Реферат по предмету "Производство"


Акустическая эмиссия при катодном наводороживании малоуглеродистых сталей и титановых сплавов

--PAGE_BREAK--7.       Амплитудно-временное распределение импульсов АЭ  n(A;t) – функция, указывающая количество импульсов АЭ dN, зарегистрированных    в промежутке времени от t до t+dt амплитуда которых заключена в интервале от А до А + dA:
dN = n(A,t)dAdt.
Если эту функцию проинтегрировать по времени от 0 до Т — времени регистрации АЭ, найдем амплитудное распределе­ние импульсов АЭ, а проинтегрировав еще раз по амплитуде, получим общее число импульсов за время регистрации:
          
Другими словами, амплитудно-временное распределение отра­жает изменение амплитудного распределения импульсов АЭ во времени.
8.       Спектральная плотность S(w) дискретной АЭ совпада­ет с соответствующей характеристикой случайного процесса и равна мощности процесса в единичной полосе частот.
Информативность спектральной плотности обусловлена ее связью со скоростью протекания процесса, инициирующего сиг­налы АЭ. Кроме спектральной плотности для анализа акусти­ческой эмиссии в ряде случаев бывает удобнее использовать корреляционную функцию. Информативное содержание этой ха­рактеристики то же, что и у спектральной плотности, посколь­ку между собой они связаны прямым и обратным преобразова­нием Фурье [46].
Для непрерывной АЭ меняется содержание некоторых из указанных характеристик. Кроме того, могут быть введены до­полнительные параметры для описания процесса. Так как те­ряется смысл понятия амплитуды отдельного импульса, сум­марная АЭ и скорость АЭ определяются числом выбросов слу­чайного процесса над уровнем дискриминации, т.е. числом пре­вышений регистрируемой величиной (электрическим напряже­нием, током) установленного уровня дискриминации за все вре­мя регистрации или за единицу времени соответственно. Вме­сто амплитудного распределения следует использовать плот­ность вероятности АЭ, определяющую долю времени наблюде­ния, в течение которого регистрируемая величина находится в интервале вблизи заданного значения амплитуды. Кроме того, вводятся одномерные и многомерные функции распределения указанных выше параметров.

2.  Основные понятия и определения метода акустической эмиссии.
Акустико-эмиссионный метод основан на анализе параметров упругих волн акустической эмиссии (АЭ). Этот метод  оперирует с потоками электрических сигналов АЭ,  параметры которых (амплитуда, длительность, энергия, и т.д.) являются соответствующими параметрами метода АЭ.
Акустическая эмиссия может возникать в результате различных физико-механических процессов, основными из которых являются:
 -структурные и фазовые превращения в материале;
-гидродинамические и аэродинамические явления при протекании жидкости или газа через отверстие;
-трение поверхностей твердых тел;
-процессы механической обработки твердых тел.
В данной работе рассматриваются физико-механические явления, связанные только со структурными и фазовыми превращениями в различных материалах.
Наиболее важные особенности метода АЭ, определяющие перспективность его использования при исследовании и контроле материалов и конструкций:
1.                Возможность обнаружения и регистрации только развивающихся дефектов, что позволяет классифицировать дефекты не по размерам, а по степени их опасности.
2.           Чувствительность метода АЭ значительно превышает чувствительность традиционных методов неразрушающего контроля, метод позволяет выявлять приращения трещины на 0,025 мм.
3.           Метод является интегральным и обеспечивает контроль объекта с использованием одного и нескольких преобразователей в случае определения места нахождения дефекта.
4.           Метод позволяет проводить непрерывный контроль (мониторинг) работающих объектов с целью их остановки в случае появления и развития опасных дефектов.
5.           Положение и ориентация дефектов не влияют на их выявляемость.
Метод имеет значительно меньше ограничений, связанных со структурой и физико-механическими свойствами материалов, чем другие методы неразрушающего контроля.
Уровень дискриминации (ограничения) – уровень электрического напряжения, относительно которого производится обнаружение (регистрация) электрических сигналов АЭ. Наличие ограничения всегда существует в измерительной аппаратуре и обусловлено обычно собственными шумами измерительной аппаратуры. Величина уровня дискриминации определяется шумовыми характеристиками входного усилительного каскада.
