--PAGE_BREAK--Глава 1 Дидактические принципы изучения темы “Электромагнитные колебания” в курсе физики средней школы 1.1 Методика изучения темы “Электромагнитные колебания” в курсе физики средней школы
При определении содержания и методов изучения данного раздела необходимо руководствоваться такими основными факторами, как научной значимостью отобранного для изучения материала и важностью его практических приложений.
Колебательные процессы – одни из самых распространенных процессов в природе. Изучение колебаний – это универсальный ключ ко многим тайнам мира.
Колебательные процессы, а именно электромагнитные колебания являются основой действия всех электро-и радиотехнических устройств.
В процессе изучения темы “Электромагнитные колебания” рассматриваются свободные электромагнитные колебания и автоколебания в колебательных контурах, а также вынужденные колебания в электрических цепях под действием синусоидальной ЭДС. Все эти вопросы имеют очень большое значение, так как на их основе затем изучаются электромагнитные волны с их научно-практическими приложениями.
При изложении данной темы в курсе физики средней школы учитель должен опираться на следующие основные положения:
§ использование аналогий механических и электромагнитных колебаний;
§ изучение и объяснение явлений и процессов на основе знаний об электрическом и магнитном полях и электромагнитной индукции, полученных в X классе;
§ широкое применение физического эксперимента.
Содержание материала и последовательность его изложений отражены в ниже следующем примерном поурочном планировании[2]:
1-й и 2-й уроки.Повторение материала об электромагнитной индукции. Свободные и вынужденные электрические колебания.
3-й урок. Колебательный контур. Превращение энергии при ЭМК.
4-й урок. Аналогия между механическими и электромагнитными колебаниями.
5-й урок.Уравнения гармонических колебаний в контуре. Упражнения.
Первые пять уроков отводятся на изучение процессов в колебательном контуре. Центральными являются уроки, на которых рассматривается колебательный контур, раскрывается сущность происходящих в нем процессов и устанавливается, что свободные электромагнитные колебания в идеальном контуре гармонические. С колебательным контуром учащиеся знакомятся, наблюдая электромагнитные колебания низкой частоты, возникающие в цепи, состоящей из последовательного соединенных конденсатора и катушки индуктивности.
Электромагнитные колебания вначале представляются как периодическое (в идеале — гармоническое) изменение физических величин (заряда, тока, напряжения), характеризующих состояние системы проводников. Затем показывается, что при этом происходит периодическое изменение энергий электрического поля конденсатора и магнитного поля катушки с током.
Очень важно при этом отметить, что эти изменения неразрывно связаны друг с другом, что выражается в сохранении полной энергии в идеальном колебательном контуре.
Необходимо показать, что колебательный контур – это система, у которой есть состояние устойчивого равновесия, характеризуемое состоянием с минимальной потенциальной энергией (конденсатор не заряжен), в которое система приходит сама собою (разрядка конденсатора) и через которое она может проходить “по инерции” (явление самоиндукции). Это следует подчеркнуть при количественном изучении процессов в контуре и получении формулы Томсона, так как только для колебательной системы имеет смысл понятие “собственная частота”.
Чтобы доказать, что в идеальном контуре происходят гармонические колебания, необходимо получить основное уравнение, описывающее процессы в контуре и показать его аналогичность уравнению гармонических механических колебаний.
Для получения основного уравнения, описывающего процессы в контуре, лучше использовать закон Ома для участка цепи, содержащего э.д.с. Это позволяет снять возможный вопрос о допустимости применения закона, установленного для постоянного тока, для описания процессов в колебательном контуре, кроме того, при этом отпадает необходимость оговаривать отсутствие гальванического элемента. В этом случае роль разности потенциалов играет напряжение на конденсаторе, равное Q/C. Записав
и считая сопротивление R контура очень малым, переходят к мгновенным значениям, что следует оговорить. В результате получают
Для раскрытия физической сущности электромагнитных колебаний используется метод векторных диаграмм. Построение ведется по четвертям периода и сопровождается объяснением того, как изменяется каждая из величин, представленных на диаграмме. Фазовые соотношения определяются исходя из того, что сила тока имеет смысл скорости изменения заряда, а э.д.с. самоиндукции (с учетом знака) – скорости изменения тока. При изучении механических колебаний было установлено, что
Рис.1
фазы таких колебаний отличаются на p/2.
