. Силу сбрасывания определим по формуле (3.33)
Fсбр=1,044*(12+0,0125*9,81)/ cos(10º)=12,85 Н.
 Момент шагового двигателя определим из условия
Mдв ≥ Кэ*Fсбр*Rл,                                                                              (3.37)
где Мдв — момент двигателя, Н*м;
 Кэ — коэффициент эксплуатации.
Кэ= Кд*Ксм*Креж,                                                                               (3.38)
где Кд — коэффициент учитывающий динамические нагрузки, Кд=1,25;
 Ксм — коэффициент зависящий от способа смазки, влажное производство Ксм=1,025;
 Креж — коэффициент учитывающий режим работы шагового двигателя, Креж=1,15.
Кэ=1,25*1,025*1,15=1,473;
Mдв≥1,473*12,85*0,26=4,92 Н*м.
 Руководствуясь полученными данными: моментом двигателя, угловой скоростью лопастей выберем шаговый двигатель.
Характеристика шагового двигателя ДШ-12А:
-число полюсов m=2/4;
— ток постоянный, питающее напряжение Uн =27 В
-шаг 22,5°;
-вращающий момент М= 6 Н*м;
-частота приемистости f =120 шаг./с;
-мощность на валу Р=400 Вт.
 Пересчитаем угловую скорость сбрасывателя
ω= f * t/360˚,                                                                                     (3.39)
где f- частота приемистости шагового двигателя, шаг./с;
 t- шаг двигателя, град.
 ω=120*22,5˚/360˚=7,5 рад./с.
3.4 Расчет валов
Определим диаметр участка вала барабана по формуле:
dK=1,7(МК/[t]К)⅓,                                                                              (3.40)
где МК — крутящий момент, Н*мм2;
 [t]К — допускаемое напряжение на кручение.
Для стали 40 [t]К=25 Н/ мм2.
dK=1,7(4,92*103/25)⅓=9,9 мм;
Округлим полученный результат по ГОСТ 6636-69 до dK=25 мм.
Выберем подшипники:
— радиально-упорные двухрядные шариковые подшипники по ГОСТ 8545-83 средней серии 1305.
Характеристика подшипников 1305: внутренний диаметр подшипника d=25 мм, наружный диаметр D=62, ширина подшипника В=17 мм, грузоподъемность С=32,6 кН, С0= 18,3 кН.
Произведем расчет вала на прочность при изгибе и кручении.
Определим реакции опор в горизонтальной плоскости для вала барабана.
åМА=0: -FB*78,5-Ft*168,5+RВY*337=0;                                          (3.41)
åМВ=0: -RАY*337+Ft*168,5+FB*415,5=0;                                                (3.42)
где Ft — окружное усилие при сбрасывании пакета, Н;
 FB — сила действующая на вал со стороны двигателя, Н.
 Ft=Мк/Rл=4,92/0,26=18,92 Н;                                                                   (3.43)
 FB=2* Мк/ dK=2*4,92/0,025=393,6 Н.                                            (3.44)
 RВY=(FB*78,5+Ft*168,5)/337=(393,6*78,5+18,92*168,5)/337=101,14 Н;
 RАY=(FB*415,5+Ft*168,5)/337=(393,6*415,5+18,92*168,5)/337=494,74 Н
Определим реакции опор в вертикальной плоскости:
åМА=0: -Fr*168,5+RВZ*337=0;                                                       (3.45)

где Fr- радиальное усилие при сбрасывании пакета, Н.
Fr =(1,05…1,15)* Ft=1,15*18,92=21,76 Н.                                               (3.46)
RВZ=Fr*168,5/337=21,76*168,5/337=10,88 Н.
åМВ=0: Fr*168,5-RAZ*337=0;                                                                   (3.47)
RАZ=Fr*168,5/337=21,76*168,5/337=10,88 Н.
Определим изгибающие моменты:
МлС=RА*168,5;                                                                                 (3.48)
МпС=RВ*168,5,                                                                                 (3.49)
где МлС — изгибающий момент в точке С с левой стороны, Н*мм;
 МпС — изгибающий момент в точке С с правой стороны, Н*мм;
 RAи RB — суммарные реакции в точках А и В соответственно, Н
R=(R2Z+R2Y)½;                                                                                   (3.50)
RA=(10,882+494,742)½ = 494,86 H;
RB=(10,882+101,142)½ = 101,72 H.
