Реферат по предмету "Производство"


Изменение функциональных свойств сложных объектов техники с течением времени и при эксплуатации

--PAGE_BREAK--2. Жизненный цикл изделия (системы)
При описании и изучении изделий их жизненный цикл делят на составные элементы (этапы, стадии). Эти составные элементы отличаются специфическими чертами и особенностями решаемых с их помощью задач. Так, иногда различают идеальный и материальный жизненные циклы изделия. Идеальный жизненный цикл включает в себя изучение потребности, проектирование и планирование. В материальном жизненном цикле выделяют этапы строительства, освоения, эксплуатации (например, поточной линии) или этапы изготовления, развертывания, применения (например, системы метеорологических спутников).

Более общепринятым является выделение из жизненного цикла процесса создания и процесса применения изделия. Составными частями процесса создания являются стадии разработки, изготовления и поставки изделия данного типа. Составные части процесса применения (эксплуатации) готовых образцов – хранение, транспортировка, профилактика, обслуживание, ремонт, подготовка к применению, собственно применение и т.п.

На начальных стадиях проектирования изделия (в рамках идеального цикла) решения воплощаются в документации и касаются всех изделий данного типа, подлежащих изготовлению. При этом к начальным стадиям относятся: разработка технического задания и рабочей документации, создание эскизного проекта и технического проекта, написание рабочей документации.

На последующих стадиях производства объектом исследования могут быть как все изделия данного типа, так и каждый конкретный образец (экземпляр). К таким стадиям можно отнести: изготовление опытных образцов, проведение автономных, комплексных, межведомственных и государственных испытаний, подготовка документации на изделия серийного производства, изготовление и испытание установочной партии изделий, изготовление серийных образцов.

В процессе создания (разработки) основного изделия можно разрабатывать, изготовлять и применять вспомогательные изделия: опытные образцы, экспериментальные установки, контрольно-проверочное оборудование и т.п. Жизненные циклы таких изделий, естественно, могут не совпадать с жизненным циклом основного изделия, являющегося объектом проводимого исследования.

Процесс создания и процесс применения изделия представляют в виде последовательных стадий работ, каждая из которых может расчленяться на более мелкие этапы и далее на отдельные работы. Эти отдельные работы являются независимыми и могут проводиться параллельно. Однако в общем случае результаты работ и этапов по отдельным составным частям влияют на проведение работ по другим частям изделия. Поэтому более точно процесс создания и процесс применения изделий могут быть представлены так называемым сетевым графиком, «вершины-события» которого находятся в строгом упорядочении через «дуги-работы». Кроме того, на всем множестве событий выделяют так называемые контролируемые события. После наступления каждого из них проводится анализ полученных результатов по изделию в целом. По итогам принимается решение о переходе к последующей стадии.

В заключение стоит отметить следующее: каждый жизненный цикл, в некотором базисе, характеризуется соответствующей ему основой, используемой для формирования базы данных. База данных, в свою очередь, необходима для создания диагностических (прогнозирующих) моделей.

При использовании только приведенных признаков классификации можно описать множество классов нейросетевых моделей исследуемых объектов. Ниже даны характеристики трех классов самих объектов с использованием отдельных признаков классификации.

Массовые объекты (системы). Процесс проектирования любого технического объекта всегда доходит до такого уровня детализации, когда в качестве структурных единиц создаваемого объекта используют уже готовые изделия. Последние, как правило, освоены промышленностью, выпускаются массовым производством и используются в стабильных (часто облегченных) условиях эксплуатации. Контроль состояния изделий проводят перед сборкой готовой продукции или перед применением. Ремонт не предусмотрен. Уровень работоспособности, как правило, один. Используют их до первого отказа.

Задачи исследования свойств объектов такого класса связаны с накоплением статистики о результатах применения и оценкой фактического уровня надежности. Знание уровня надежности и последствий отказов изделия позволяет правильно применять его. При этом, по необходимости, применяется резервирование как основной путь защиты от последствий отказов. В ряде случаев нейронные сети (НС) прямого распространения, обладающие большой информационной емкостью, позволяют аппроксимировать соответствующий объем однородных статистических данных.

Объекты (системы) крупной серии. Их применяют в широком диапазоне внешних воздействий, причем определенные условия эксплуатации конкретного образца проявляются только в процессе эксплуатации. Применение таких систем является либо периодическим, либо непрерывным, до исчерпания ресурса.

При разработке нового изделия, как правило, расширяется диапазон условий эксплуатации или усовершенствуется конструкция и технология. При этом свойства обобщения по подобию, преобладанию НС прямого распространения, а также ряд других архитектур НС позволяют получить удовлетворительные диагностические модели.