После рассмотрения явлений в колебательном контуре переходят к изучению переменного тока как вынужденных электромагнитных колебаний.
Изучение начинается с демонстрации осциллограммы сетевого напряжения, вид которой позволяет считать переменный ток гармоническими электромагнитными колебаниями.
Отмечают, что вообще переменный ток – это вынужденные электромагнитные колебания, форма которых определяется законом изменения приложенного напряжения. Затем выводят уравнения гармонических колебаний э.д.с. индукции в витке обмотки генератора и тока в сети. Подробно устройство генератора не рассматривают, речь идет лишь о получении переменной э.д.с. путем вращения рамки в постоянном магнитном поле.
Вывод уравнений опирается на изученные в Х классе закон электромагнитной индукции Фарадея и понятие магнитного потока.
Обращают внимание на то, что подобно тому, как при механических колебаниях возможен сдвиг фаз между вынуждающей силой и скоростью колеблющейся точки, так и в случае электромагнитных колебаний может быть сдвиг по фазе между током и напряжением. Более подробное рассмотрение фазовых соотношений тока и напряжения будет сделано при изучении реактивных сопротивлений и закона Ома для переменного тока.
В заключение рассматривается генератор на транзисторе как пример электромагнитной автоколебательной системы. В такой системе вырабатываются высокочастотные незатухающие колебания за счет дозированного периодического поступления энергии от источника постоянного напряжения, входящего в состав системы. Целесообразно сначала показать такой генератор в действии, а затем объяснить его устройство, используя саму установку и ее схему.
Учитывая исключительную важность повторения, обобщения и систематизации всего курса физики в ХI классе, следует особое внимание уделить задачам на повторение с использованием вновь изученного материала.
продолжение
--PAGE_BREAK--1.2 Развитие познавательного интереса к физике при использовании компьютерных технологий Глава 2 Компьютерное моделирование электромагнитных колебаний 2.1 Возможности применения графических пакетов при изучении электромагнитных колебаний в курсе физики средней школы
На сегодняшний день разработано множество графических пакетов и оболочек (Соrel, 3D-Studio, Power-Point, Micro-Cap и др.), позволяющих решать конкретные практические задачи с помощью ЭВМ без знания языков высокого уровня. По нашему мнению, наиболее приемлемыми для использования в школе являются оболочки PowerPointи CorelMove.
2.1.2 Возможности использования графической оболочки Corel и пакета PowerPoint.
Графический редактор CorelMove и пакет для создания презентаций PowerPoint позволяет создавать различные статические и динамические модели, которые очень наглядно демонстрируют различные физические опыты и явления, переходные процессы. Просмотр этих моделей учащимися делает процесс изучения физики интересным и привлекательным, а так же во многом упрощает труд преподавателя. Применение компьютерных моделей на уроках вообще и физики – в частности, в конечном счете, должно способствовать развитию познавательного интереса, овладению школьниками возможностями информационных технологий, более гармоничному развитию интеллектуальных способностей учащихся.
2.2 Повышение наглядности обучения при использовании компьютерных моделей на уроках физики.
При изучении физики возможен пересмотр методики изучения школьниками некоторых разделов на основе эффективной графической иллюстрации сложных зависимостей, представляемых обычно в табличной или аналитической форме, улучшения техники и методики демонстрационного эксперимента, наглядного решения физических задач.
Чтобы сделать средство обучения наглядным, необходимо выделить основные свойства изучаемого явления, т. е. превратить его в модель, правильно отразить в модели эти свойства и обеспечить доступность этой модели для учащихся.