 МлС=494,86*168,5= 83383,9 Н*мм;
 МпС=101,72*168,5= 17139,8 Н*мм.
Проверим вал на прочность при условии:
sэкв=(М2å+М2кр)½/(pd3/32) £ [s],                                                       (3.51)
где sэкв — эквивалентное напряжение на вал в опасном сечении, МПа;
 Мå — суммарный изгибающий момент, Н*мм;
 Мкр — крутящий момент, Н*мм;
 d — диаметр вала в опасном сечении, мм;
 [s] — предельно допустимое напряжение, МПа.
 [s]=sт/n, (3.52)
где sт — предел текучести материала вала, для стали 40 sт=340 МПа;
 n — коэффициент запаса, n=1.5...3.
[σ]=340/3=113,3 Мпа;
Мå= ((МлС)2+ (МпС)2)½ =(83383,92+17139,82)½= 85127,25 Н*мм;   (3.53)
sэкв=(85127,252+49202)½/(3.14*253/32)= 55,6 Мпа;
55,6
Условие выполняется.
3.5 Расчет подшипников
Радиально — упорный двухрядный шариковый подшипник по ГОСТ 8545-83 средней серии 1305.
Характеристика подшипников 1305: внутренний диаметр подшипника d=25 мм, наружный диаметр D=62, ширина подшипника В=17 мм, грузоподъемность С=32,6 кН, С0= 18,3 кН.
Эквивалентная нагрузка
    продолжение
--PAGE_BREAK--Рэ= R*V*Kσ*KT*X,;                                                                        (3.54)
где R- радиальная нагрузка, Н;
 V-коэффициент вращения, при вращении внутреннего кольца V=1;
 Kσ — коэффициент безопасности, Kσ=1,3…1,5;
 KT — температурный коэффициент, KT=1;
 X- коэффициент радиальной нагрузки, X=1.
Для подшипников в точках А и В

 РэА = 494,86*1*1,5*1*1=742,3 Н;
РэВ =101,72*1*1,5*1*1=152,6 Н.
Расчетная долговечность в млн.об.
LА= (C/ РэА)3 =(32,6*103/742,3)3 = 84706 млн.об.;                          (3.55)
LВ= (C/ РэВ)3 = (32,6*103/152,6)3 = 9749653 млн.об.                       (3.56)
Расчетная долговечность в ч работы
Lh= L*106/(60*n)>10000 ч,                                                              (3.57)
где n- частота вращения вала, об./мин.
 LhА=84706*106/(60*71,65)=19703652 ч.
LhВ=9749653*106/(60*71,65)=2267888579 ч.
Условие выполняется.
3.6 Выбор соединительных муфт
Муфты выбирают по диаметру вала и по величине расчетного момента. Определим величину расчетного момента по формуле:
Мр=Мк £ [М],                                                                                   (3.58)
где Мк — крутящий момент, Н*м;
[М] — табличное значение передаваемого муфтой момента, Н*м.
Мр= 4,92 Н*м.
Выбираем муфту. Муфта упругая втулочно-пальцевая 6,3-25-I.2-УЗ
ГОСТ 21424-75, изготовлена из чугуна СЧ20.[М]=6,3Н*м, условие выполняется.
3.7 Расчет шпонок
По диаметру вала выберем шпонку.
Для барабана выберем призматическую шпонку по СТ СЭВ 189-75.
Размеры шпонки: в=10 мм; h=8 мм; t1=5,0 мм; t2=3,3 мм.
Расчетную длину шпонки найдем по формуле
lр ³ 2*М/(d(h-t1)*[s]см),                                                                     (3.59)
где М — крутящий момент на валу, Н*мм;
 d — диаметр вала, мм;
 h — высота шпонки, мм;
 t1 — глубина паза вала, мм;
 [s]см — допускаемое напряжение на смятие на шпонке, МПа.
[s]см=sт/ [S],                                                                                     (3.60)
где sт — предел текучести материала шпонки, sт=450 МПа;
 [S] — коэффициент запаса прочности, [S]=1.9… 2.3 .[s]см=450/2.3=195.6 Мпа;
lp=2*4,92*103/(30*(8-5)*195,6)= 0,56 мм.
Длина шпонки определим по формуле
l=lр+в,                                                                                               (3.61)

где в — ширина шпонки, мм.
l=0,56+10=10,56 мм.
Примем длину шпонки согласно стандартного ряда l=22 мм.