Суммарный счет АЭ N[имп.] – число зарегистрированных превышении импульсами АЭ установленного уровня дискриминации (ограничения) за интервал времени наблюдения. Диапазон изменения 0…107 имп.
Скорость счета АЭ [имп./с] – отношение суммарного счета АЭ к интервалу времени наблюдения. Диапазон изменения 0…1015[имп./с].
Современная техника регистрации и обработки АЭ информа­ции пользуется дополнительными определениями и параметрами, не представленными в списке стандартов по ГОСТ 27655-88. Од­нако эти понятия и параметры широко используются в специаль­ной научной литературе отечественных и зарубежных авторов.
К таковым относятся:
Огибающая электрического сигнала АЭ — продетектированный электрический сигнал АЭ. Диапазон изменения 10-7 … 10-2 В.
Амплитудное распределение — распределение количества электрических сигналов АЭ по их максимальном амплитудам.
Длительность электрического сигнала АЭ [с] — время на­хождения огибающей электрического импульса АЭ над порогом ограничения. Диапазон изменения 10-4...10-8 с.
Время нарастания [с] — промежуток времени между по­явлением огибающей импульса АЭ над порогом ограничения и достижением огибающей ее максимальной амплитуды.
Энергия электрического сигнала АЭ либо «MARSE» (Mea­sured ared of the rectified signal envelope) Ec [Дж] — измеренная площадь под огибающей электрического сигнала АЭ. Диапазон изменения 10-19...10-5 Дж.
Образ источника АЭ (acoustic emission signature) — группа параметров сигнала акустической эмиссии, полученных в результате определенного вида испытаний материала (конструкции) с помощью конкретной аппаратуры АЭ и при заданных условиях испытаний.
Как было отмечено выше, в настоящее время большинство разработчиков систем регистрации и обработки АЭ информации, а также исследователей склонны работать с огибающими электриче­ских сигналов АЭ, т.е. с НЧ составляющей АЭ информации. По­добная тенденция вызвана несколькими причинами:
1. Ввиду фильтрации ВЧ составляющей акустического сигна­ла АЭ в процессе его прохождения через исследуемый материал и пограничный слой между поверхностью образца и АЭ преобразо­вателем, а также прохождения электрического сигнала по аналого­вому тракту усиления, исходная информация ВЧ составляющей искажается коренным образом.
2. Понятие события в исследуемом материале соотносится с огибающей электрического сигнала АЭ и работа с НЧ составляю­щей имеет вполне конкретный физический смысл.
3. Большинство параметров АЭ, таких как длительность собы­тия, время нарастания, амплитудное распределение, энергия и т.д., относится к НЧ составляющей АЭ информации.
4.       Одновременное использование двух понятий ВЧ и НЧ составляющих в работах по акустической эмиссии приводит к подмене понятий и путанице в интерпретации получаемой информации.
Этот метод нашел широкое применение в материаловедении при исследовании процессов разрушения.
АЭ при наводороживании определялась с помощью прибора АФ-15. В качестве параметра АЭ выбран суммарный счет импульсов за 30 секунд, который фиксировался акустическим датчиком в частотных пределах от 200 кГц до 1000 кГц.
 Были исследованы зависимости суммарного счета импульсов  от времени наводороживания при различных уровнях дискриминации и плотностях катодного тока.
3. Методы выделения сигналов АЭ на фоне помех.
Исследования явления АЭ, проводимые в различных условиях на различных материалах, показывают, что сигналы АЭ имеют широкий спектр амплитудно-временных параметров. Сигнал АЭ может быть зарегистрирован на любой частоте, но амплитуда регистрируемого сигнала убывает обратно пропорционально частоте. По этой причине представляется очевидным стремление к ре­парации АЭ-сигналов на низких частотах, тем более что затуха­ние упругих волн существенно возрастает с увеличением частоты. ) однако с уменьшением частоты возрастают акустические помехи реобразователя АЭ-сигналов и электронной аппаратуры [9]. Этот факт налагает жесткие требования, предъявляемые не только к ре­гистрирующей аппаратуре, но и методам обработки и анализа ин­формации. Кроме собственных шумов аппаратуры тракты приема и обработки информации могут быть подвержены внешним шу­мам, для уменьшения воздействия которых широкое распростра­нение получили активные и пассивные способы подавления помех[10].