Особое внимание должно уделяться статическим и динамическим моделям. Динамическое компьютерное моделирование обладает большой достоверностью и убедительностью, прекрасно передает динамику различных физических процессов.
В настоящее время изменилось отношение к наглядности преподавания физики. Широкое распространение получили различные компьютерные модели, открывающие перед учителем много возможностей и перспектив в обучении физике. Их использование в комплексе с другими средствами наглядности повышают эффективность процесса обучения.
Показателем эффективности компьютерных моделей является интеллектуальное развитие учащихся. Для повышения этого показателя необходимо соответствие предметного содержания урока целевому назначению динамической компьютерной модели.
Использование компьютерных технологий позволяет в условиях школы надежно воспроизводить физические явления и процессы, быстро и точно производить расчеты времени, многократно повторять эксперимент с разными исходными данными.
Важным условием повышения эффективности наглядности обучения является активизация познавательной деятельности учащихся за счет увеличения объема самостоятельной работы при организации диалога ученика с компьютером.
Применение компьютерных моделей в демонстрационном эксперименте позволяет более полно реализовать на практике такие требования, как обеспечение видимости, создание специфического эмоционального настроя.
На основании соответствия содержания учебного материала целевому назначению динамических компьютерных моделей выделяют несколько вариантов использования динамических компьютерных моделей при объяснении нового материала:
1. в теории, основанной на явлениях, для которых важно знать их механизм;
2. в теории, основанной на исторических опытах;
3. в теории по материалу повышенной трудности;
4. для демонстрации применения изучаемого явления в жизни и технике;
5. для построения графиков, необходимых для изучения нового материала.
2.3 Разработка методики изучения темы “Электромагнитные колебания” 1. Колебательный контур. Превращения энергии при электромагнитных колебаниях.
Эти вопросы, являющиеся одними из самых важных в данной теме, рассматриваются на третьем уроке.
Сначала вводится понятие колебательного контура, делается соответствующая запись в тетради.
Далее, для выяснения причины возникновения электромагнитных колебаний, демонстрируется тот фрагмент динамической модели, где показан процесс зарядки конденсатора. Обращается внимание учащихся на знаки зарядов пластин конденсатора.
После этого рассматриваются энергии магнитного и электрического полей, ученикам рассказывают о том, как изменяются эти энергии и полная энергия в контуре, объясняется механизм возникновения электромагнитных колебаний с использованием модели, ведется запись основных уравнений.
Очень важно обратить внимание учащихся на то, что такое представление тока в цепи (поток заряженных частиц) является условным, так как скорость электронов в проводнике очень мала. Такой способ представления выбран для облегчения понимания сути электромагнитных колебаний.
Далее внимание учащихся акцентируется на том, что они наблюдают процессы превращения энергии электрического поля в энергию магнитного и наоборот, а так как колебательный контур является идеальным (отсутствует сопротивление), то полная энергия электромагнитного поля остается неизменной. После этого дается понятие электромагнитных колебаний и оговаривается, что эти колебания являются свободными. Затем подводятся итоги и дается домашнее задание.
продолжение
--PAGE_BREAK--2. Аналогия между механическими и электромагнитными колебаниями.
Этот вопрос рассматривается на четвертом уроке изучения темы. Вначале для повторения и закрепления можно еще раз продемонстрировать динамическую модель идеального колебательного контура. Для объяснения сути и доказательства аналогии между электромагнитными колебаниями и колебаниями пружинного маятника используются динамическая колебательная модель ”Аналогия между механическими и электромагнитными колебаниями” и презентаций PowerPoint.
В качестве механической колебательной системы рассматривается пружинный маятник (колебания груза на пружине). Выявление связи между механическими и электрическими величинами при колебательных процессах ведется по традиционной методике.
Динамическая модель используется для наблюдения соответствия максимальной силы тока в цепи и максимальной скорости груза (рис N),
а так же соответствия моментов остановки груза и перезарядки конденсатора (рис N).