Для муфты выберем шпонку призматическую с размерами: в=8 мм; h=7 мм; t1=4,0 мм; t2=3,3 мм.
Определим рабочую длину шпонки по формуле (3.60)
lр=2*4,92*103/(25*(7-4)*195,6)=0,67 мм.
Определим длину шпонки по формуле (3.61):
l=0,67+10=10,67 мм.
Примем длину шпонки согласно стандартного ряда l=22 мм.

4. БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ НА ПРОИЗВОДСТВЕ
4.1 Организация работы по созданию здоровых  и безопасных условий труда
Ответственным лицом за организацию работы и состояние охраны труда на предприятии ОАО «Кезский пищекомбинат «Север» согласно приказу является работодатель. В цехах – это руководители подразделений (мастера и бригадиры). Непосредственное руководство организации работы в области обеспечения безопасных условий и охраны труда возлагается на главного инженера.
При приеме на работу с каждым работником работодатель проводит вводный инструктаж по охране труда с отметкой о прохождении инструктажа в журнале учета и регистрации. На рабочем месте проводится первичный инструктаж, работника обучают безопасным методам и приемам выполнения работ и оказания первой помощи пострадавшим. Повторный инструктаж проходят все работники не реже одного раза в полугодие. Его проводят по программе первичного инструктажа в полном объеме индивидуально или с группой работников в пределах общего рабочего места. Внеплановый инструктаж проводят индивидуально или с группой работников одной профессии в объеме, определяемом в зависимости от причин и обстоятельств, вызвавших необходимость его проведения.
 Курсовое обучение проходят: операторы котельной, машинисты аммиачных холодильных установок, после чего получают удостоверение. Аттестация рабочих мест по условиям труда проводится раз в пять лет, а иногда и досрочно. К выполнению работ, к которым предъявляются дополнительные требования по безопасности труда, допускаются лица не моложе 18 лет, прошедшие медицинское освидетельствование, обучение на рабочем месте и проверку знаний по охране труда. Вскрытие, внутренний осмотр, очистка и ремонт сосудов, аппаратов, канализации и других резервуаров проводят при наличии письменного разрешения (наряда-допуска), которое выдает начальник цеха и утверждает главный инженер завода.
Для расследования несчастных случаев издается приказ, где определяются члены комиссии: председатель комиссии – председатель профкомитета, инженер по охране труда и главный механик. Расследование проводится в течение трех дней. Правильность оформления контролируется органами соцстраха и инспекцией по охране труда. Один экземпляр акта формы Н-1 выдается под роспись пострадавшему, один хранится в организации в течение 45 лет, а третий отправляется в соцстрах.
На рабочих местах для работников, обслуживающих технологическое оборудование, вывешены инструкции по охране труда, выполненные в соответствии с «Типовыми инструкциями по охране труда для рабочих пищекомбинатов», а также технологические инструкции по ведению процесса.
На предприятии соблюдают сроки проверки знаний по охране труда и противопожарным мероприятиям: для рабочих (работников) – один раз в год, для инженерно-технических работников (специалистов) – один раз в три года.
В начале каждого года между профсоюзной организацией и администрацией ОАО «Кезский пищекомбинат «Север» составляется соглашение по охране труда и созданию безопасных условий труда на производстве. В нем указываются мероприятия по охране труда, сроки исполнения, ответственные лица затраты на проведение этих мероприятий.
Большую часть работников предприятия составляют женщины, поэтому на предприятии соблюдается законодательство об охране труда женщин, а также молодежи.
Работающие на предприятии обеспечены средствами индивидуальной защиты (СИЗ) для предотвращения или уменьшения действия опасных и вредных производственных факторов.
Для защиты от воздействия опасных и вредных факторов производственной среды предусмотрены следующие СИЗ:
— специальная одежда (белые халаты, фартуки, специальные рубашки, колпаки, кепки, нарукавники);
— специальная обувь (тапочки и галоши);
— средства защиты рук (рукавицы, перчатки).
Стирку и ремонт спецодежды производится самим предприятием. Работники обязаны быть на производстве в спецодежде, спецобуви. Одежда должна быть застегнута на все пуговицы и завязана на все завязки, волосы убраны под колпак. Одежда должна быть всегда чистой и заменятся каждую смену. Работникам запрещается входить в цех без спецодежды. При посещении не производственных помещений и выходе из здания цеха спецодежду необходимо сменить. Для предотвращения попаданий посторонних предметов в продукты работникам запрещается носить в цехе различные украшения, часы, сумки и т.д. Всем работникам тщательно прописано мыть руки с мылом и дезинфицировать перед началом работы и после каждого перерыва в работе. Ногти на руках коротко стричь и не покрывать лаком.