Оценку параметров ТС системы проводят на стадии проектирования по информации, собранной по результатам работы изделий-аналогов. Основные проблемы создания связаны с отработкой новых решений (конструкции, технологии, эксплуатации). По результатам опытной эксплуатации подбирают рациональные режимы контроля и ремонта.

Уникальные объекты (системы). Построенная в единственном экземпляре система работает в условиях переменных (возможно, случайных), предсказуемых с некоторым упреждением воздействий. В процессе создания используют апробированные ранее решения, а система непрерывного контроля и обслуживания гарантирует своевременное обнаружение неисправностей и предотвращение поломок и аварий. Эффективны экспертные системы, нейросетевые экспертные системы, НС с функциями выработки прототипа и обобщения.

При использовании признаков классификации систем следует иметь в виду, что аспект исследований, связанных с обоснованием решений на разных стадиях создания техники, может меняться. Соответственно, меняется класс объекта системного исследования (моделирования).

Для характеристики особенностей взаимодействия системы с внешней средой учитывают:

·                     факт наличия взаимодействия (разомкнутые системы) или отсутствия его (замкнутые системы);

·                     число и функциональное назначение контуров взаимодействия с внешней средой (целевой контур, контур поддержания работоспособности, контур энергообеспечения, контур жизнеобеспечения и т.п.);

·                     изученность (степень неопределенности) взаимодействий;

·                     для детерминированных – точность или диапазон возможных значений;

·                     для случайных – диапазон, вид распределения, параметры распределения;

·                     для преднамеренных – диапазон или правило выбора возможных значений.

Для характеристики особенностей внутреннего строения (структуры) систем используются следующие признаки [27]:

·                     Устойчивость структуры (системы с постоянной или переменной структурой).

·                     Наличие и степень участия оператора в целевом или вспомогательном контурах (системы ручного управления, автоматизированные и автоматические;

·                     Наличие в структуре системы лиц (коллективных органов) принятия решения, их подчиненность, централизация системы. В связи с этим различают системы: организационные, иерархические, многосвязанные, централизованные, децентрализованные, с антагонистическими интересами, с неантагонистическими интересами и т.д. К примеру, нейросетевой анализ скрытых закономерностей в данных параметров промышленных установок, в ряде случаев, позволяет выявить искусственное, целенаправленное и характерное их изменение операторами с той или иной целью.

Для учета специфики общесистемных интегральных свойств (поведения) систем учитывают:

·                     Наличие тех или иных регуляторных свойств (системы стабилизации, слежения, упреждения, программного управления и т.п.).

·                     Способность к анализу обстановки (системы с распознаванием ситуаций, с оценкой работоспособности, с прогнозом надежности и т.д.).

·                     Использование адаптации (системы с обучением, самообучением, гибкими стратегиями, наличием свободы выбора решений).

·                     Возможность изменения уровня организации (системы с перестраиваемой структурой, самоорганизующиеся, развивающиеся системы).

Будем рассматривать системы как объекты исследования их эксплуатационных свойств нейросетевыми методами. Тогда целью классификации систем является выделение групп изделий, для которых может быть предложен общий подход, который обеспечивает единство в вопросах задания требований, обеспечения, оценки, контроля ТС, применения общих методов анализа и синтеза, обоснования конструкторских, технологических и эксплуатационных параметров, а также параметров диагностических моделей.

Выбор признаков классификации систем проводят на основе анализа выделенных заранее групп характеристик [27]:

·                     условия эксплуатации;

·                     конструкционные, технологические, эксплуатационные параметры;

·                     свойства и их устойчивость.

Для характеристики условий эксплуатации обычно используют перечень воздействующих на изделие факторов и их диапазонов. Такие перечни могут быть составлены для каждого из режимов эксплуатации: хранения, транспортирования, дежурства, применения и т.п.

Кроме этого, нередко возникает необходимость в оценке условий эксплуатации по уровню неопределенности и воспроизводимости условий. Особенно это касается исследований эксплуатационных характеристик, а также выбора рациональных способов их обеспечения и контроля.

Воздействия на объект могут быть постоянные и переменные, а также известные, случайно непредсказуемые и преднамеренные. Комплекс условий может быть воспроизводимым при испытаниях опытных образцов или воспроизводимым только при эксплуатации (применении) штатных объектов.

Для характеристики конструкционных и технологических особенностей систем их различают: по объему выпуска, новизне конструкции и (или) технологии. По объему выпуска различают объекты массового, серийного и единичного производства. По характеристике свойств и режимам применения (эксплуатации) различают изделия: с одним или несколькими уровнями работоспособности; однократного, многократного, периодического или непрерывного применения.


    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.