Как это уже было сделано на прошлом занятии, необходимо еще раз напомнить учащимся об условности движения электронов по проводнику, после чег7о их внимание обращается на правый верхний угол экрана, где находится колебательная система “сообщающиеся сосуды”. Оговаривается, что каждая частица совершает колебания около положения равновесия, поэтому колебания жидкости в сообщающихся сосудах тоже могут служить аналогией электромагнитных колебаний.
Далее составляется таблица соответствия между механическими и электрическими величинами при колебательных процессах:
Таблица соответствия между механическими и электрическими величинами при колебательных процессах.
Если в конце урока осталось время, то можно более подробно остановиться на демонстрационной модели, разобрать все основные моменты с применением вновь изученного материала.
3. Уравнение свободных гармонических колебаний в контуре.
Вначале урока демонстрируются динамические модели колебательного контура и аналогии механических и электромагнитных колебаний, повторяются понятия электромагнитных колебаний, колебательного контура, соответствие механических и электромагнитных величин при колебательных процессах.
Новый материал необходимо начать с того, что если колебательный контур идеальный, то его полная энергия с течением времени остается постоянной
,
т.е. ее производная по времени постоянна, а значит и производные по времени от энергий магнитного и электрического полей тоже постоянны. Затем, после ряда математических преобразований приходят к выводу, что уравнение электромагнитных колебаний аналогично уравнению колебаний пружинного маятника.
Ссылаясь на динамическую модель, учащимся напоминают, что заряд в конденсаторе меняется периодически, после чего ставится задача – выяснить, как зависят от времени заряд, сила тока в цепи и напряжение на конденсаторе.
Данные зависимости находятся по традиционной методике. После того, как найдено уравнение колебаний заряда конденсатора, учащимся демонстрируется картинка, на которой изображены графики зависимости заряда конденсатора и смещения груза от времени, представляющие собой косинусоиды.
По ходу выяснения уравнения колебаний заряда конденсатора вводятся понятия периода колебаний, циклической и собственной частот колебаний. Затем выводится формула Томсона.
Далее получают уравнения колебаний силы тока в цепи и напряжения на конденсаторе, после чего демонстрируется картинка с графиками зависимости трех электрических величин от времени. Внимание учащихся обращается на сдвиг фаз между колебаниями силы тока и напряжения и его отсутствием между колебаниями напряжения и заряда.
После того, как выведены все три уравнения, вводится понятие затухающих колебаний и демонстрируется картинка, на которой изображены эти колебания.
На следующем уроке подводятся краткие итоги с повторением основных понятий и решаются задачи на нахождение периода, циклической и собственной частот колебаний, исследуются зависимости q(t), U(t), I(t), а так же различные качественные и графические задачи.
продолжение
--PAGE_BREAK--3.3 Методическая разработка трех уроков.
Приведенные ниже уроки разработаны в виде лекций, так как эта форма, по моему мнению, является наиболее производительной и оставляет в данном случае достаточно времени для работы с динамическими демонстрационными моделями. При желании эта форма может быть легко трансформирована в любую другую форму проведения урока.
УРОК № 1.
Тема урока: Колебательный контур. Превращения энергии в колебательном контуре.
Объяснение нового материала.
Цель урока: объяснение понятия колебательного контура и сути электромагнитных колебаний с использованием динамической модели “Идеальный колебательный контур”.
Колебания могут происходить в системе, которая называется колебательным контуром, состоящим из конденсатора емкостью С и катушки индуктивностью L. Колебательный контур называется идеальным, если в нем нет потерь энергии на нагревание соединительных проводов и проводов катушки, т. е. пренебрегают сопротивлением R.
(Именно такой идеальный колебательный контур вы видите на экранах. Это — динамическая модель колебательного процесса, которая поможет нам разобраться с основными понятиями и законами электромагнитных колебательных процессов. Здесь вы видите источник тока схематичные изображения конденсатора и катушки индуктивности).
Давайте сделаем в тетрадях чертеж схематичного изображения колебательного контура.