Активные способы подавления помех заключаются в по­давлении самого источника шума или уменьшении его влияния на исследуемый объект. Данный способ в основном используют для подавления шумов механического характера, создаваемых самим испытательным оборудованием: механическими и гидравлически­ми нагружающими машинами. С этой целью производят модерни­зацию испытательных машин с использованием специальных эле­ментов, предназначенных для уменьшения трения в сопрягаемых звеньях нагружающих устройств или звукоизолируют образец от испытательной машины за счет специальных прокладок, изолято­ров, шумопоглотителей.
При проведении особоточных физических экспериментов стремятся к применению бесшумных видов нагружения, таких как нагрев или охлаждение или к использованию предварительно на­груженных объектов. Активные способы эффективны при прове­дении испытаний материалов в лабораторных условиях. При про­ведении исследований, контроля и прогноза на реальных рабо­тающих объектах активные способы практически невозможно реа­лизовать.
Пассивные методы борьбы с шумами и помехами использу­ются практически во всех устройствах и системах регистрации и обработки сигналов АЭ.
1. Амплитудная дискриминация, как было указано выше, входит одним из блоков в аналоговый тракт АЭ систем и служит для отсечки шумов по амплитудному признаку путем сравнения пришедших сигналов с некоторым наперед заданным значением.
Кроме фиксированного порога ограничения иногда используют плавающий порог, т.е. производится непрерывное слежение за из­менением уровня помех в каналах тракта усиления сигналов АЭ.
2. Частотная фильтрация также реализуется одним из бло­ков в аналоговом тракте и заключается в ограничении полосы пропускания усилительного тракта. Ограничение в области ниж­них частот лежит в пределах 20...200 кГц, а в области верхних частот — 1,5...2 МГц. Ограничение в области нижних частот обу­словлено необходимостью отсечки шумов механического и испы­тательного оборудования, а ограничение частотного диапазона сверху — необходимостью отсечки электромагнитных наводок. Иногда частотная фильтрация используется для выбора узкой по­лосы пропускания, определяемой из условий испытания конкрет­ного материала, скорости распространения в нем продольных и поперечных волн, а также для регистрации трещин с определен­ными размерами.
3.  Временная селекция заключается в запирании каналов ре­гистрации сигналов АЭ на время действия помех. Индикатором помех, обычно электромагнитных, служит специальный канал, ре­гистрирующий только помехи.
4.  Параметрическая селекция или параметрическое стробирование заключается в пропускании сигналов АЭ на обработку электронной системой только при определенных условиях нагру­жения, например, при достижении нагрузкой определенного напе­ред заданного уровня. Этот тип селекции используют обычно при проведении усталостных испытаний.
5.       Пространственная селекция служит для выявления при­надлежности принятого сигнала к сигналу АЭ или помехе путем определения пространственного местоположения источника сигнала. Такие системы требуют применения многоканальных сис­тем. Минимальное число каналов равно двум при работе с линей­ными объектами.
6. Двухпараметрическая селекция обычно используется в аналого-цифровых системах АЭ и заключается в отбраковке сиг­налов с определенными значениями их параметров. Так, например, сигналы с большой амплитудой и малой длительностью соответ­ствуют электромагнитным помехам, а сигналы с относительно не­большой амплитудой, но большой длительности характерны для механических шумов. Такие различия позволяют выделить реаль­ные сигналы АЭ, у которых эти параметры занимают промежуточ­ный диапазон, на фоне механических и электромагнитных помех.
7. В аналого-цифровых системах АЭ возможно использова­ние прямого вычитания сигналов помех из всей совокупности зарегистрированных сигналов АЭ. Для этого производится предварительная запись сигналов помех в конкретных условиях ра­боты нагружающего оборудования и действия других видов помех.
4.  Методика электролитического наводороживания металлических образцов.