Принимать пищу только в столовой и курить только в строго отведенных местах.
Лица, поступающие на работу, проходят предварительный медицинский осмотр. Работники, имеющие профессии, связанные с вредными и опасными условиями труда, проходят медосмотр раз в 2 года. Так как ОАО «Кезский пищекомбинат «Север» относится к предприятиям пищевой промышленности, то ежегодно все работники организации проходят медосмотр.
Ответственность за противопожарное состояние цехов, мастерских, складов и других объектов, а также за своевременное выполнение противопожарных мероприятий на них, возлагается персонально на начальника цеха, склада, мастерской и др. Ответственность этих лиц оформляется приказом директора предприятия. В целях работы по предупреждению пожаров, на предприятиях и базах создаются приказом директора пожрано – технические комиссии. Все цеха, склады, мастерские и другие помещения обеспечены первичными средствами пожаротушения.
4.2 Анализ условий труда и производственного травматизма
Осуществление основной задачи охраны труда – предупреждение травматизма и заболеваемости невозможно без глубокого и всестороннего анализа причин травматизма.
При анализе производственного травматизма и профессиональных заболеваний можно выявить причины вызывающие их.
Микроклимат в производственном помещении и на рабочем месте оказывает существенное влияние на самочувствие работающего. Общая приточно-вытяжная вентиляция исключает возможность поступления воздуха из помещений с большим загрязнением воздуха в помещение с меньшим загрязнением. Камеры, циклоны и воздухопроводы периодически очищаются от органической пыли, отходов и т.д. Очистка вентиляционных систем производится в установленные сроки с отметкой в специальном журнале. Хранение в помещении вентиляционных установок любых материалов, инструментов и т.п. категорически запрещается.
Технологические эргономические характеристики лабораторий и производственных помещений не превышают норм:
— освещенность, лк 300-330
— влажность, % 65
— температура, °С 20-21
— шум (вибрация), дб 40-50
В каждом подразделении (цехе) предусмотрены санитарно-бытовые помещения. Гардероб для верхней (уличной) одежды отделен туалетной и душевой от помещения, где находится чистая спецодежда. Курение на территории завода запрещено. Территория предприятия постоянно содержится в чистоте и порядке. Мусор, отходы и т.п. систематически удаляются на специальные отведенные участки. Отогревать их следует паром или горячей водой. Проходы, выходы, коридоры, лестницы чердачные помещения должны постоянно содержаться в исправном состоянии и ничем не загромождаться.
Отопительные и вентиляционные системы производственных помещений обеспечивают санитарно-гигиенические требования к воздушной среде в рабочей зоне согласно нормам метеорологических условий.
Освещенность цехов достаточно для нормальных условий труда и не требуют дополнительных искусственных источников освещения.
Требования безопасности к производственному оборудованию соблюдены. Чтобы исключить всевозможные перегрузки отдельных деталей, потенциально опасные сборочные единицы снабжены предохранительными устройствами, срабатывающими при выходе контролируемого параметра за допустимые пределы. Движущиеся и вращающиеся части оборудования ограждены. Для перемещения обслуживающего персонала есть удобные и безопасные по конструкции и размерам проходы и приспособления для ведения работ (рабочие площадки, лестницы и т. д.).
Для изучения причин травматизма используем статистический метод, который позволяет дать количественную и качественную оценку травматизма. Динамика производственного травматизма приведена в таблице 4.1.
Таблица 4.1 – Динамика производственного травматизма
Наименование показателей
Годы
2004
2005
2006
Среднесписочная численность работающих, чел.
189
287
360
Численность пострадавших при несчастных случаях на производстве с утратой трудоспособности на 1 рабочий день и более
1
0
1
Число человеко-дней нетрудоспособности у пострадавших
10
0
7
Показатель частоты
10,2
0
9,8
Показатель тяжести
6
0
5,5
Показатель потерь
73,8
0
30,3
Израсходовано на мероприятия по охране труда, тыс. руб.
60
64
68
Анализируя данные таблицы 4.1, видим, что, наблюдается улучшение состояния охраны труда на предприятии. Это связано с обновлением оборудования и с увеличением средств на мероприятия по охране труда.