Чтобы возникли электрические колебания в этом контуре, ему необходимо сообщить некоторый запас энергии, т.е. зарядить конденсатор. Когда конденсатор зарядится, то электрическое поле будет сосредоточено между его пластинами.
(Давайте проследим процесс зарядки конденсатора и остановим процесс, когда зарядка будет завершена).
Итак, конденсатор заряжен, его энергия равна
, но ,
поэтому , следовательно,
.
Так как после зарядки конденсатор будет иметь максимальный заряд (обратите внимание на пластины конденсатора, на них расположены противоположные по знаку заряды), то при q=qmax энергия электрического поля конденсатора будет максимальна и равна
.
В начальный момент времени вся энергия сосредоточена между пластинами конденсатора, сила тока в цепи равна нулю. (Давайте теперь замкнем на нашей модели конденсатор на катушку). При замыкании конденсатора на катушку он начинает разряжаться и в цепи возникнет ток, который, в свою очередь, создаст в катушке магнитное поле. Силовые линии этого магнитного поля направлены по правилу буравчика.
При разрядке конденсатора ток не сразу достигает своего максимального значения, а постепенно. Это происходит потому, что переменное магнитное поле порождает в катушке второе электрическое поле. Вследствие явления самоиндукции там возникает индукционный ток, который, согласно правилу Ленца, направлен в сторону, противоположную увеличению разрядного тока.
Когда разрядный ток достигает своего максимального значения энергия магнитного поля максимальна и равна
,
а энергия конденсатора в этот момент равна нулю. Таким образом, через t=T/4 энергия электрического поля полностью перешла в энергию магнитного поля.
(Давайте понаблюдаем процесс разрядки конденсатора на динамической модели. Обращаю ваше внимание на то, что такой способ представления процессов зарядки и разрядки конденсатора в виде потока перебегающих частиц, является условным и выбран для удобства восприятия. Вы прекрасно знаете, что скорость движения электронов очень мала (порядка нескольких сантиметров в секунду). Итак, вы видите, как, при уменьшении заряда на конденсаторе изменяется сила тока в цепи, как изменяются энергии магнитного и электрического полей, какая между этими изменениями существует связь. Так как контур является идеальным, то потерь энергии нет, поэтому общая энергия контура остается постоянной).
С началом перезарядки конденсатора разрядный ток будет уменьшаться до нуля не сразу, а постепенно. Это происходит опять же из-за возникновения противо э. д. с. и индукционного тока противоположной направленности. Этот ток противодействует уменьшению разрядного тока, как ранее противодействовал его увеличению. Сейчас он будет поддерживать основной ток. Энергия магнитного поля будет уменьшаться, энергия электрического – увеличиваться, конденсатор будет перезаряжаться.
Таким образом, полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей
Колебания, при которых происходит периодическое превращение энергии электрического поля конденсатора в энергию магнитного поля катушки, называются ЭЛЕКТРОМАГНИТНЫМИ колебаниями. Так как эти колебания происходят за счет первоначального запаса энергии и без внешних воздействий, то они являются СВОБОДНЫМИ.
Урок 2.
Тема урока: Аналогия между механическими и электромагнитными колебаниями.
Объяснение нового материала.
Цель урока: объяснение сути и доказательство аналогии между электромагнитными колебаниями и колебаниями пружинного маятника с использованием динамической колебательной модели ”Аналогия между механическими и электромагнитными колебаниями” и презентаций PowerPoint.
Материал для повторения:
· понятие колебательного контура;
· понятие идеального колебательного контура;
· условия возникновения колебаний в к/к;
· понятия магнитного и электрического полей;
· колебания как процесс периодического изменения энергий;
· энергия контура в произвольный момент времени;
· понятие (свободных) электромагнитных колебаний.
(Для повторения и закрепления учащимся еще раз демонстрируется динамическая модель идеального колебательного контура).
На этом уроке мы рассмотрим аналогию между механическими и электромагнитными колебаниями. В качестве механической колебательной системы будем рассматривать пружинный маятник.