Для объяснения явлений, связанных с наводороживанием металла катода в растворах электролитов под действием стимуляторов и ингибиторов наводороживания, более продуктивным пока является рассмотрение процесса выделения водорода на основе обычных классических представлений о нескольких возможных стадиях общего процесса выделения водорода, определяющих кинетику процесса. Таких стадийных процессов рассматривают обычно три:
1. Разряд гидратированных ионов водорода электронами, вылетающими из металла – реакция Фольмера  Н+∙ aq + e(Me)→H-Me. Образующиеся атомы водорода адсорбируются на поверхности металла катода.
2. Молизация адатомов водорода в молекулы – реакция Тафеля Над + Над→Н2. Возникающие таким путем молекулы водорода удаляются с катода путем диффузии в раствор (при малых плотностях тока) и в виде газовых пузырьков.
3. В некоторых случаях возможно удаление адатомов водорода с поверхности катода путем электрохимической десорбции:
Над + Н+∙ aq + e(Me)→Н2.
Количество серной кислоты в растворе не меняется. Однако при использовании стимуляторов и ингибиторов, реакции, происходящие при электролизе, существенно меняются.
В настоящей работе наводороживание проводилось в электролитической ячейке в однонормальном растворе серной кислоты с добавлением  тиомочевины (стимулятор наводороживания). В качестве анода использовалась свинцовая пластина, катодом служил исследуемый образец.
Приборы:
1.                Прибор акустико-эмиссионный АФ-15.
2.                Источник тока Б5-46.
3.                Вольтметр В7-21.
4.                Акустический датчик.
5. Назначение прибора АФ-15.
Прибор предназначен для проведения исследований и контроля механических свойств различных объектов (образцы конструкционных материалов, сосуды давления, детали и узлы машин и механизмов, например, атомной энергетики, судостроение, авиаций) по информативным параметрам сигналов АЭ.
Прибор обеспечивает прием сигналов АЭ по двум каналам и одновременную регистрацию не менее четырех информативных параметров: амплитуда, скорость счета, сумма осцилляций, активность, сумма событий, разность времен прихода, форму и длительность импульсов АЭ на графопостроителях, анализаторов импульсов, цифропечатающих устройствах и Микро-ЭВМ.
6. Источники акустической эмиссии в металлах.
На современном этапе развития АЭ исследований можно вы­делить следующие основные источники АЭ, действующие на разных структурных уровнях в металлах:
1.                Механизмы, ответственные за пластическое деформирование:
процессы, связанные с движением дислокаций (консерва­тивное скольжение и аннигиляция дислокаций, размножение дислокаций по механизму Франка-Рида; отрыв дислокацион­ных петель от точек закрепления и др.);
зернограничное скольжение;
двойникование.
2.       Механизмы, связанные с фазовыми превращениями и фазовыми переходами первого и второго рода:
превращения полиморфного типа, в том числе мартенситные;
образование частиц второй фазы при распаде пересыщен­ных твердых растворов;
фазовые переходы в магнетиках и сверхпроводниках;
магнитомеханические эффекты из-за смещения  границ и
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат «Финансовая политика»
Реферат Реформування органів внутрішніх справ України як фактор розвитку функції забезпечення законності та правопорядку
Реферат Прогнозирование развития технологий
Реферат Управление персоналом фирмы ООО Русфинанс банк
Реферат Личностные новообразования у детей в период кризиса трех лет
Реферат Психолого-педагогические основы использования индивидуально-дифференцированного подхода в обучении
Реферат Cekta ru Рон Родес вразрез со священным писанием
Реферат Hotel staff training, skills, manners
Реферат Актуальные вопросы правового регулирования в сфере защиты и поддержки конкуренции и антимонопольного
Реферат Malvalio Essay Research Paper The character Malvolio
Реферат The Importance Of Friar Lawrence Essay Research
Реферат Шпаргалка по философии (вступительные экзамены в аспирантуру НТУУ "КПИ")
Реферат Euthenasia Essay Research Paper Euthenasia Euthanasia is
Реферат Bladerunner Vs Frankenstein Essay Research Paper As
Реферат «Ника»