Самый высокий показатель частоты в слесарном цехе, это связано с неудовлетворительным содержанием рабочих мест.
Причинами несчастных случаев являются: неудовлетворительное содержание рабочих мест, неудовлетворительная организация рабочих мест, несоблюдение техники безопасности и недостаточное обучение безопасным приемам труда.
Для снижения производственного травматизма и улучшения состояния охраны труда, необходимо проводить следующие мероприятия:
руководителям проводить все виды инструктажей своевременно и качественно;
проводить собрания, с обсуждением причин несчастных случаев;
поощрять работников за высокопроизводительный труд без травм и аварий;
проверять работников в соблюдении ими правил охраны труда;
создать безопасные условия труда каждого рабочего места;
привлекать к ответственности работников за нарушение требований охраны труда, распоряжений и указаний.
4.3 Организация работы по обеспечению пожарной безопасности
Все рабочие и служащие при приеме на работу проходят инструктаж о мерах пожарной безопасности, для чего директор предприятия издает приказ об обязательном прохождении инструктажа и ежегодном его повторении. Ответственные лица за противопожарную безопасность обязаны: не допускать к работе лиц, не прошедших инструктажа по соблюдению мер пожарной безопасности; следить, чтобы перед сдачей смены или окончанием работы проводилась тщательная уборка помещений и рабочих мест, обеспечивалась электроэнергией, и оставалось дежурное освещение; следить за исправностью приборов отопления, вентиляции, электроустановок, электропроводки и принимать меры к устранению обнаруженных недостатков; назначить ответственных лиц за топку печей и эксплуатацию других нагревательных приборов; обеспечивать исправное содержание и постоянную готовность к действию имеющихся средств пожарной связи.
Пожарный инвентарь размещают в помещениях, чтобы к нему был обеспечен свободный доступ. Пожарное ведро и огнетушители подвешивают на высоте 1,5м от пола до днища ведра. Пожарный инвентарь обычно хранят в специальных щитках, которые установлены у компрессорной и котельной.
В каждом производственном помещении не менее двух огнетушителей ОП-5, ОУ-5. За состоянием огнегасительного оборудования и содержанием его в готовности ведется систематическое наблюдение. Не реже одного раза в месяц его подвергают внешнему осмотру, удаляя пыль и загрязнения, у огнетушителей прочищают спрыск (проволокой диаметром 3,5мм), проверяют целостность пломб и бирок. Противопожарные разрывы между зданиями (не менее 7м) и сооружениями не должны использоваться под складирование материалов, оборудования и т.д. Готовая продукция, полуфабрикаты, тара, оборудование и т.п. должны складываться на определенных участках, расположение которых должно быть согласованно с пожарной охраной. Все цеха, склады, мастерские и т.п. помещения должны быть обеспеченны первичными средствами пожаротушения.
В зданиях запрещается: производить перепланировку помещений, установку перегородок без согласования и Госпожнадзором; облицовывать горючими материалами поверхности конструкций, лестничных клеток, вестибюлей и холлов зданий; производить уборку помещений с применением бензина, керосина и других легковоспламеняющихся материалов и горючих жидкостей; оставлять без присмотра включенные в электросеть нагревательные приборы, кассовые аппараты, счетные и пишущие машины, радиоприемники, телевизоры и т.д.
Не допускается хранение горючих товаров или товаров в горючей упаковке в помещениях, используемых в качестве основных путей эвакуации. Хранение в помещении вентиляционных установок, любых материалов, инструментов и т.п. категорически запрещается. Замена ламп, разного рода электронагревательных и других приборов меньшей мощностью на большую должна производиться с учетом пропускной способности сети и электроустановочных изделий (сечения и материала сети, контактов штепселей и выключателей и т.д.). Не допускается применение светильников из сгораемых материалов. Не допускается подключение нескольких потребителей электроэнергии путем надевания на ножи одной вилки, одной или нескольких пар закольцованных проводов.
Во всех помещениях (независимо от их назначения, степени огнестойкости и т.д.), которые по окончании работ не контролируются, все электрохозяйство должно быть полностью обесточено. В остальных помещениях по окончании работ должно оставаться под напряжением только дежурное освещение.
4.4 Инструкция по охране труда для рабочих, обслуживающих  фасовочный аппарат РТ-УМ-24
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.