(На экране вы видите динамическую модель, которая демонстрирует аналогию между механическими
и электромагнитными колебаниями. Она поможет нам разобраться в колебательных процессах, как в механической системе, так и в электромагнитной).
Итак, в пружинном маятнике упругодеформированная пружина сообщает скорость прикрепленному к ней грузу. Деформированная пружина обладает потенциальной энергией упругодеформированного тела
,
движущийся груз обладает кинетической энергией
.
Превращение потенциальной энергии пружины в кинетическую энергию колеблющегося тела является механической аналогией превращения энергии электрического поля конденсатора в энергию магнитного поля катушки. При этом аналогом механической потенциальной энергии пружины является энергия электрического поля конденсатора, а аналогом механической кинетической энергии груза является энергия магнитного поля, которая связана с движением зарядов. Зарядке конденсатора от батареи соответствует сообщение пружине потенциальной энергии (например, смещение рукой).
Давайте сопоставим формулы и выведем общие закономерности для электромагнитных и механических колебаний.
ПРУЖИНА КОНДЕНСАТОР
ГРУЗ КАТУШКА
Из сопоставления формул следует, что аналогом индуктивности L является масса m, а аналогом смещения х служит заряд q, аналогом коэффициента k служит величина, обратная электроемкости, т. е. 1/С.
Моменту, кода конденсатор разрядится, а сила тока достигнет максимума, соответствует прохождение телом положения равновесия с максимальной скоростью (обратите внимание на экраны: там вы можете пронаблюдать это соответствие).
Далее при перезарядке конденсатора тело будет смещаться влево от положения равновесия. Через промежуток времени, равный t=T/2, конденсатор полностью перезарядится и сила тока в цепи станет равной нулю.
Как уже было сказано на прошлом занятии, движение электронов по проводнику является условным, ведь для них основным видом движения является колебательное движение около положения равновесия. Поэтому иногда еще электромагнитные колебания сравнивают с колебаниями воды в сообщающихся сосудах (посмотрите на экран, вы видите, что в правом верхнем углу находится именно такая колебательная система), где каждая частица совершает колебания около положения равновесия.
Итак, мы выяснили, что аналогией индуктивности является масса, а аналогией перемещения является заряд. Но вед вы прекрасно знаете, что изменение заряда в единицу времени – это не что иное, как сила тока, а изменение координаты в единицу времени – скорость, то есть q’= I, а x’= v. Таким образом, мы нашли еще одно соответствие между механическими и электрическими величинами.
Давайте составим таблицу, которая поможет нам систематизировать связи механических и электрических величин при колебательных процессах.
Таблица соответствия между механическими и электрическими величинами при колебательных процессах.
Урок 2.
Тема урока: Уравнение свободных гармонических колебаний в контуре. Колебаний.
Объяснение нового материала.
Цель урока: вывод основного уравнения электромагнитных колебаний, законов изменения заряда и силы тока, получения формулы Томсона и выражения для собственной частоты колебания контура с использованием презентаций PowerPoint.
Материал для повторения:
· понятие электромагнитных колебаний;
· понятие энергии колебательного контура;
· соответствие электрических величин механическим величинам при колебательных процессах.
(Для повторения и закрепления необходимо еще раз продемонстрировать модель аналогии механических и электромагнитных колебаний).
На прошлых уроках мы выяснили, что электромагнитные колебания, во-первых, являются свободными, во-вторых, представляют собой периодическое изменение энергий магнитного и электрического полей. Но кроме энергии при электромагнитных колебаниях меняется еще и заряд, а значит и сила тока в контуре и напряжение. На этом уроке мы должны выяснить законы, по которым меняются заряд, а значит сила тока и напряжение.
Итак, мы выяснили, что полная энергия колебательного контура в любой момент времени равна сумме энергий магнитного и электрического полей: . Считаем, энергия не меняется со временем, то есть контур – идеальный. Значит производная полной энергии по времени равна нулю, следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:
, то есть .
Знак минус в этом выражении означает, что когда энергия магнитного поля возрастает, энергия электрического поля убывает и наоборот. А физический смысл этого выражения таков, что скорость изменения энергии магнитного поля равна по модулю и противоположна по направлению скорости изменения электрического поля.
Вычисляя производные, получим
.
Но , поэтому и — мы получили уравнение, описывающее свободные электромагнитные колебания в контуре. Если теперь мы заменим q на x, х’’=ахна q’’, k на 1/C, m на L, то получим уравнение
,
описывающее колебания груза на пружине. Таким образом, уравнение электромагнитных колебаний имеет такую же математическую форму, как уравнение колебаний пружинного маятника.
Как вы видели на демонстрационной модели, заряд на конденсаторе меняется периодически. Необходимо найти зависимость заряда от времени.
Из девятого класса вам знакомы периодические функции синус и косинус. Эти функции обладают следующим свойством: вторая производная синуса и косинуса пропорциональна самим функциям, взятым с противоположным знаком. Кроме этих двух, никакие другие функции этим свойством не обладают. А теперь вернемся к электрическому заряду. Можно смело утверждать, что электрический заряд, а значит и сила тока, при свободных колебаниях меняются с течением времени по закону косинуса или синуса, т. е. совершают гармонические колебания. Пружинный маятник также совершают гармонические колебания (ускорение пропорционально смещению, взятому со знаком минус).
Итак, чтобы найти явную зависимость заряда, силы тока и напряжения от времени, необходимо решить уравнение
,
учитывая гармонический характер изменения этих величин.
Если в качестве решения взять выражение типа q = qmcos t, то, при подстановке этого решения в исходное уравнениe, получим q’’=-qmcos t=-q.
Поэтому, в качестве решения необходимо взять выражение вида
q=qmcosωot,
где qm – амплитуда колебаний заряда (модуль наибольшего значения колеблющейся величины),
ωo = — циклическая или круговая частота. Ее физический смысл –
число колебаний за один период, т. е. за 2π с.
Период электромагнитных колебаний – промежуток времени, в течение которого ток в колебательном контуре и напряжение на пластинах конденсатора совершает одно полное колебание. Для гармонических колебаний Т=2π с (наименьший период косинуса).
Частота колебаний – число колебаний в единицу времени – определяется так: ν = .
Частоту свободных колебаний называют собственной частотой колебательной системы.
(Посмотрите на экран, перед вами графики зависимости заряда от времени и смещения от времени, представляющие собой косинусоиды).
Так как ωo= 2π ν=2π/Т, то Т= .
Циклическую частоту мы определили как ωo = , значит для периода можно записать
Т= = — формула Томсона для периода электромагнитных колебаний.
Тогда выражение для собственной частоты колебаний примет вид
.
Нам осталось получить уравнения колебаний силы тока в цепи и напряжения на конденсаторе.
Так как , то при q = qmcos ωot получим U=Umcosωot. Значит, напряжение тоже меняется по гармоническому закону. Найдем теперь закон, по которому меняется сила тока в цепи.
По определению ,
но q=qmcosωt, поэтому
,
где π/2 – сдвиг фаз между силой тока и зарядом (напряжением). Итак, мы выяснили, что сила тока при электромагнитных колебаниях тоже меняется по гармоническому закону.
(Посмотрим на экраны, там вы видите графики зависимости заряда и напряжения на конденсаторе и силы тока в цепи от времени. На графиках хорошо видно, что сила тока сдвинута относительно заряда на π/2).
Мы рассматривали идеальный колебательный контур, в котором нет потерь энергии и свободные колебания могут продолжаться бесконечно долго за счет энергии, однажды полученной от внешнего источника. В реальном контуре часть энергии идет на нагревание соединительных проводов и нагревание катушки. Поэтому свободные колебания в колебательном контуре являются затухающими.
продолжение
--PAGE_BREAK--